
Rigblocks: Player-deformable Objects (sap 0248)

Lydia Choy Ryan Ingram Ocean Quigley Brian Sharp Andrew Willmott∗

Maxis, Electronic Arts

From left to right: A Rigblock being authored, deformed by the player, and the final game model.

1 Introduction

We have built a system that allows the player to create various game
models themselves, by assembling and deforming parts. This gives
them compelling input into what their game world and avatar looks
like. A key part of this system is what we term a Rigblock. A
Rigblock is geometrical building block, representing a particular
component of the model. For example, for a creature model the
block may be a hand or mouth, for a vehicle, a wheel or jet en-
gine. Physical analogues include Lego and mechano sets and their
various parts.

A Rigblock is not static, however. In addition it contains a set of an-
imations that can be used to deform the block in interesting visual
ways. These animations are not time-based, but are rather parame-
terized over a unit interval, and are driven by one or more handles
that the player controls. Handles are simple sliders, which scrub
through the animation as they are moved from the start to the end
of their range. They are displayed near to the feature they control,
making it simple for the player to click and drag on the handle, and
produce the desired deformation.

The advantages of our approach are:

• Player interaction with the block is intuitive and straightfor-
ward. The physical nature of grasping a handle and moving it
back and forth to modify the block works well.

• Rigblock deformations are expressive. Because the corre-
sponding animation is not constant-rate (the player can scrub
through it at will), a number of variations are possible, from
simple handles that linearly control feature size, to handles
where subranges result in completely different styles of block.

• Rigblocks provide a balancing mechanism between enabling
player creativity and amplifying player creativity. They fall
in the sweet spot between high-quality artist-created mod-
els, with no player control, and lower-quality, effort-intensive,
wholly player-driven approaches, such as providing a sculpt-
ing tool.

2 Pipeline and Workflow

A standard workflow for game animation is to have a separate au-
thor file per animation. These files in turn reference a standard
skeleton. For Rigblocks it is crucial that the artist be able to view the

∗e-mail: awillmott@maxis.com

composite results of applying multiple animations at once, hence a
different workflow was required. To solve this problem we used
Maya’s non-linear animation editor. This required both reverse en-
gineering some of its behaviours, and upgrading our pipeline to be
able to handle exporting all animation tracks instead of just the main
track.

We wrote MEL scripts to simplify Rigblock construction. Firstly
the artist creates and places a handle, which in turn creates and
connects the corresponding animation. The artist can then use the
same workflow as in-game: scrubbing the 3D handle back and forth
drives the corresponding animation via expressions. On export, the
handle positions, ranges, and associated animation are propagated
through the pipeline to game format.

Production proceeded by storyboarding sets of required parts for the
game, and providing some example models that established style
and a range of handle approaches. The artists then proceeded to fill
in the story boards.

3 Animation Technology

When multiple deform animations are present, we need a method
for composing them. The standard runtime approach is to cross-
blend animations, with either per-animation or per-animation, per-
bone weights. Deform animations require a different approach: we
cannot weight them, as then applying a second deform would undo
part of the effect of the first deform. Instead we want them to com-
pose additively, in much the same manner as delta morph targets.
(We also support morph targets for rigblock animations, but pre-
fer to avoid them if possible because of high memory and runtime
cost.)

The initial approach we took was to concatenate each animation in
turn with the base pose inverted out of it. While this worked well,
it did not match the results as previewed in Maya, which became
an essential goal for artist convenience. Maya accumulates trans-
lation, scale, and rotation deltas from all animations individually,
only forming the final transform matrix at the end; the engine was
updated to take the same approach. (For rotation summation Maya
uses Euler angles, whereas we concat quaternions; the difference
was not large enough to matter. Although using euler angles is un-
desirable in a runtime engine, it does have the advantage that the
result of applying N delta animations becomes order independent.)

Once a player-created model has been finished, it can be ”baked”
into its final form, and all animation data removed, in order to pro-
duce a model that can be rendered at game rates.


	Introduction
	Pipeline and Workflow
	Animation Technology

