
Engineering Formal Security
Policies for Proof-Carrying Code

Andrew Bernard

Carnegie Mellon University

Thesis Committee

• Peter Lee, chair

• Karl Crary

• Frank Pfenning

• Fred B. Schneider, Cornell University

Code Safety

• We use an increasing number of programs

• The number of program sources is also increasing

• But are these programs safe for us to run?

• Technologies for code safety enable us to say
“yes” before we run a program on our computer

Challenges to Code Safety

• Byte-code interpreters are slow
– Unacceptable battery drain for small devices

• Just-in-time compilers are large and complex
– Critical bugs can be expensive to fix

• Digitally-signed programs aren’ t trustworthy
– Signature doesn’ t ensure that the code is actually safe

– Everyone is vulnerable if the private key is
compromised (e.g., Microsoft)

The Right Architecture:
Proof-Carrying Code (PCC)

• Good performance
– Compile in advance with all optimizations

– Fewer run-time checks

• Small trusted computing base
– Possible to verify informally

• No trusted third parties
– Each host trusts only itself

PCC: Vision [Necula/Lee 96]

• A code producer sends a program and its safety
proof to a code consumer
– A certifying compiler constructs the program and proof
– A proof checker checks them against a security policy

Program

Proof

Code
Consumer

Proof Checker

Security Policy

Code
Producer

Certifying
Compiler

Code
Consumer

Proof Checker

Security Policy

Program

Proof

Code
Producer

Certifying
Compiler

PCC: Principles

Untrusted

Certification
can be complex

Enforcement
should be simple OS Vendor

No third party to
“vouch” for safety

PCC: Practice

• SpecialJ Certifying Compiler [Colby, et al. 00]
– Developed by Cedilla Systems
– Certified, optimized x86 machine code from Java

source code (no byte-code interpreter)
– Safety policy is Java type safety
– Translation to object code preserves type safety
– Scales to large programs (e.g., JDK 1.3, HotJava)

• LF Logical Framework [Harper, et al. 87]
– Flexible internal language for propositions and proofs
– Proof checking is type checking

PCC: Reality

SpecialJ
Annotations

Loop Invariants
Procedure Specifications

(for safety properties)

Program

Proof

Code
Producer

Certifying
Compiler

Code
Consumer

Proof Checker

Security Policy

VC Generator

Machine Semantics
General Security Policy

Verification-Condition Generator

• Verification condition (VC) is true only if
program is safe (but not necessarily correct)

• Derived by symbolic evaluation [Necula/Lee 97]
– Simulates program operations on abstract state

• Proofs are scalable, but the VC generator is

Code
Consumer

Proof Checker

Security Policy

VC Generator

– complex: 16,000 lines of dense C
– machine specific
– compiler specific
– source-language specific
– security-policy specific

How is the Security Policy
Represented?

• A combination of lots of C code and typing rules
– Type systems are relatively trustworthy

– But C code is more obscure and error prone

What if we want …

• more than Java type safety?
– e.g., resource bounds, information flow

• to manage security policies?

• to manipulate security policies?

• We need to change the VC generator!
– A better solution: a universal enforcement mechanism

– Separate policy from mechanism

A Formal Language for
Security Policies

• Formal security policies for a universal checker
– Security policy can be part of the certificate

• Temporal logic is an attractive policy notation
– Direct specifications:

– Well-understood semantics

– Can express a wide variety of security properties

– Can reuse existing type-safety specifications
[Necula/Lee 97]

Code
Consumer

Proof Checker

Security Policy

VC Generator

The Goal

• To achieve PCC by
– Proving directly that a program satisfies a formal

security policy
– Instead of generating and proving an intermediate VC

• No VC generator
• Key question: is it practical?

16k lines of C

The Approach:
Verifiable Logic Programs

• Certificate is a program for generating a proof
– Extracts and proves its own VCs

– Sound by construction

• Drawback: proof checking is slower (so far)
– Proving more than SpecialJ safety proofs

• Possible “next step” for PCC proof checking?
– LF type reconstruction [Necula/Lee 96]

– Oracle-based theorem proving [Necula/Rahul 01]

– Verifiable logic programs

Thesis Statement

• It is practical to engineer a system for proof-
carrying code in which policy is separated from
mechanism.

• In particular, I examine a generic implementation
of the PCC infrastructure that accepts a wide
variety of security properties encoded in a formal
specification language.

The Rest of this Talk

Program

Proof

Proof Checker

Security Policy

Certifying
Compiler

Code Consumer

Code Producer

Proof Engineering

Framework

Framework

Temporal Logic

Machine Model

Temporal Logic

• Truth is relative to a specific time
– Propositions hold over finite or infinite intervals

• Excellent representation for security properties
– How the program computes a result

Temporal Logic Syntax

• Linear-time 1st-order temporal logic
[Manna/Pnueli 80]
– Identify time with CPU clock

•
– Parameters a refer to the machine state (e.g., pc)

•

Temporal Logic as a
Security-Policy Language

• Combining security policies
– Conjunction: p1 p2

– Disjunction: p1 p2

• Tracking execution history (security automata)
– History parameters:

• Modular security policies
– Private histories:

Abstract Machine Model

• Simplified machine model for this talk
• Three parameters for machine state

– pc: program counter
– g: general-purpose register file
– m: memory

• Instruction set is unimportant

Code Consumer

Program

Proof

Proof Checker

Security Policy

Certifying
Compiler

Formal Machine Semantics

• Provides a basis for proof checking
– Security policy must follow from machine semantics

• The transition relation
– Effect of an instruction on a state [Pnueli 77]
– Syntactic rather than semantic (e.g., model checking)

• Theorem: soundness
– Follows directly from operational semantics

Proof Checking

• Enforces all temporal-logic security properties
– All safety properties (e.g., memory safety, resource

bounds, access control, Java security manager)

– Most familiar liveness properties (e.g., termination)

– Can’ t express noninterference (e.g., information flow)

• Proof checker has a logic-program interpreter
– Reconstructs omitted proof fragments

• Handwritten proofs are possible, but…

Code Producer

Program

Proof

Proof Checker

Security Policy

Certifying
Compiler

Strategy

• Proof construction is harder than proof checking
– We can enforcemore properties than we can certify

• This may be inevitable

• Decouple enforcement from certification
– Many approaches to certification
– Get enforcement right “once and for all”

• Focus on certifying type safety
– Needed for many applications
– First test case for automatic certification

Automatic Proof Construction

• Build an adapter for the SpecialJ compiler
– Automatic proofs of type safety

– Experiment with larger examples

• Use a logic of programs for safety properties
– Derive from temporal logic [Gordon 89]

– Instantiate for SpecialJ type safety

• How does SpecialJ work?

SpecialJ Symbolic Evaluation

• Interpret program using machine semantics
– Symbolic machine state is a formal expression
– Unknown values are variables
– Based on an implicit program logic

• Emit proof obligations for dangerous instructions
• Handle loops using recurring loop invariants

– Each invariant leads to another invariant, and we're safe
in the meantime

Proof Generation

• Generate a “skeleton” of program-logic rules that
simulate the SpecialJ symbolic evaluator
– Safety proofs from SpecialJ discharge premises of

program-logic rules

• The code producer supplies the untrusted
program logic [Appel/Felty 00]

Program Logic

Program

Proof

Proof Checker

Security Policy

Certifying
Compiler

A Logic of Programs
for Invariance Properties

• A specialized logic for reasoning about programs
– Proves invariance in addition to partial correctness

– Verifies each procedure independently

• Shows that an invariance property holds until a
specific goal property is reached
– Goal is initially a procedurepostcondition

• An invariance property is a property of individual
machine states

Conventions

• e is a symbolic machine-state tuple (epc, eg, em)
– Parameters for unknown values
– Example: (25, upd(ag, r0, 5), am)

• s is a parameter always equal to (pc, g, m)

• psafe is an invariance property (e.g., type safety)

• pgl is the current goal property

Specifications

• Specifications on s (no temporal operators)
– pi is a loop invariant

– pp is a procedure precondition

– pq is a procedure postcondition

– x0 is free: instantiated with referencemachine state

• Example loop invariant (for code address 25):

Judgments

• Transition
– The successor of state e is e’

• Evaluation
– From state e, psafe holds until pgl holds

• Strict Evaluation
– psafe must also hold for at least one step

• Procedure Call
– Once pp holds, psafe holds until pq holds

– Derive this for initial entry point

Strict Evaluation Rules

Evaluation Rules

Proof Engineering

Program

Proof

Proof Checker

Security Policy

Certifying
Compiler

Proof Representation

• Minimize total proof size for large programs
– Decoding specifies binary-to-LF translation

– Preludeprovides derived rules

• Includes the derived program logic, logic program

– Body is a binary proof encoding

Decoding Prelude Body
[96] P1 P2 ==>
P1 and P2.

…

prl/sk_safe: …
= [d_r] [d_s] …
…

6e 06 90 0d 0d 8f 89 0e
60 78 60 60 7c 34 23 7d
…

Proof Reconstruction

• An explicit proof is too large, even in binary

• Use the logic interpreter: reconstruct most of the
proof on demand
– Omit decidable fragments entirely

– Map undecidable fragments onto minimal outlines

• Explicitly constrain possible clauses [Pfenning 01]

• Resembles “oracle” checking [Necula/Rahul 01]

– Code producer chooses which parts to omit

Verifiable Logic Programs

• Only search over derived rules
– Each derived rule has an explicit proof in the prelude

– Code producer writes the logic program

• Based on program logic

– Optimize for the certification strategy

Experimental Results

Proof Size

• Doesn’ t include prelude or decoding

Relative Proof Size

Proof-Checking Time

• Measured on a 1.6GHz Athlon PC

Related Work

Foundational PCC

• Foundational PCC [Appel/Felty 00; Hamid, et al.
02] reconstructs PCC on higher-order logic
– No trusted type system: derive in higher-order logic

• I want explicit security policies
– Work with an existing compiler and safety proofs
– Attack VC generator: less trustworthy than type system

• 16,000 lines of C vs. 200 lines of LF

• Foundational typed assembly language
[Crary 03; Crary/Sarkar 04]

Expressive Security Policies

• Proof-carrying Code
– Resource bounds [Necula/Lee 98]

• Typed Assembly Language (TAL)
– Security automata [Walker 00]

– Capabilities [Crary, et al. 99]

– Resource bounds [Crary/Weirich 00]

– TALT-R [Vanderwaart/Crary 04]

• Software Fault Isolation
– Security automata [Erlingsson/Schneider 99]

– Edit automata [Walker 02]

Future Work

Future Work

• Speed up proof checking
– Where is the “sweet spot?”

• Automatic certification for more safety properties
– Advanced type systems

– Instrumentation

• Temporal logic is a particular choice of notation
– Measure effect of other choices

Automatic Certification:
Advanced Type Systems

• Type systems can check many safety properties

• Programmer provides the proof
– Source code must be written such that it type checks

– A typing derivation is a proof of safety

• Two approaches for PCC
– Code consumer adopts another type system (easier)

– Map typing derivations onto derived rules (harder)

Automatic Certification:
Instrumentation

• Inline reference monitors (IRM)
[Erlingsson/ Schneider 99]
– Security automaton threaded through program

– Run-time checks ensure program is safe

– Tools exist to instrument Java bytecode
(SASI, Naccio, Polymer)

• Code producer can also do this
– Straightforward loop invariants and proofs

– No IRM tool in the TCB

Conclusion

• Contributions
– Enforcement for Temporal-Logic Properties

– A Derived Program Logic for Safety Properties

– Proof Engineering for Foundational Proofs

– A Temporal-Logic Framework for PCC

– A Foundation for SpecialJ

• Thanks: Michael Donohue, Stephen Magill

