Creating Spherical Worlds (sap_0251)

Kate Compton James Grieve Ed Goldman

Ocean Quigley Christian Stratton

Eric Todd Andrew Willmott*

Maxis, Electronic Arts

1 Introduction

Our goal was to deliver procedurally created spherical planets for
the game Spore, a considerable departure from our usual flat-world
terrain approach. This presented three major problems: how to pa-
rameterize the planet’s surface, how to create the surface itself, and
how to texture the resulting geometry.

2 Parameterization

Some of the many possible approaches to parameterizing a de-
formed sphere include angle-based mappings, such as a longi-
tude/latitude, gnomic projections, and tiling the surface with charts,
e.g., aregular tiling such as a duodecahedron. Two possible projec-
tions for such charts are planar (project into the tangential plane),
and perspective (divide by the local z value).

Our choice had to minimise distortion as much as possible. We
also had to consider the operations our system would need, such
as heightfield storage, transforming from 3D locations to map co-
ordinates and back, wrapping between map boundaries, efficient
normal map generation from heightfield data, and splatting of rect-
angular areas into map space. Most of our existing gameplay and
graphics approaches to terrain are grid-based, so we preferred the
chart-based approach. In particular, perspective chart projections
have the advantage that straight lines in such charts map to great
circles on the sphere.

We chose a cubemap/projective parameterization as the best trade-
off between distortion and our desired operations. The heightfield
and other attribute maps are stored as six face grids. Further, by
choosing face mappings to be permutations of the corresponding
axes, it is possible to formulate efficient algorithms for wrapping
between faces, and projecting a 3D point into a chart. Normal maps
are generated in a similar way to the standard 2D texture-based ap-
proach, with the addition of a Jacobian term that takes into account
spherical distortion.

3 Creating Heightfields

We create the heightfields that represent a planet’s surface with a
procedural brush system that operates on the sphere. Brushes are
simple 2D textured rectangles that conditionally raise or lower the
existing height values. Their footprint on the sphere is projected
onto each face by culling to that face’s frustum, and the GPU then
splats the resulting textured triangles onto the face’s heightfield; a
pixel shader implements the brush operation.

We use our effects system, Swarm, to run these brushes across the
planet surface, controlled by particle systems with various random-
ized parameter ranges. These systems can perform random walks,
respond to terrain forces, and also hierarchically contain or spawn

*e-mail: awillmott@maxis.com

other systems. The result is that artists can assemble a set of ef-
fects that represent planet features such as rivers, mesas, canyons,
oceans, and plateaus.

4 Texturing

Texturing is accomplished similarly to other terrain-based games:
detail and colour maps are combined according to a control texture.
However in our case the control texture must be derived directly
from the height field, rather than being pre-authored. It is gener-
ated by a combination of filtering options on the height field: we
take the heightfield thresholded against water level, the gradient,
and curvature, and combine them according to a technical-artist-
supplied formula.

A given planet type can chose between various texture sets and ad-
justable parameters to the terrain shaders to produce planets with a
certain thematic look. Planets also have atmosphere and tempera-
ture settings that control both colour ramps and parameters to our
atmosphere and fogging model. Planets start particular values, but
these can be modified later by terraforming gameplay.

We have developed an authoring system to allow many planet types
to be assembled from terrain feature scripts by an artist. For any
particular planet type, many different planet instances can be gen-
erated by varying the initial random seed.

AR

Figure 1: Some of the four billion planets possible with our system


http://www.spore.com/

	Introduction
	Parameterization
	Creating Heightfields
	Texturing

