Engineering Formal Security
Policies for Proof-Carrying Code

Andrew Bernard
Carnegie Mellon University

Thesis Committee

N
Peter Lee, chair

Karl Crary
—rank Pfenning

—red B. Schnelder, Cornell University

Code Safety

We use an increasing number of programs
The number of program sourcesis aso increasing
But are these programs safe for us to run?

Technologies for code safety enable us to say
“yes’ before we run a program on our computer

Challenges to Code Safety

« Byte-code interpreters are slow
— Unacceptable battery drain for small devices

e Just-in-time compilers are large and compl ex

— Critical bugs can be expensive to fix
« Digitally-signed programs aren’t trustworthy
— Signature doesn’t ensure that the code is actually safe

— Everyoneisvulnerable if the private key Is
compromised (e.g., Microsoft)

The Right Architecture:
Proof-Carrying Code (PCC)

* Good performance
— Compile in advance with all optimizations
— Fewer run-time checks

e Small trusted computing base
— Possible to verify informally

* No trusted third parties
— Each host trusts only itself

PCC: Vision [Necula/Lee 96}

Code Certifying P EEN Proof Checker Code
Producer | Compiler V' Security Policy | COnsumer

e A code producer sends a program and its safety
proof to a
— A certifying compiler constructs the program and proof
— A proof checker checks them against a security policy

Code Certifying
Producer Compiler

Untrusted

Certification
can be complex

PCC: Principles

Code

Proof Checker

Enforcement
should be simple

' Security Policy | COnsumer

No third party to
“vouch” for safety

PCC: Practice

« SpecialJ Certifying Compiler [Colby, et al. 00]
— Developed by Cedilla Systems
— Certified, optimized x86 machine code from Java

source code (no byte-code interpreter)
— Safety policy is Javatype safety
— Trangdation to object code preserves type safety
— Scalesto large programs (e.g., JDK 1.3, HotJava)

 LF Logical Framework [Harper, et al. 87]
— Hexible internal language for propositions and proofs
— Proof checking is type checking

PCC: Reality

Proof Checker Code

Program
Code Certifying

—N
Producer | Compiler m—/ Security Policy | Consumer

Annotations
SpecialJ VC Generator

Loop Invariants Machine Semantics
Procedure Specifications General Security Policy
(for safety properties)

Verification-Condition Generator

* Verification condition (VC) istrue only if
program is safe (but not necessarily correct)

e Derived by symbolic evaluation [Necula/Lee 97]

— Simulates program operations on abstract state

* Proofs are scalable, but the VC generator is
complex: 16,000 lines of dense C
machine specific
compiler specific
source-language specific

security-policy specific V'C Generator

How Is the Security Policy
Represented?

« A combination of lots of C code and typing rules
— Type systems are relatively trustworthy
— But C code is more obscure and error prone

What 1If we want ...

more than Java type safety?
— e.g., resource bounds, information flow

to manage security policies?

to manipulate security policies?

We need to change the V C generator!
— A better solution: a universal enforcement mechanism

— Separate policy from mechanism

A Formal Language for
Security Policles

e Formal security policiesfor auniversal checker
— Security policy can be part of the certificate

« Temporal logic Is an attractive policy notation

— Direct specifications. [J(pc < 1000)
— Weéll-understood semantics
— Can express awide variety of security properties

— Can reuse existing type-safety specifications
[Necula/Lee 97]

The Goal

e To achieve PCC by

— Proving directly that a program satisfies aformal
security policy
— Instead of generating and proving an intermediate VC
* No VC generator

e Key question: isit practical?

VC G
16k lines of C

The Approach:
Verifiable Logic Programs

o Cetificateisaprogramfor generating a proof
— Extracts and provesitsown VCs
— Sound by construction

* Drawback: proof checking is slower (so far)
— Proving more than Special J safety proofs

* Possible “next step” for PCC proof checking?

— LF type reconstruction [Necul&/Lee 96]
— Oracle-based theorem proving [Necula/Rahul 01]
— Verifiable logic programs

Thesis Satement

>
 |tiIspractical to engineer a system for proof-
carrying code in which policy is separated from
mechanism.

In particular, | examine a generic implementation
of the PCC infrastructure that accepts awide
variety of security properties encoded in aformal
specification language.

The Rest of this Talk

Framework
Code Consumer
Code Producer

Proof Engineering

Certifying Proof Checker
Compiler

Framework

Temporal Logic
Machine Modéel

Temporal Logic

e Truthisrelativeto aspecifictime
— Propositions hold over finite or infinite intervals

o Excellent representation for security properties

— How the program computes a result

Temporal Logic Syntax

 Linear-time 13-order temporal logic
[Manna/Pnueli 80]
— ldentify time with CPU clock

e Expressions e:i=a|x|c| fle1,...,ex)
— Parameters a refer to the machine state (e.g., pc)

e Propositions p::= R(e1,...,ex)

| p1Apo|p1Vpo|p1LDpo

| Vz.p1 | Fz.p1 | Op1 |

p1 | P1UPo

Temporal Logic asa
Security-Policy Language

e Combining security policies
— Conjunction: p; A p,
— Digunction: p, V p,

* Tracking execution history (security automata)

— History parameters: [1(q = e > O(q = ¢')) D Up(q)
e Modular security policies

— Private higtories: Vy. L(y = ¢ > O(y = ¢')) D Up(y)

Abstract Machine Modéel

o Simplified machine model for thistalk

» Three parameters for machine state
— pc: program counter

- g. general-purpose register file
- m: memory
 |nstruction set Is unimportant

Code Consumer

Certifying Proof Checker
Compiler m . Security Policy !

Formal Machine Semantics

* Providesabasisfor proof checking
— Security policy must follow from machine semantics

e Thetransition relation

— Effect of an instruction on a state [Pnueli 77]
— Syntactic rather than semantic (e.g., model checking)

e Theorem: soundness
— Follows directly from operational semantics

Proof Checking

* Enforcesall temporal-logic security properties

— All safety properties (e.g., memory safety, resource
bounds, access control, Java security manager)

— Most familiar liveness properties (e.g., termination)
— Can't express noninterference (e.g., information flow)

* Proof checker has alogic-program interpreter
— Reconstructs omitted proof fragments

« Handwritten proofs are possible, but...

Code Producer

Certifying Proof Checker
Compiler m . Security Policy !

Srategy

* Proof construction is harder than proof checking
— We can enforce more properties than we can certify
e This may beinevitable

* Decouple enforcement from certification
— Many approaches to certification
— Get enforcement right “once and for all”

e Focus on certifying type safety
— Needed for many applications
— First test case for automatic certification

Automatic Proof Construction

« Build an adapter for the Speciald compiler
— Automatic proofs of type safety
— Experiment with larger examples

* Usealogic of programs for safety properties
— Derive from temporal logic [Gordon 89]
— Instantiate for SpecialJ type safety

* How does SpecialJwork?

SoecialJ Symbolic Evaluation

* |nterpret program using machine semantics
— Symbolic machine state is aformal expression
— Unknown values are variables

— Based on an implicit program logic
« Emit proof obligations for dangerous instructions

« Handleloops using recurring loop invariants

— Each invariant |leads to another invariant, and we're safe
1N the meantime

Proof Generation

» Generate a“skeleton” of program-logic rules that
simulate the SpecialJ symbolic evaluator
— Safety proofs from SpecialJ discharge premises of

program-logic rules
* The code producer supplies the untrusted
program logic [Appel/Felty 00]

Program Logic

Certifying Proof Checker
Compiler m . Security Policy !

A Logic of Programs
for Invariance Properties

* A specialized logic for reasoning about programs
— Provesinvariance in addition to partial correctness
— Verifies each procedure independently

e Showsthat an invariance property holds until a
specific goal property isreached
— Goal isinitially a procedure postcondition
e Aninvariance property is aproperty of individual
machine states

Conventions

* elsasymbolic machine-state tuple (e, €,, €,)
— Parameters for unknown values
— Example: (25, upd(a,, r, 5), a,)

- s Isaparameter aways equal to (pc, g, m)
* P..:eo IS aNINvariance property (e.g., type safety)
* g ISthe current goal property

Soecifications
o
» Specificationson s (no temporal operators)

— p; Isaloop invariant
— P, Isaprocedure precondition

— P4 IS aprocedure postcondition
— X, Isfree: instantiated with reference machine state

« Exampleloop invariant (for code address 25).
Tpc(s) = 25 A rg(mg(s)) @ int A mu(s) = m(xp)

pc = 25 Arg(g) : int Am = mp(x(p)

Judgments

Transition
— The successor of stateeise

Evaluation

— From state g, p, ¢, holds until p , holds
Strict Evaluation

— Peare Must also hold for at least one step
Procedure Call

— Once p, holds, p,,¢. holds until p_ holds
— Derivethisfor initia entry point

Srict Evaluation Rules

- 6,psafe

- [6/8] Dsafe € — e’ ~? Pgl

= €p’§§£e+pg|

W‘I‘il

— ep’%ige+pg|

Psaf
e &epg

~sTe

Evaluation Rules

= [e/s] Pg] i

Psafe 0
e~ Dyl

= le/zo] la/slpi -

e 0/l ;i Vpy Fa 250t [e/zol pi V by

Psaf
- e ii%epg

u

~loop®

Proof Engineering

Certifying Proof Checker
Compiler m . Security Policy !

Proof Representation

Decoding Prelude Body

[96] Pl P2 ==> prl/sk _safe: .. be 06 90 0d 0d 8f 89 0Oe
P1 and P2. = [d_r] [d_s] .. 60 78 60 60 7c 34 23 7d

Minimize total proof size for large programs
— Decoding specifies binary-to-LF tranglation
— Prelude provides derived rules
* Includes the derived program logic, logic program
— Body isabinary proof encoding

Proof Reconstruction

« Anexplicit proof istoo large, even in binary

« Usethelogic interpreter: reconstruct most of the
proof on demand

— Omit decidable fragments entirely
— Map undecidable fragments onto minimal outlines
« Explicitly constrain possible clauses [Pfenning 01]
* Resembles “oracle’ checking [Necula/Rahul 01]
— Code producer chooses which partsto omit

Verifiable Logic Programs

e Only search over derived rules
— Each derived rule has an explicit proof in the prelude
— Code producer writes the logic program

« Based on program logic
— Optimize for the certification strategy

Experimental Results

Proof Sze

—
1
e

et
E.-

T
=

(o

[
b
[~

o

o

&
0 o™ | | | |
0 200 400 GO0 500 Loo0 1200 1400

Object-Code Size (bytes)

e Doesn’t include prelude or decoding

Relative Proof Sze

—
o
P

et
=

T
=

o

ks
=
=

o

- Oracle

|
400 600 800 1000 1200 1400 1600
Object-Code Size (bytes)

Proof-Checking Time

W
=
=
z
-
£
r-|
|:_:.
e
S
a

ﬂmﬂP}"P | | | | |
0 200 400) 600 800 1o00 1200

Object-Code Size (bytes)

e Measured on al.6GHz Athlon PC

Related Work

Foundational PCC

« Foundational PCC [Appel/Felty 00; Hamid, et al.
02] reconstructs PCC on higher-order logic
— No trusted type system: derive in higher-order logic

| want explicit security policies
— Work with an existing compiler and safety proofs

— Attack VC generator: less trustworthy than type system
e 16,000 linesof C vs. 200 lines of LF

« Foundational typed assembly language
[Crary 03; Crary/Sarkar 04]

EXxpressive Security Policies

* Proof-carrying Code
— Resource bounds [Necula/Lee 98]

o Typed Assembly Language (TAL)

— Security automata [Walker 00]

— Capabilities[Crary, et al. 99]

— Resource bounds [Crary/Weirich 00]
— TALT-R [Vanderwaart/Crary 04]

« Software Fault Isolation
— Security automata [Erlingsson/Schneider 99]
— Edit automata [Walker 02]

Future Work

Future Work

e Speed up proof checking

— Whereisthe “sweet spot?”’
o Automatic certification for more safety properties

— Advanced type systems
— Instrumentation

 Temporal logic isaparticular choice of notation
— Measure effect of other choices

Automatic Certification:
Advanced Type Systems

 Type systems can check many safety properties

e Programmer provides the proof
— Source code must be written such that it type checks

— A typing derivation is a proof of safety

e Two approaches for PCC
— Code consumer adopts another type system (easier)
— Map typing derivations onto derived rules (harder)

Automatic Certification:
| Nstrumentation

* Inline reference monitors (IRM)
[Erlingsson/ Schneider 99]

— Security automaton threaded through program

— Run-time checks ensure program is safe

— Tools exist to instrument Java bytecode
(SASI, Naccio, Polymer)

e Code producer can also do this

— Straightforward loop invariants and proofs
— No IRM tool inthe TCB

Conclusion

e Contributions
— Enforcement for Temporal-Logic Properties
— A Derived Program Logic for Safety Properties
— Proof Engineering for Foundational Proofs
— A Temporal-Logic Framework for PCC
— A Foundation for SpecialJ

* Thanks: Michadl Donohue, Stephen Magill

