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Abstract. Proof-carrying code (PCC) is a framework for ensuring that
untrusted programs are safe to install and execute. When using PCC,
untrusted programs are required to contain a proof that allows the pro-
gram text to be checked efficiently for safe behavior. In this paper, we lay
the foundation for a potential engineering improvement to PCC. Specif-
ically, we present a practical approach to using temporal logic to specify
security policies in such a way that a PCC system can enforce them.

1 Introduction

Proof-carrying code [11] (PCC) is a framework for ensuring that untrusted pro-
grams are safe to install and execute. When using PCC, untrusted programs are
required to contain a proof that allows the program text to be checked efficiently
for safe behavior. PCC can check optimized object code, and a program checker
is relatively easy to implement. These advantages, among others, make PCC
an attractive scheme for enabling a network of computers to distribute software
safely. In this paper, we lay the foundation for a potential engineering improve-
ment to PCC. Specifically, we present a practical approach to using temporal
logic to specify security policies in such a way that a PCC system can enforce
them. The PCC system would furthermore be “universal,” in the sense of not
needing to be modified or extended for each new security policy, as long as each
such policy can be specified in temporal logic. This approach additionally en-
ables us to replace a substantial portion of the program-checking software with
formal specifications, but at the cost of larger proofs.

A central component of a PCC program checker is the security policy, which
defines the precise notion of “safety” that the host system demands of all un-
trusted code. In the work cited above, a major portion of the security policy is
given by a verification-condition (VC) generator that in practice takes the form
of a manually constructed computer program (written, in this particular case, in
the C programming language). While this is an expedient approach that is also
consistent with the desire to implement PCC as an operating system service,
it does not necessarily lead to a trustworthy checker, nor does it permit easy
adaptation of the checker to new security policies.

* This work has been partially supported by the National Science Foundation under
grant CCR-0121633.



Using PCC, a code producer provides an untrusted program to a code con-
sumer. A trusted enforcement mechanism checks the program against one or
more security policies before it is allowed to run.

Until now, our PCC implementations have encoded security proofs in first-
order logic, and the enforcement mechanism included a trusted VC generator
that essentially encoded the security policy in a C implementation (e.g., Nec-
ula [11]). We will argue here that temporal logic [8] has certain advantages over
first-order logic for PCC. Using temporal logic, we can remake the VC generator
as an untrusted component and thereby allow the security policy to be separated
from the enforcement mechanism. This also provides the crucial advantage of re-
ducing the amount of software in the trusted computing base, though as we shall
see, this advantage comes at the cost of larger proofs. In this respect, our ap-
proach resembles foundational PCC [1], although, unlike foundational PCC, our
code producer and consumer must agree on a shared notion of type safety.

A temporal logic is characterized by its temporal operators: they enable us
to distinguish the different times at which a proposition is true. In this paper,
we will identify time with the CPU clock and regard propositions as statements
about machine states. For example, the proposition pc =0 D (Q(pc = 1) asserts
that “if the program counter is 0 now, then it will be 1 in the next state.” We
can also specify security policies in temporal logic. For example, the proposition
O(pc > 0 Apc < 100) asserts that “the program counter is always between
zero and 100,” but we can also interpret this as the requirement “the program
counter must always be between zero and 100” —a specification for a simple form
of control-flow safety [7]. We will exploit this duality to reap a practical benefit.

For a PCC system based on first-order logic, the enforcement mechanism
generates a proposition from the program and the security policy together—the
security proof is a proof of this proposition. For temporal-logic PCC, the enforce-
ment mechanism recognizes the program as a formal term, and the operational
semantics of the host machine is encoded as a set of trusted inference rules. We
can then encode the security policy directly—the security proof shows that the
security policy is a consequence of running the program from a set of initial
conditions. Notice that the security policy is independent of the enforcement
mechanism, but we require no additional mechanism to interpret it.

We want to be confident that the security policy is correct: this confidence
is difficult to obtain for a security policy in C code. In contrast, temporal logic
has a clear semantics, and security policies are comparatively compact.

As we shall see, we can implement a simple enforcement mechanism for
temporal-logic PCC at the cost of increasing proof sizes. This can be a favorable
trade-off, because we are shifting work from a trusted component to an untrusted
one. Initial experiments show that the size increase relative to a first-order proof
is a small multiple of the code size.

The body of this paper lays a theoretical foundation for temporal-logic PCC.
Section 2 outlines a first-order temporal logic that is suitable for PCC security
proofs. Section 3 defines an abstract RISC processor for which our system is
intended. Section 4 details how the machine semantics is encoded and why it



is sound. Section 5 shows we can systematically obtain efficient temporal type-
safety proofs from first-order type-safety proofs. Finally, in Section 6 we examine
related work and suggest future improvements. Due to space limitations, we
must omit many important details in this paper, but a complete development
will be available as a technical report [2].

2 Temporal Logic

2.1 Syntax

The syntax of our logic (see Figure 1) is based on disjoint countably infinite
sets of parameters and variables; a parameter a is always free in a proposition,
whereas a wvariable z is normally bound.! This is a many-sorted logic, so each
parameter or variable is annotated with an explicit type 7, of which there are
countably many; types have no internal structure. We often omit type annota-
tions when they can be inferred. Primitive functions and relations are named
by a countable set of constants (f and R, respectively). Constants are also an-
notated with types: 71 X --- X 7, — 7 is the annotation of a function from k&
parameters to a value of type 7, whereas 7 X --- X 7, — 0 is the annotation of
a relation on k parameters. Constant values ¢” are nullary functions, whereas
constant propositions (i.e., T, 1) are nullary relations. There is a binary equal-
ity relation for each type. This is a first-order logic, so functions and relations
appear only as constants.

Times t ==0]t1+1
Rigidities p = | —r
Expressions eTu=a’ [T | TR (el )

Propositions ~ p = R X7 7(el . e*) | pr Ap2 | p1 V2 | p1 Dp2
[VZ™:p.p1 | 327 :p. p1 | Op1 | Op1 | p1Up2

Core Judgments J :=t1>t2 | e:p|p:p|pet|pefti,ta)

Contexts r:=-|I,J

Fig. 1. Abstract Syntax (Temporal Logic)

Expressions e are constructed from parameters, variables, and applications
of constant functions; 7 is the type of e. The simple type system for our logic is
built into the syntax: ill-typed expressions are not well formed.

Following Manna and Pnueli [8], some expressions are rigid: it is syntactically
evident that a rigid expression has the same value at all times. A flexible expres-
sion may (but need not) have different values at different times. For example,
the constant 5 is rigid, whereas the stack pointer register is flexible. Variables

! The syntactic distinction between parameters and variables simplifies inference rules.



also have rigidity: rigidities must match when a variable is instantiated. We de-
clare the rigidity p of a variable when the variable is bound: +, denotes a rigid
variable, whereas —, denotes a flexible variable. A rigid expression contains only
rigid variables and parameters.

Propositions p include a selection of the usual connectives and quantifiers of
first-order logic, plus the following temporal operators:

— [Op holds iff p holds at all future times.
— Op holds iff p holds at the next future time.
— p1U p2 holds iff p» holds at some future time, and p; holds until then.

A rigid proposition has only rigid parameters (bound variables may be flexible).

Some propositions are associated with a time expression t; we count time in
unary notation: 0 denotes the earliest possible time (e.g., the start of execution),
and t + 1 denotes the time immediately following time ¢.

[e1/z] e is the usual substitution of expression e; for variable z in expression
e. For substitution to be well formed, e; must have the same type as z, and e;
must be closed (i.e., it must not contain variables); e need not be closed. [e/z] p
is the usual extension, where e must be closed, but p need not be.

2.2 Semantics

We define a formal model for our temporal logic. Each expression is assigned
the infinite sequence of values that the expression takes over time. A satisfaction
relation determines whether a given proposition holds at a given time. This
model is similar to the usual models of temporal logic.

Definitions Val" is the set of values v™ of type 7. A sequence ©” is mapping
from natural numbers (representing times) to values of type 7. An environment
¢ maps each parameter to a sequence of its type.

We assume an interpretation function J mapping each constant to its value,
which may be a simple value (nullary functions), a total function (other func-
tions), or a set of tuples (relations).

Valuation A waluation function V assigns values to expressions (see the com-
panion technical report). Thus, V(t) is the value of time expression ¢ as a natural
number. Vg evaluates expressions to sequences of the same type in the environ-
ment ¢; e must be closed for Vy(e) to be well formed.

Satisfaction A sequence is rigid if it has the same value at all times; the value
of a rigid expression is always a rigid sequence, but the converse does not always
hold. We write 7 : +, when 7 is rigid.

A core judgment J encodes a property of an environment. The satisfaction
relation F defines when a core judgment holds for a particular environment (see
Figure 2 for representative connectives: the complete definition can be found in
the technical report); the judgment must be closed for satisfaction to be well
formed. We informally describe each core judgment:



— t1 > t9 holds when t; denotes the same time as t or a later time than .

— e:p holds when e denotes a sequence with rigidity p.

— p:p holds when the truth/falsity of p has rigidity p.

— pat holds when p is true at time t.

— paft1,t2) (“p is true over t; to t2”) holds when p is true at all times in the
half-open interval [t1,2).

Thus, ¢ F pat (“¢ satisfies p at time ¢”) holds if p is true of ¢ at time ¢.

¢ E R(e1,...,ex) ot iff (Vs(e1)(V(1)),. .., Vs(er)(V(1))) € T(R)

PEPpLAp2at iff pFpietand pFprat

GEVZ :p. pat iff pla” — 77| E [a" /"] pat for some a” not appearing in p
and all 77 such that 77 : p

dEPIUPrat iff  E p2 ot2 for some ta such that ¢ Et2>t and ¢ E p1 a[t, t2)

¢ Epalti, ta) iff p FEpotfor all ¢t such that p Ft>t1 and pFEt2>t+ 1

Fig. 2. The Satisfaction Relation (Excerpt)

2.3 Proof System

The provability relation + asserts that there is a proof that a particular core
judgment holds. Note that provability for rigidity is efficiently decidable.

A context I is a collection of hypothetical judgments that weaken provability.
For example, a: +, I [a/z] pet asserts that it is provable that [a/z]p holds at
time ¢, assuming that a is rigid. An environment satisfies a context (¢ E I') when
it satisfies each judgment in the context (the context must be closed).

We present our proof system in the technical report; we only claim here that
it is sound with respect to the semantics.

Proposition 1 (Soundness). ¢ F J if ¢ I and I'F J

Proof. See the technical report.

3 Machine Model

We define an idealized RISC processor that will provide a foundation for the
remainder of this paper. This processor operates on “words” of some fixed size
(e.9. 32-bit numbers). There are a small number of general-purpose registers
that each contain a single word, a word-sized program counter, and a memory
register that contains a mapping from words to words. The processor executes a
program that is simply a sequence of instructions. We assume that the program
is in a separate memory and thereby protected from modification: we do not
address self-modifying code in this paper.



3.1 Instruction Set

A machine word i is a value of type wd; Val*® is an initial subrange of the natural
numbers. Words are inherently unsigned, but negative numbers can be simulated
by signed operators using a suitable convention (e.g., two’s complement). A
register token r identifies a general-purpose register; each register token r; is a
value of type ureg. We designate a small, machine-dependent subset of the total
functions from pairs of words to words as ezecutable operators eop (type eop). A
conditional operator cop (type cop) is a selected unary word relation. The exact
set of operators is unimportant, as long as it includes modular addition.
We use a small RISC instruction set?; programs are instruction sequences:

Instructions I =11 <41 |11 < 1o |71 < 72 €0p; T3
| cond cop; 11,01 | 11 ¢ m(ra) | m(r1) < 7o
Programs @ u=-|I; ®

An instruction I is a value of type inst, a program & is a value of type prog.
For example, the following program replaces register rg with its own factorial:

r1 1 // 1 is current counter
ry 1 // r2 is current product
r3 1 // T3 is always one

T4 ¢ T1 gtW T // r4 is nonzero iff r1 > ro
condneqOwry,3 // skip 3 when ry is nonzero
2 ¢ romulwry // accumulate product

r; < riaddwrs // increment counter

cond truew ro, —5 // always skip back 5

Tg < T2 // replace o

halt

Our calling convention starts execution at the first instruction; halt is an ab-
breviation for cond truew rg, —1. Program length (|®|) and subscript (®;) are
defined in the obvious way.

We model a general-purpose register file as a single value of type mapu, map-
ping from register tokens to words. Memory is modeled by a total function from
words to words (type mapw).

3.2 Syntax

We now specify how our machine model is incorporated into the logic.

The constants 0", 174, ... denote words; n is an arbitrary word constant.
selwmPvXWd=wd (ahhlyv map) and updw™@PYX#dXVd=NARY (yhdate map) are function
constants; for example, updw(m,3,4) denotes the same map as m, except that
address 3 is mapped to 4. The constants selu™P**"re8=%d (gelect register) and

2 The instruction set does not include procedure call instructions, but it is a simple
matter to add an indirect jump instruction that will support the usual RISC calling
conventions; this does not complicate the enforcement mechanism.



updurapuxuregXwd—mapu (yhdate register) operate on register files. There are no
operations yielding register tokens, just designated constants (c;).

We associate a constant ¢*°P with each executable operator, and likewise with
each conditional operator; addw°® denotes addition. appe®°P*#d*xvd=wd jg 5 fync-
tion constant that applies an executable operator, and appc®P*¥4—? ig a relation
constant that applies a conditional operator; we ordinarily elide these constants
in the interest of readability and use infix notation for executable operators (e.g.,
e1addwes stands for appe(addw, 1, e2)). compl®P P i a function constant that
complements a conditional operator (e.g., compl(eqOw) = neqOw).

Identifiers for the special-purpose registers are chosen from parameters; the
interpretation of these parameters is constrained by the machine model. Reg is
the set of all register parameters (note that these are not register tokens). pc
(the program counter) is a parameter of type wd, u (the contents of the register
file) is a parameter of type mapu, and m (the contents of memory) is a parameter
of type mapw. Propositions can express properties of machine states: for example,
selu(u, rg) # 0"¢ asserts that general-purpose register rq is not zero.

Our logic encompasses instructions and programs by means of constant func-
tions. For example, imy’re8>xureg—inst constryucts a move instruction from two reg-
ister tokens, 1enP*°8"4 returns the length of a program, and fetchProgxvd—inst
extracts a particular instruction from a program. The logic is coupled to a par-
ticular untrusted program by means of the constant pmP*°8: 7 (pm) is the program
whose first instruction is at address zero of the program memory.>

Intuitively, a value of type prog is “object code,” and an expression of type
prog is “assembly code.” Instruction expressions enable us to model the opera-
tional semantics of our abstract machine directly in temporal logic (see Section 4)
and are also useful for specifying security policies.

3.3 Semantics

Our operational semantics defines a set of executions for each program.

A state s maps each register to a value of its type; a state is simply a snapshot
of the machine at a particular time. An ezecution o is an infinite sequence of
states representing the trace of a computation. Finite executions are represented
by repeating the final state infinitely (this is the effect of the halt instruction).

We can turn an environment into an execution (see Section 2.2) by sampling
each register at each time; @|req is the execution for environment ¢:

®|reg = 0 such that o; = e» ¢(a)(j) for all j and a € Reg

We call @|reg the erasure of ¢ (i.e., non-register parameters are “erased”). An
execution o satisfies a proposition p at time ¢ (o F pot) if all environments that
erase to o satisfy p at ¢. The ezecution set X, of a proposition p is the set of

3 Because the program code is presumably ready to be run by the code consumer, we
use pmas a “stand in” to avoid replicating the program inside the proof. Alternatively,
the program code could be stored in the proof and extracted by the code consumer
after proof checking (i.e., “code-carrying proof”).



executions that satisfy it at time zero (X, = {0 | 0 F pe0}). Given a security-
property p, an execution o does not violate security if and only if o € X,. We
discuss security properties further in Section 4.

We now specify a transition relation between states for any given program:
& > s — s’ asserts that there is a valid transition from state s to state s’ when
executing program & (see Figure 3 for representative instructions: the complete
definition can be found in the companion technical report). i + i, abbreviates
J (addw)(i1,142) in this figure. The notation t[v; — v2] is the redefinition of the
mapping v such that v, is mapped to vs.

| d>s— s |
(Psec) [s' ' |
714 T2 s[pe — s(pe) +1][u — s(u)[r1 — s(u)(r2)]]
con il s[pc = s(pc) +1+41] if s(u)(r1) € cop
dcopmt {s[pc os(pe) F1] if s(a)(r1) ¢ cop

Fig. 3. The Transition Relation (Excerpt)

The execution set of a program (i.e., its possible behavior) comprises all
executions with valid transitions (X = {0 | # > 0; — 041 for all j > 0}).

4 Enforcement

We now address the code consumer’s principal concern: how do I tell if my system
is secure when I execute an untrusted program?

Current PCC enforcement mechanisms are implemented in the C program-
ming language and generate a wverification condition (VC) that is true only if
the program does not violate the security policy; an LF type checker establishes
that the security proof is a correct proof of the VC.

For temporal-logic PCC, we provide a proof of |- pg, ¢ 0 instead of a proof of
a VC. ps, is a security property that must hold for the system to be secure. psp
is specified by the code consumer directly; the definition of satisfaction can be
used to verify that it has the intended meaning.

Contrast this approach with a first-order PCC system, in which the code
producer proves a VC derived from the security property by a trusted analysis.
In our system, the code producer proves the security property directly from a
formal encoding of the abstract machine’s transition relation. To show that our
enforcement mechanism is sound, we need only show that the encoded transition
relation is valid (see Section 4.2).

4.1 Encoding the Transition Relation

We provide one inference rule for each instruction type; Figure 4 specifies two
such rules (see the companion technical report for the remaining rules).



In each rule, we identify the current-time values of the registers with the rigid
variables xpc, xu, and xm. Then, for any program that contains an instruction
of the appropriate type at the current program counter, we provide new values
of the registers at the next time instant. Rigid variables name the previous-time
values of the registers inside the () operator. In the case of rule trans_mv (move
register), the program counter is incremented by one, and the general-purpose
register r1 is assigned the value of r2 in the register file. In the case of rule
trans_cond (conditional branch), a branch is taken if a conditional test succeeds;
otherwise, the program counter is simply incremented; the other registers are
unchanged by this instruction.

Note that the transition relation does not check that the program has proper
control flow, unlike other implementations of PCC. We permit any control flow
that has a valid security proof, but the security property will ordinarily require
that the program counter stay within the program.

Prrans.mv = VXpC:+,. Vxu:+,. Vxm:+,. Vrl:+,. Vr2:+4,.
xpc = pc Axu=uAzxm=mD fetch(pm, pc) = imv(rl, r2)
DO (pc = xpc addw 1 A u = updu(xu, ri, selu(xu,r2)) Am = xm)

Ptrans_cond = VXpPC:+,. Vxu:+,. Vxm:+,. Veopl:+,. Vri:4,. Vil:4,.
xpc = pc Axu=uAxm=mD fetch(pm,pc) = icond(copl, rl,il)
(copi(selu(xu,rl)) D pc = xpc addw 1 addw i1)
OO | A((compl(copl))(selu(xu,rl)) D pc = xpc addw 1)
Au=zxu/Am=zxm

——— trans_mv ————— trans_cond
I' F piansimv @t I' - prans_cond @

Fig. 4. Encoding the Transition Relation (Excerpt)

4.2 Soundness

To show that our enforcement mechanism is sound, we first show that the en-
coded transition relation is valid for any execution of the untrusted program:

Proposition 2 (Transition Soundness). ¢ F pyanss et
for each I € {mvi, mv,eop, cond, load, store} if ¢|rey € X 7(pm)

Proof. By the definition of the transition relation and the definitions of valuation
and satisfaction (see the technical report for details).

Now, let ps, be a security property. The following proposition establishes that
the system is secure with respect to any program that has a security proof:

Proposition 3 (Enforcement Soundness). X 7n) C X, if F pspa0



10

Proof.
for all o € X 7o)
for all ¢ such that ¢|rey = 0

¢ E pspal Proposition 2 and Proposition 1
0 F pspal Def. 0 F pat
o€ X, Def. X,

O

Let & = J(pm). The code producer provides a derivation of - ps, @ 0 along
with &; we use a trusted proof checker (e.g, Necula [14]) to verify its correctness.
From Proposition 3, we conclude Xg C X,_: no execution of @ violates psp.

5 Certification

We now address the code producer’s principal concern: how do I generate a
security proof for my program such that it will satisfy the code consumer?

Of course, as a last resort, the code producer can always write proofs by
hand, but this approach is feasible only for small programs. Practical systems
for PCC rely on a certifying compiler [14] (a certification mechanism) to produce
a security proof in the normal course of compiling a program. We would like to
have temporal-logic certifying compilers.

Unfortunately, certification appears to be significantly harder than enforce-
ment: existing certifying compilers [3, 14, 10] provide proofs of type safety only
for relatively standard type systems. In this section, we restrict our attention
to programs without procedure calls and provide an algorithm for transforming
the output of a first-order PCC compiler into a temporal-logic proof of type
safety. This limits our choice of security policies, but note that type safety is
an essential starting point for any practical PCC system, and that type systems
exist for many “expressive” security policies [18, 5,4].

Our certification mechanism generates derivations of judgments of the form
F pc = 0 A pore DO [psate @ 0, where ppre and peare are assertions (i.e., psp =
pc = 0 Appre D [psate); an assertion is a proposition that contains no temporal
operators. This class of security properties represents a slight generalization of
the invariance properties [8], and includes all type safety properties. Intuitively,
an invariance property requires us to prove that some assertion (i.e., psafe) holds
at all times. We generalize this class by allowing the code producer to assume
that the program counter is zero and that a precondition assertion (i.e., pPpre)
holds at the start of execution.

In addition to object code, existing certifying compilers for PCC produce a
set of loop invariants and a proof of a first-order VC. A loop invariant is an
assertion that holds at the head of each loop; a complete set of loop invariants
ensures that the VC generator will terminate, even if the program does not. For
temporal-logic PCC, we pass the object code, loop invariants, and first-order
proof to an ad hoc proof generation algorithm that produces a temporal-logic
security proof. The ad hoc proof generator mimics the operation of the VC
generator; both are untrusted components in our system.
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In order to obtain efficient temporal-logic proofs, we factor fixed sequences of
inferences into derived rules that are introduced by the prelude of the proof. The
prelude is identical for all programs compiled by the same compiler, and is thus
a constant overhead. We call the temporal-logic component of the security proof
a proof skeleton. The proof skeleton is constructed by the application of derived
rules; the derivations of the derived rules (in the prelude) are first checked by
the proof checker. The “leaves” of the original first-order proof are embedded in
the temporal proof skeleton, after purely structural rules are stripped away.

5.1 VC Generation

We first adapt Necula’s VC generator [11] to our machine model to fix the
strategy of our proof generator (see the companion technical report for details).
For certifying control-flow safety and memory safety, peafe is

neqO0(len(pm) gtu pc)
A(Vrl:4,. Vr2:4,. fetch(pm,pc) = iload(rl,r2) D saferd(m, selu(u,r2)))
A(Vrl:+,. Vr2:+4,. fetch(pm,pc) = istore(rl,r2)
D safewr(m, selu(u,rl), selu(u,r2)))

We call this the essential safety policy [7]. It allows the program counter to range
over the entire program. The constants saferd and safewr denote arbitrary
relations that encode the memory safety policy [14]; the VC proves that these
relations hold for each possible program state.

Let VC,,. .z be the VC for program J (pm), precondition pye, and loop invari-

ants 7. The certifying compiler produces Z along with a proof of H VC,, . 70.

Dpre;s

5.2 Proof Generation

The proof generator extends first-order proofs to temporal invariance proofs by
mimicking the operation of the VC generator in temporal logic. In effect, the
proof skeleton is a trace of a particular run of the VC generator encoded in the
language of temporal logic. The proof of control-flow safety is encoded in the
proof skeleton itself; other properties are demonstrated by the first-order proof.
Our proof generator is not a search algorithm: given a well-formed first-order
proof, a temporal proof is always found in time directly proportional to the size
of the VC. Note that because our enforcement mechanism does not depend on
the VC generator, we are free to change VC generators at any time, even after
the enforcement mechanism has been widely deployed.

It should not be surprising that we can reduce temporal invariance proofs to
first-order proofs, because this is a well-known technique for verifying reactive
systems [8]. However, instead of using the usual global invariance rule [8], we
instead show that some loop invariant always recurs after a finite amount of time,
and that the system is safe in the meantime: this is essentially the function of the
VC generator. This property can be encoded easily enough by appealing to the
“until” operator: [1(pz D psate A O(psate U p7)) Where pz is the disjunction of all
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loop invariants. If we combine this with a derivation of pc = 0 Apyre D Psate U Pz,
we can derive ps, through a constant number of temporal inferences.

We now realize two benefits: our safety proofs are considerably smaller than
the equivalent global invariance proofs, and we obtain a correspondence with
the VC generator that is close enough to embed a first-order proof directly. The
reduction in proof size is brought about by specifying an invariant only for each
loop head, rather than for each reachable instruction. Michael and Appel [9]
achieve a similar reduction by factoring invariants using predicate transformers.

By realizing this strategy as an algorithm, we obtain the following result:

Proposition 4 (Relative Completeness). There is an algorithm that derives
Fpc=0 A Dpre D psate @0
from & VO, . 170, where psite is the essential safety policy

Proof. In the technical report, we specify an algorithm for deriving a temporal
security proof from the proof of a corresponding first-order VC.

We have implemented a prototype proof generator for the abstract RISC
processor as a logic program in the Twelf [15] meta-logical framework, along
with a simulator for the enforcement mechanism. Small experiments based on
a binary encoding of temporal logic suggest that the size of the temporal proof
skeleton is less than five times the code size; this overhead is in addition to the
first-order proof and the prelude. Though such proofs are relatively large by
current standards [13], the experiments indicate that our approach is practical.

We are currently in the midst of implementing an experimental framework
based on the Special] certifying compiler for Java [3]. The Special] compiler
produces certified x86 executable code from Java class files; our new framework
generates temporal-logic proofs from this certified code. When completed, this
framework will allow us to obtain more comprehensive measurements of proofs
sizes for Java programs. Initial results are so far consistent with the results of
our earlier experiments.

6 Conclusion

The contributions of this research are threefold:

— A temporal-logic framework for PCC that is parameterized by formal secu-
rity properties

— An enforcement mechanism for security properties that is simple to imple-
ment and easy to verify

— A certification mechanism for type safety that adapts existing certifying
compilers to temporal logic

Our contributions are practical applications of proven techniques for program
verification: our challenge lies principally in engineering efficient security proofs
and in minimizing the complexity of the trusted enforcement mechanism.

Our approach offers these benefits:
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— Temporal logic is a suitable specification language for security policies, in-
cluding “expressive” [18, 16] safety properties and liveness properties. Thus,
we can specify security policies directly without a special interpreter, and
without having to write any C code.

— Enforcement is simple—we minimize the amount of trusted code by moving
the VC generator out of the code consumer. Soundness of the enforcement
mechanism is a direct consequence of the abstract machine semantics.

— Enforcement is also flexible—the enforcement mechanism adapts to different
VC generators as a matter of course. Additionally, it does not anticipate and
thereby restrict control flow; an indirect jump, for example, can branch to
any address that is proven safe.

These advantages come at a cost, however, because our security proofs require
a temporal proof skeleton in addition to first-order security proofs; in practice,
we expect the proof skeleton to grow linearly with the size of the program.

We should acknowledge that temporal logic is not a fundamental requirement
of our approach: for example, temporal logic can be translated into first-order
logic with explicit time parameters, and state transition relations can mimic
temporal operators by transitive closure.* However, the choice of notation for
PCC has practical consequences, because formalisms that are equivalent in a
foundational sense may not enable equally compact security proofs. Temporal
logic is well established as a specification language, but only further experiments
will reveal whether it is a good notation for a PCC implementation.

6.1 Future Work

Our machine model does not have a procedure mechanism: we might adapt the
procedure mechanism from Necula [14], but at the cost of additional trusted code
and restrictions on control flow. It would be more satisfying to develop an un-
trusted mechanism based on new certification techniques, and thereby continue
to use the same simple enforcement mechanism we have presented here. However,
in order to prove the specification of a recursive procedure, we must be able to
assume provisionally that the specification holds—thus, we may need fixed-point
operators to encode the general case of mutually-recursive procedures.

We plan to adapt instrumentation techniques for security automata [16] to
the certification problem. Security automata can specify all safety properties, and
program transformations exist [6, 18] that will guarantee in many cases that such
properties hold. A security automaton that has been threaded through a program
by instrumentation is known is an inline reference monitor (IRM). Adding an
IRM transformation to our certification mechanism would considerably broaden
the class of security properties that we can automatically certify.

Our enforcement mechanism can be extended to check self-modifying code
by encoding the processor’s instruction decoder as a formal relation. This is not

4 We conjecture, however, that an explicit representation of a state transition is needed
to make the VC generator into an untrusted component.
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fundamentally difficult, though it requires a substantial effort (see Appel and
Felty [1], for example). PCC certification for self-modifying code, however, is
still largely unexplored, and we would be incurring a significant cost for standard
programs by requiring additional proofs of instruction decodings.

6.2 Related Work

We touch here only on work related to security policies for untrusted software.
For a more comprehensive PCC bibliography, we refer the reader to Necula [14].

Necula and Lee [12] pioneered the use of PCC for resource bounds. Appel and
Felty [1] argue that we should rely upon an encoding of the machine semantics in
higher-order logic and derive an untrusted type system from it; the proof checker
should be the only trusted component. Interesting safety properties can be spec-
ified by extending the machine model. In some respects, our work represents a
less radical step in a similar direction: the enforcement mechanism disassembles
the program, but does not to analyze its control flow or generate a VC.

The enforcement mechanism for typed assembly language (TAL) [10] is a type
checker that does not accept unsafe programs; type annotations accompany pro-
gram instructions. A TAL compiler translates a well-typed source program into
a well-typed object program. Walker [18] developed a TAL based on security au-
tomata; this version of TAL is novel because, like our system, the security policy
is separate from the enforcement mechanism. Additionally, Walker provides an
IRM transformation for ensuring that the security policy is always satisfied.
Crary and Weirich [5] developed a TAL that enforces resource bounds. Crary,
Walker, and Morrisett [4] developed a TAL to enforce security policies based on
a capability calculus; this calculus can ensure the safety of explicit deallocation.

Software fault isolation (SFI) [17] instruments a program so that it cannot
violate a built-in memory safety policy. Security automata SFI implementation
(SASI) is an SFI-based tool developed by Erlingsson and Schneider [6] for en-
forcing security policies encoded in a security-automata language.
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