Player-Driven Procedural Texturing (sketches_0311)

David (grue) DeBry Henry Goffin Chris Hecker

Ocean Quigley Shalin Shodhan ~ Andrew Willmott*

Maxis, Electronic Arts

1 Introduction

In the video game Spore we make heavy use of player-driven pro-
cedural texturing. Our aim is to amplify the user’s creativity by al-
lowing them to control a powerful procedural texturing system. We
attempt to strike a balance between giving the player a full painting
interface (desirable for highly skilled artists, but tedious for others),
and limiting them to simple compositions of preauthored textures.
We solve this problem differently for our two model kinds: crea-
tures, and buildings/vehicles.

2 Creature Texturing

Our creatures consist of a main body mesh, with attached detail
parts. To texture it, we use our effects system, Swarm, to run
particle-driven brushes over the mesh surfaces, and to distribute
brushes according to creature features. The brushes paint directly
into diffuse, specular, and bump map textures. The features of this
system include the ability to run particles over a dynamic mesh with
both 2D (tangent space) and 3D control, and fast UV generation for
the body mesh, using cubemap partitioning.

Although in initial prototyping all paint scripts used vanilla particle
control systems, we later developed a number of custom compo-
nents to optimize common operations or provide advanced features,
such as running paint up and down a creature’s spine and limbs, and
covering the skin with oriented strokes.

The player controls this system by selecting from sets of base,
coat, and detail paint scripts. The scripts are also parameterized
by player-selectable colour . Finally, for one-click texturing, we let
the player select themes with pre-set combinations of these things.

Figure 1: Texturing a creature.

3 Building and Vehicle Texturing

Buildings and vehicles are wholly assembled from deformable parts
called Rigblocks. The texturing appropriate for these parts is stylis-
tically different from creatures. We prefer tiled swatches of texture,
more akin to wallpaper. Because these rigblocks are deformable,
often in drastic ways, their uvs cannot be static, or the textures
will be stretched and warped unpleasantly. We solve this problem
by means of a procedural UVing system. Rigblock regions can be
marked as belonging to one of a set of UV types, including planar
and cylindrical projections, and most usefully a boxmap projection.
These projections are then applied at runtime, in the vertex shader.

Regions are also used to give the player finer-grain control over the
look of the model; they are assigned to groups that the player can

*e-mail: awillmott@maxis.com

texture individually. Finally, The textures are parameterized by two
palette colours, to allow a large number of combinations.

Figure 2: A number of textured Vehicles.

4 Final Touches

Once the building or vehicle is ready, a single texture page is as-
sembled by generating a second set of unique UVs, and then using
a “splatting” shader to downsample all individually textured parts
into the texture page. This allows us both to avoid having draw
complexity affected by user material choices, and also to have tight
control over final texture resolution. Figure ?? shows the resulting
models in game.

We also generate an ambient occlusion map by using a shadow/splat
shader to average together visibility samples over the sphere. This
provides the visual glue that ties the final model together and makes
it look solid.

Both in the editor and in the game we use a spherical harmon-
ics lighting model, interpolating between diffuse and fully glossy
terms, to allow a range of diffuse, glossy, and specular finishes.
This is particularly important to capture more metallic looks for
some parts.

Figure 3: Player-created models in-game.

http://www.spore.com/

