Compress and Learning. In class we showed that so long as the number of examples $m$ satisfies $m > \frac{1}{\epsilon}[s \ln 2 + \ln(1/\delta)]$, with probability at least $1 - \delta$, all consistent hypotheses $h$ with size($h$) < $s$ have error at most $\epsilon$. Equivalently, to learn well it suffices to have $s < \frac{1}{\ln 2}[\epsilon m - \ln(1/\delta)]$; i.e., to compress the data by roughly a factor of $1/\epsilon$.

Suppose you have an algorithm that guarantees on any set of $m$ examples consistent with some target function $f \in C$ to find a hypothesis of size at most $\text{size}(f)^3 m^{2/3}$. How large a value of $m$ would be sufficient for this algorithm to achieve error $\leq \epsilon$ with probability $\geq 1 - \delta$. (You may look at the proof of Thm 2.1 in the book, but please don’t just plug into the theorem. Also, don’t worry about being tight with constant factors.)

Expressivity of LTFs. It is easy to see that conjunctions (like $x_1 \wedge \bar{x}_2 \wedge x_3$) and disjunctions (like $x_1 \vee \bar{x}_2 \vee x_3$) are special cases of decisions lists. Show that decisions lists are a special case of linear threshold functions. That is, any function that can be expressed as a decision list can also be expressed as a linear threshold function “$f(x) = + \text{iff } w_1 x_1 + \ldots w_n x_n \geq w_0$.”

Decision tree rank. The rank of a decision tree is defined as follows. If the tree is a single leaf then the rank is 0. Otherwise, let $r_L$ and $r_R$ be the ranks of the left and right subtrees of the root, respectively. If $r_L = r_R$ then the rank of the tree is $r_L + 1$. Otherwise, the rank is the maximum of $r_L$ and $r_R$.

Prove that a decision tree with $\ell$ leaves has rank at most $\log_2(\ell)$.
Problems:

4. **Decision List mistake bound.** Give an algorithm that learns the class of decision lists in the mistake-bound model, with mistake bound $O(nL)$ where $n$ is the number of variables and $L$ is the length of the shortest decision list consistent with the data. The algorithm should run in polynomial time per example. Briefly explain how your algorithm can be extended to learn the class of $k$-decision lists with mistake bound $O(n^kL)$ (a $k$-decision list is a decision list in which each test is over a conjunction of $k$ variables rather than just over a single variable).

Hint: think of using some kind of “lazy” version of decision lists as hypotheses.

Note: there is a solution to this problem in the survey article handed out in the second lecture, but please do this yourselves.

5. **Expressivity of decision lists, contd.** Show that the class of rank-$k$ decision trees is a subclass of $k$-decision lists. (There are several different ways of proving this.)

Thus, we conclude that we can learn constant rank decision trees in polynomial time, and using Exercise 3 we can learn arbitrary decision trees of size $s$ in time and number of examples $n^{O(\log s)}$. (So this is “almost” a PAC-learning algorithm for decision trees.)

6. **Halving is not always optimal.** Describe a class $C$ where the halving algorithm is not optimal: that is, where you would get a better worst-case mistake bound by not going with the majority vote of the available concepts.

Note: it’s OK if your class is a bit contrived.

Hint: The key issue here is: what if on the current example $x$, 80% of the functions say “positive” and 20% say “negative”, but the larger set of functions has a smaller mistake bound than the smaller set of functions? And how can a large set of functions have a small mistake bound anyway?