Plan for today

- Machine Learning intro: basic questions and issues & models.
- A formal analysis of “Occam’s razor”.
- Support-vector machines
- Perceptron algorithm

Machine learning can be used to...

- recognize speech,
- identify patterns in data,
- steer a car,
- play games,
- adapt programs to users,
- improve web search, ...

From a scientific perspective: can we develop models to understand learning as a computational problem, and what types of guarantees might we hope to achieve?

A typical setting

- Imagine you want a computer program to help filter which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren’t spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a “hypothesis”) h(x) for future data.

The concept learning setting

E.g.,

<table>
<thead>
<tr>
<th>money</th>
<th>pills</th>
<th>Mr.</th>
<th>bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Given data, some reasonable rules might be:
- Predict SPAM if ¬known AND (money OR pills)
- Predict SPAM if money + pills − known > 0.
- ...

Big questions

(A) How might we automatically generate rules that do well on observed data? [algorithm design]

(B) What kind of confidence do we have that they will do well in the future? [confidence bound / sample complexity]
Algorithm design portion

- How about this problem of learning a linear separator?
 - Want to solve for weight vector \(w \) such that \(w \cdot x \geq 1 \) for all positive \(x \), and \(w \cdot x \leq -1 \) for all negative \(x \).
- Any ideas?
 - Use linear programming!

```
+  +  - 
+  +  - 
+  +  - 
-  -  - 
```

Natural formalization (PAC)

- We are given sample \(S = \{(x,y)\} \).
 - View labels \(y \) as being produced by some target function \(f \).
- Alg does optimization over \(S \) to produce some hypothesis (prediction rule) \(h \).
- Assume \(S \) is a random sample from some probability distribution \(D \). Goal is for \(h \) to do well on new examples also from \(D \).
 - I.e., \(Pr_{x \sim D}[h(x) \neq f(x)] < \varepsilon \).

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.
1. Design an efficient algorithm \(A \) that will find a consistent DL if one exists.
2. Show that if \(S \) is of reasonable size, then \(Pr[\exists \text{consistent DL } h \text{ with } err(h) > \varepsilon] < \delta \).
3. This means that \(A \) is a good algorithm to use if \(f \) is, in fact, a DL.
 (a bit of a toy example since would want to extend to "mostly consistent" DL)

```
How can we find a consistent DL?

<table>
<thead>
<tr>
<th>( x_1 )</th>
<th>( x_2 )</th>
<th>( x_3 )</th>
<th>( x_4 )</th>
<th>( x_5 )</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

if \( x_1=0 \) then -, else
if \( x_2=1 \) then +, else
if \( x_4=1 \) then +, else -
```

Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:
 - No rule consistent with remaining data.
 - So no DL consistent with remaining data.
 - So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?
Confidence/sample-complexity

- Consider some DL h with $\text{err}(h) > \epsilon$, that we’re worried might fool us.
- Chance that h survives $|S|$ examples is at most $(1-\epsilon)^{|S|}$.[5]
- Let $|H|$ = number of DLs over n Boolean features. $|H| < (4n+2)!$. (really crude bound)
- So, $\Pr[\text{some DL } h \text{ with } \text{err}(h) > \epsilon \text{ is consistent}] \leq |H|(1-\epsilon)^{|S|}$.
- This is <0.01 for $|S| > (1/\epsilon)[\ln(|H|) + \ln(100)]$ or about $(1/\epsilon)[n \ln n + \ln(100)]$.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm A that will find a consistent DL if one exists.
2. Show that if $|S|$ is of reasonable size, then $\Pr[\exists \text{consistent DL } h \text{ with } \text{err}(h) > \epsilon] < \delta$.
3. So, if f is in fact a DL, then whp A’s hypothesis will be approximately correct. “PAC model”

Occam’s razor

William of Occam (~1320 AD):

“entities should not be multiplied unnecessarily” (in Latin)

Which we interpret as: “in general, prefer simpler explanations”.

Why? Is this a good policy? What if we have different notions of what’s simpler?

Occam’s razor (contd)

A computer-science-ish way of looking at it:

- Say “simple” = “short description”.
- At most 2^s explanations can be $< s$ bits long.
- So, if the number of examples satisfies: $m > (1/\epsilon)s \ln(2) + \ln(100)]$
- Then it’s unlikely a bad simple explanation will fool you just by chance.

Occam’s razor (contd)

Nice interpretation:

- Even if we have different notions of what’s simpler (e.g., different representation languages), we can both use Occam’s razor.
- Of course, there’s no guarantee there will be a short explanation for the data. That depends on your representation.
Regularization

- Very important notion in machine learning: basically a generalization of Occam's razor.

\[\text{Err}_D(h) = \text{Err}_S(h) + [\text{Err}_D(h) - \text{Err}_S(h)] \]

Minimize \([\text{error on training set}] + [\text{complexity term}]\)

Support-vector machines

- An instantiation of this for the case of linear separators in high dimensions.

E.g., "bag of words", "bag of phrases"

Minimize \([\text{error on training set}] + [\text{complexity term}]\)

Support-vector machines

- Issue #1: minimizing error on \(S\) is NP-hard. So, replace with upper bound: "hinge loss".

- Issue #2: what to use as complexity term?

Minimize \([\text{error on training set}] + [\text{complexity term}]\)

Support-vector machines

- "Hinge loss": \(\sum_i \epsilon_i\), where:
 - \(w \cdot x_i \geq 1 - \epsilon_i\) for positive \(x_i \in S\).
 - \(w \cdot x_i \leq -1 + \epsilon_i\) for negative \(x_i \in S\).
 - \(\epsilon_i \geq 0\).

Minimize \(\sum_i \epsilon_i + c \cdot |w|^2\)

Q: How to connect \(|w|^2\) to the amount of overfitting?

Perceptron algorithm

- Suppose there exists a feasible soln \(w^*\) s.t. \(|w^* \cdot x| \geq 1\) for all \(x \in S\), where \(\|x\| \leq 1\) for all \(x \in S\).

- The Perceptron algorithm is an online algorithm that will find a feasible \(w\) and make only \(O(|w^*|^2)\) mistakes.

\[\text{Perceptron algorithm:} \]

- Start with weight vector \(w = 0\).
- Mistake on positive \(x\): let \(w \leftarrow w + x\).
- Mistake on negative \(x\): let \(w \leftarrow w - x\).

Proof:
- After each update, \(w \cdot w^*\) increases by \(\geq 1\).
- After each update, \(w \cdot w\) increases by \(\leq 3\).

Perceptron algorithm

- Suppose there exists a feasible soln \(w^*\) s.t. \(|w^* \cdot x| \geq 1\) for all \(x \in S\), where \(\|x\| \leq 1\) for all \(x \in S\).

- The Perceptron algorithm is an online algorithm that will find a feasible \(w\) and make only \(O(|w^*|^2)\) mistakes.

\[\text{Perceptron algorithm:} \]

- Start with weight vector \(w = 0\).
- Mistake on positive \(x\): let \(w \leftarrow w + x\).
- Mistake on negative \(x\): let \(w \leftarrow w - x\).

Proof:
- After each update, \(w \cdot w^*\) increases by \(\geq 1\).
- After each update, \(w \cdot w\) increases by \(\leq 3\).

\[\Rightarrow \text{After } M \text{ mistakes: } M \leq |w \cdot w^*| \leq |w||w^*| \leq (3M)^2|w^*| \]

Because: \((w + x) \cdot w^* = (w \cdot w^* + x \cdot w^*) \geq w \cdot w^* + 1\).

Because: \((w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \leq w \cdot w + 3\).

\[\Rightarrow \text{After } M \text{ mistakes: } M \leq |w \cdot w^*| \leq |w||w^*| \leq (3M)^2|w^*| \]
Perceptron algorithm

- Note: this doesn’t prove why $|w|^2$ is a good thing to minimize in SVM optimization, but gives a feel for why the existence of such large margin separators means the world is “nice”.

Some Courses

- **10-601 “Machine Learning”**
 - Find out about a lot of different practical algorithms. Some of the theory. Implement algs and run them on data.
- **15-859(B) “Machine Learning Theory”**
 - My course 😊
 - More focused on the kinds of guarantees you can prove. Algorithms as the answer to a question. Hwks more like 15-451.
- **10-701 “Machine Learning”**
 - Mix of both. Serious commitment.