
Procedure Calls Are the Assembly Language
of Software Interconnection:

Connectors Deserve First-Class Status

Mary Shaw1

January 1994
CMU-CS-94-107

CMU/SEI-94-TR-2
ESC-TR-94-002

School of Computer Science and
Software Engineering Institute

Carnegie Mellon University
Pittsburgh PA 15213

Abstract
Software designers compose systems from components written in some pro-
gramming language. They regularly describe systems using abstract patterns
and sophisticated relations among components. However, the configuration
tools at their disposal restrict them to composition mechanisms directly sup-
ported by the programming language. To remedy this lack of expressiveness,
we must elevate the relations among components to first-class entities of the
system, entitled to their own specifications and abstractions.

Keywords: software architecture, system configuration idioms, software design

Presented at Workshop on Studies of Software Design, May 1993.
Also to be published in Proceedings of Workshop on Studies of Software Design,

Lecture Notes in Computer Science, Springer-Verlag 1994.

1This research was supported by the Carnegie Mellon University School of Computer Science and Software
Engineering Institute (which is sponsored by the U.S. Department of Defense) and by a grant from Siemens
Corporate Research. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies of any of the sponsors.

Table of Contents

Abstract .. i
Table of Contents.. iv
1. Current practice.. 1
2. Problems with current practice... 2
2.1. Inability to localize information about interactions... 3
2.2. Poor abstractions.. 3
2.3. Lack of structure on interface definitions... 4
2.4. Mixed concerns in programming language specification.. 4
2.5. Poor support for components with incompatible packaging................................... 5
2.6. Poor support for multi-language or multi-paradigm systems.................................. 5
2.7. Poor support for legacy systems... 6
3. A fresh view of software system composition.. 6
4. An architectural language with first-class connectors... 8
4.1. Language structure .. 8
4.2. Connectors and their semantics.. 9
4.3. Architectural type structures... 11
4.4. Abstractions for higher-level connectors.. 12
5. The promise of explicit architectural notations... 13
Acknowledgments... 14
References.. 14

Shaw: Procedure Calls are the Assembly Language of Module Interconnection1

Architectural descriptions treat software systems as compositions of components. They fo-
cus on the components, leaving the description of interactions among these components
implicit, distributed, and difficult to identify. If the interfaces to the components are explicit,
they usually consist of import/export lists of procedures and data. Interactions are expressed
implicitly through include files or import and export statements, together with the
documentation that accompanies various libraries. This view of software architecture orga-
nizes information around the components and ignores the significance of interactions and
connections among the modules.

This paper begins by discussing the limitations of the conventional approach to system con-
figuration. It then argues that designers must attend as carefully to connections among com-
ponents as to the components themselves. It closes by proposing a model of system com-
position in which connectors are first-class entities along with components. Section 1 sum-
marizes current practice and Section 2 describes some of the resulting difficulties. Section 3
gives a fresh view of system configuration and Section 4 sketches a language to support that
view.

1 . Current practice
When a designer writes a paper about a software system, the first section often includes a di-
agram and a few paragraphs of text labeled the “software architecture.” The text refers in-
formally to common software notions such as pipelines, client-server relations, interpreters,
message-passing systems, and event handlers. The diagram usually consists of boxes and
lines, but the semantics of the graphic elements varies substantially from one figure to an-
other [5]. Figure 1 is typical of these figures. It depicts a sequence of three processing steps
in which the second step also uses four abstract data types and communicates in various
ways with a satellite, an interactive workstation, and a database. The components depicted
in the diagram may have substructure, but ultimately the implementations of the components
must be written in conventional programming languages.

Sometimes components have explicit interface definitions. These define the external struc-
ture of the components. They usually consist of lists of procedures, exported data, and per-

Figure 1: Typical box-and-line depiction of a software architecture

Shaw: Procedure Calls are the Assembly Language of Module Interconnection2

haps types, exceptions, etc. Ada’s specification parts and C’s .h files are examples
of such interface definitions. Interfaces do not aggregate these details to reflect the more ab-
stract relations they implement. The specifications of functionality, if any, are generally
written in prose; formal specifications that provide details beyond type and signature are
relatively rare.

In these conventional designs, all modules have equal status. That is, they are undifferenti-
ated collections of procedures, data, and other constructs of the underlying programming
language. Nothing analogous to a type system indicates that a module has special properties,
discriminates among different kinds of modules, or identifies specific kinds of analysis
available. In the associated implementations, import and export statements in each
module establish the dependencies among modules. In Ada these are uses clauses; in C
they are includes . Specific associations, for example between a procedure definition and
its call, rely on matching the names at the definition and use sites.

The models implicit in designers’ architectural descriptions (both text and diagrams) do not
match the actual realization of these models in code: Architectural models are rich, abstract,
spontaneous, and almost wholly informal. However, the implementation languages, includ-
ing module interconnection languages, are rigorous, precisely defined, and limited in
expressiveness to the constructs of the underlying programming language.

As a result of these mismatches, the code fails to capture designers’ intentions for the soft-
ware explicitly and accurately and precise design documentation does not persist into mainte-
nance. This impedes immediate checking and future guidance for development and mainte-
nance activities. Even insofar as the code actually captures parts of the design, it does so in a
highly distributed fashion, and it is hard for a reader to get a system-level overview. The
need to address abstractions for system configuration is becoming widely recognized [3, 5,
6, 9, 10].

2 . Problems with current practice
Current practice in architectural, or system-level, design focuses on components. For a
system to work well, however, the relations among components, or connectors, require as
much design and development attention as the components.

Connectors are less obviously objects of design than are components. After all, the connec-
tors often do not have code—hence identity—of their own. They may be realized in dis-
tributed fashion by a variety of system mechanisms. Indeed, system mechanisms such as
common scheduling and synchronization policies or the available communications protocols
may constrain the designers’ choices. Many of the problems with current techniques for ar-
chitectural definition revolve around inadequacies of the mechanisms for defining component
interconnection.

This section reviews some of the problems with the conventional approach of embedding the
interactions among components within the components.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection3

2 . 1 . Inability to localize information about interactions

Most current module interconnection techniques, including programming languages such as
Ada, depend on import and export commands lodged in the code modules of the system [4,
7]. A link editor then connects the components by matching the names of exported and im-
ported constructs, possibly with guidance from the import and export statements about
the scope of names. This has three major problems

• Forced agreement in spelling: The importer must use the same name as the exporter. In
at least one case, a “reusable” library was not usable because its names conflicted with
existing names of a system.

• Dispersion of structural information: An import/export strategy distributes structural in-
formation throughout the system. This hides the system structure and impedes reuse by
creating embedded references to other components.

• Forced asymmetry of interaction: The import/export model assumes asymmetrical rela-
tions—there must be an owner and a user, or a master and a slave, or a source and a
destination. Although many interactions are binary and asymmetrical, not all are: peer-
to-peer communication is symmetrical, client-server relations can have multiple com-
ponents in each role.

Current practice is also unable to localize the related abstractions. There is no natural home
for the definitions that govern a class of interactions. Interactions are provided and defined
by the operating system, the programming language, subroutine libraries, embedded lan-
guages, and ad hoc user-defined mechanisms. Giving legitimate, uniform status to defini-
tions of interactions would improve system understanding and analysis.

2 . 2 . Poor abstractions

Boxes, lines, and adjacency don’t have consistent meaning across system structure dia-
grams. They usually represent abstract interactions rather than the procedure calls and data
declarations of the code. Practical systems have quite sophisticated rules about component
interaction and shared representations. Existing definition mechanisms don’t allow those
design decisions to be captured in the code, so they can’t be exploited for analysis or mainte-
nance. The abstractions are hidden for several reasons:

• Inability to associate related elements and name the cluster: A module interface may ex-
port a large number of named elements. Apart from comments—which have no
force—there is no good way to declare that a set of these elements behaves as a coor-
dinated group. Further, there is no way to name the cluster for reference as a whole.

• Inability to specify relations among related elements: The ordering and state consistency
requirements among a coherent set of calls are usually implicit. This is almost in-
evitable, for there is no logical place to state them.

• Inability to specify aggregate properties of a collection of elements: Even without ex-
plicit names, practical systems have quite sophisticated rules about protocols and shared
representations. Individual procedure and data element specifications localize informa-
tion and are not adequate to express these relations.

In Figure 1, shapes help the reader differentiate among different kinds of components, even
though the programming language and module interconnection language may not support the
distinctions. However, all the connections in that figure are represented in the same

Shaw: Procedure Calls are the Assembly Language of Module Interconnection4

way—as simple lines. Figure 2 shows an improved drawing, with different line textures
denoting different kinds of interactions.

Designers have abstract, sophisticated intentions for the relations among components.
However, they have no reasonable way to capture these design intentions as a permanent
part of the software. Even worse, the abstract relations are almost always realized as se-
quences of procedure calls embedded in modules whose ostensible function is something
entirely different. Usual practice does not identify the abstract functions of the procedure
calls, nor does it explain the rules about required order of operations.

2 . 3 . Lack of structure on interface definitions

As noted above, we lack a widely-used notation for structuring interface definitions so that
they cluster coherent subsets of operations. In practice, though, a module is likely to have
interfaces for one or more sets of primary users (to provide the overt system function) and
additional special operations for such special uses as audit trails, monthly reports, executive
control (setpoints or system tuning), system initialization, monitoring, and debugging.
Monolithic interfaces can neither clarify nor enforce these distinctions.

Two levels of structure and abstraction are missing:

• Abstractions for connections: aggregation of primitive import/exports to show the in-
tended abstract function of the connection.

• Segmentation of interfaces: decomposition of an interface into more-or-less conven-
tional segments corresponding to different groups of users or different classes of func-
tionality; each of these may involve several abstract connections.

2 . 4 . Mixed concerns in programming language specification

Programming languages were designed to describe algorithmic operations on data. They are
very good at defining data structures and algorithms that operate on those data structures.
Extensions allow them to describe computational structures such as concurrency. They are
not particularly good at describing reliability, absolute time, and a variety of extra-functional
properties. Nor are they good at defining interactions among other modules that are more
abstract than procedure calls and shared data.

Real-time
communication

Pipe Pipe

Database
 access

X Windows ADT
ops

Figure 2: Revised architecture diagram with discrimination among connections

Shaw: Procedure Calls are the Assembly Language of Module Interconnection5

Two problems result. First, all interactions not directly supported by the programming lan-
guage must be encoded as sequences of procedure calls. Second, constructs for system
composition have been grafted onto programming languages, with less than ideal results
(e.g., private parts of Ada).

The concerns of architectural design are not with algorithms and data structures, but rather
with system topology, assignment of capability to components, interactions among compo-
nents, and performance characteristics. Therefore it is unrealistic to expect conventional
programming languages to serve. Much of the current awkwardness seems to arise from at-
tempts to add capabilities to conventional programming languages that stretch them beyond
their design limits.

2 . 5 . Poor support for components with incompatible packaging

When multiple components are reused—for example from different libraries—their interfaces
do not always mesh well, even if their computational capabilities are substantially compati-
ble. For example,

• If a component is cast as a filter, it can’t be used as procedure because it does I/O to
pipes instead of through procedure parameters.

• If a component is cast interactively, it often can’t be called by another program.
• If semantics are suitable but packaging details such as name and parameter order differ,

the user must write ad hoc conversions.

Something akin to typing is going on here: to use a component, you need to know not only
what it computes but also how it delivers that computation. In many of these cases, the in-
compatibilities can be overcome by introducing mediators that accommodate discrepancies
between the protocol expected by the component and the protocol requested by the designer.

2 . 6 . Poor support for multi-language or multi-paradigm systems

The connection between components is substantially independent of the programming lan-
guages of the components. For example, this is usually the case when the components run
as separate processes. Connectors that work naturally in these cases include unix pipes and
many message systems.

In other cases, the connection between components depends directly on the programming
language. This is often the case when components share assumptions about runtime systems
such as representations of data types.

The conditions under which components in different languages can interact musts be detailed
in such a way that a system development tool can tell which connections are allowable,
which can be mediated, and which cannot be supported.

Furthermore, tools intended to support one architectural paradigm—object management
tools, unix shell—offer little assistance in creating a system that mixes different architectural
idioms.

2 . 7 . Poor support for legacy systems

Most software development now involves modification of existing systems. Most of these
systems evolved without configuration tools any more sophisticated than, say, make.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection6

Syntactic tools make it possible to extract the signatures—the names and types of imported
and exported entities. However, they offer no help in recovering the higher-level intentions
such as which set of procedures collectively implements a given abstract protocol. Over half
of system maintenance effort goes into deciphering what the software already does, so the
inability to record and retain the designer’s higher-level intentions about component interac-
tions is a major cost generator.

3 . A fresh view of software system composition
Systems are composed from identifiable components of various distinct types. The compo-
nents interact in identifiable, distinct ways. Components roughly correspond to compilation
units of conventional programming languages. Connectors mediate interactions among
components; that is, they establish the rules that govern component interaction and specify
any auxiliary mechanism required. Connectors do not in general correspond individually to
compilation units; they manifest themselves as table entries, instructions to a linker, dynamic
data structures, system calls, initialization parameters, servers that support multiple inde-
pendent connections, and the like.

It is helpful to think of the connector as defining a set of roles that specific named entities of
the components must play.

Software systems thus comprise two kinds of distinct, identifiable entities: components and
connectors.

• Components are the locus of computation and state. Each component has an interface
specification that defines its properties. These properties include the signatures and
functionality of its resources together with global relations, performance properties, etc.
Each is of some type or subtype (e.g., filter, memory, server). The specific named
entities visible in the interface of a component are its players.

• Connectors are the locus of relations among components. They mediate interactions but
are not “things” to be hooked up (they are, rather, the hookers-up). Each connector has
a protocol specification that defines its properties. These properties include rules about
the types of interfaces it is able to mediate for, assurances about properties of the inter-
action, rules about the order in which things happen, and commitments about the inter-
action such as ordering, performance, etc. Each is of some type or subtype (e.g., re-
mote procedure call, pipeline, broadcast, event). The specific named entities visible in
the protocol of a connector are roles to be satisfied (e.g., client, server).

Components may be either primitive or composite. Primitive components are usually code in
the conventional programming language of your choice. Composite components define
configurations in a notation independent of conventional programming languages. This no-
tation must be able to identify the constituent components and connectors, match the connec-
tion points of components with roles of connectors, and check that the resulting composi-
tions satisfy the specifications of both the components’ interfaces and the connectors’
protocols.

Similarly, connectors may be either primitive or composite. They are of many different
kinds: shared data representations, remote procedure calls, data flow, document exchange
standards, standardized network protocols. The set is rich enough to require a taxonomy to
show relations among similar kinds of connectors. Primitive connectors may be imple-

Shaw: Procedure Calls are the Assembly Language of Module Interconnection7

mented in a number of ways: as built-in mechanisms of programming languages (e.g., pro-
cedure calls associated by a linker); as system functions of the operating system (e.g., certain
kinds of message passing); as library code in conventional programming languages (e.g.,
X/Motif); as shared data (e.g., Fortran COMMON or Jovial COMPOOL); as entries in task or
routing tables; as a combination of library procedures and a single independent process for
the connector (e.g., certain kinds of communication services); as interchange formats for
static data (e.g., RTF); as initialization parameters (e.g., process priority in a real-time op-
erating system) and probably in a variety of other ways. Composites may also appear in
these diverse forms; we need (but do not yet have) ways to define them, as well.

Connectors are properly treated separately from components because:

• Connectors may be quite sophisticated, requiring elaborate definitions and complex
specifications that deserve their own homes. In many cases, no single component is the
appropriate location for a protocol specification.

• The definition of a connector should be localized. Just as good methodology requires a
single location for the definition of a component, good methodology requires a single
location for the definition of an interaction. This supports both design (especially anal-
ysis during design) and maintenance. Further, connectors can be rich enough for their
definitions to deserve their own homes.

• Some information about the system does not have a proper home in any component.
For example, in a real-time system it may be appropriate for tasks to declare their needs
and for a separate scheduler to satisfy them.

• Connectors are potentially abstract. They may be parameterizable. They may define
classes of interactions that require additional scripting at the time of instantiation. Users
may wish to define their own connectors, to make their own specializations, of existing
connectors, or to compose their own connectors. A single connector may be instanti-
ated multiple times in a single system; for example, a multicast capability could support
many distinct sets of communicating processes.

• Connectors may require distributed system support: The mechanism required by a
connector is not always localized to individual uses. For example, a message passing
system may require exactly one server per processor for any number of communicating
processes.

• Components should be independent. The interface specification of a component should
provide a complete specification of the capabilities of that component but remain silent
on how it is actually used.

• Connectors should be independent. A single (high-level) connector might mediate
relations for a dynamically changing set of components. Wiederhold describes such a
scheme [11].

• Relations among components are not fixed. A component may be capable of being used
differently by different kinds of connectors. For example, a client might be indifferent
to whether its server is dedicated, shared, or distributed. In addition, system connectiv-
ity can change dynamically.

System compositions quite frequently reuse patterns of composition; some of these patterns
are commonly understood, at least intuitively: pipe/filter, client/server, layered system,
blackboard. These common idioms can be defined as generic patterns that restrict the types
of components and connectors to be used and describe how the pattern is implemented [5].
This may involve constraining the topologies of interconnection. Current module interconn-
ection languages are wholly inadequate to this task for reasons elaborated in Section 2.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection8

4 . An architectural language with first-class connectors
Software system composition involves different tasks from writing modules: the system de-
signer defines roles and relationships rather than algorithms and data structures. These con-
cerns are sufficiently different to require separate languages. The architectural language must
support system configuration, independence of entities (hence reusability), abstraction, and
analysis of properties ranging from functionality to security and reliability [9]. The design of
such a language is not straightforward. In addition to having a syntax, it must:

• Define semantics for connectors and their compositions.
• Generalize the import/export rules to address asymmetry, multiplicity, locality,

abstraction, and naming.
• Establish type structures for system organizations, components, connectors, and the

primitive units of association of these elements; this includes defining taxonomies for
the types.

• Set out appropriate rules for architectural abstractions.

This section contains some initial notes on these language design problems.

4 . 1 . Language structure

As suggested above, the language needs separate (but parallel) constructs for components
and connectors. It must provide notations for composition and a set of primitives (including
primitives defined in conventional programming languages). For simplicity, the constructs
for components and connectors can be similar. Figure 3 suggests the essential character of
the language. Each construct is typed. It has a specification part and an implementation part.
The specification part defines specific units of association to be used in system composition.

It is sometimes useful to say explicitly that an element is primitive; this means that it is not
further defined at the architecture level but is implemented in a programming language or
with system-level mechanisms.

For a nonprimitive element, the implementation part consists of a parts list, composition in-
structions, and related specifications. This establishes explicit associations and specification
matches, thereby breaking free of name matching as the sole means of making connections.

The specifications should be “open” with respect to construction and analysis tools. Many
different approaches are available for specifying and verifying system properties of interest;
the languages should be able to accept those as uninterpreted expressions and interact appro-
priately with the specialized tools.

Specification

Implementation

Component

Interface

Implementation

Connector

Protocol

Implementation

Type Component Type Connector Typ e

Unit of association Player Role

Element

Figure 3: Gross structure of an architecture language

Shaw: Procedure Calls are the Assembly Language of Module Interconnection9

4 . 2 . Connectors and their semantics

Most programming languages support some sort of intermodule connection. It usually sup-
ports only the primitive units of association of the language, such as procedure calls.
Making the connectors first-class requires careful analysis of all the roles these constructs
play in the definition of a system.

A connector mediates the interaction of two or more components. It is not in general imple-
mented as a single unit of code to be composed. The previous section describes a number of
the implementation possibilities. Whatever the implementation of a connector (especially an
abstract one), detail about the implementation technique is encapsulated when the connector
is used. Moreover, many or all connectors of the same type may share the same code or
data. Allen is investigating formal specifications of the semantics of certain classes of
connectors [1].

Like components, connectors require specifications. Specifications for connectors are called
protocols. Since protocols can be of many different kinds, languages should allow for flex-
ible specifications. One possibility is heavy use of property lists, with some standard at-
tributes and some attributes specific to particular connector types. This allows for properties
as diverse as:

• guarantees about delivery of packets in a communication system
• ordering restrictions on events using traces or path expressions
• incremental production/consumption rules about pipelines
• distinguishing between the roles of clients and servers
• parameter matching and binding rules for conventional procedure calls
• restrictions on parameter types that can be used for remote procedure calls

Primitive connectors include at least the ones directly supported by the programming lan-
guage or operating system. These certainly include the procedure call and data accessors of
each programming language; they also include language-specific process interactions such as
the Ada rendezvous . Careful attention to the roles involved in primitive connectors show
the need to support asymmetry: a procedure has a definer and multiple callers; data has an
owner and multiple users. On the other hand, in certain classes of event systems all entities
are equally entitled to generate and recognize events, so it is also necessary to define sym-
metric roles in a protocol. The usual import/export or provides/requires relation is too
restrictive.

The simplest kind of abstract connector is binary (its protocol has two roles, for example de-
finer and user). Some of these are direct analogs of the language-supported connectors,
such as procedure call. At the architecture level the relation is often more abstract. For ex-
ample, it may be desirable to separate from the definition of a procedure the decision about
whether it is to be a local or remote procedure call.

N-ary connectors that involve multiple components are also important. These may be sym-
metrical, with all connected components playing the same role (e.g., multicast). They may
(probably more commonly) be asymmetrical, with different roles for different components or
sets of components (e.g., client-server systems).

Shaw: Procedure Calls are the Assembly Language of Module Interconnection10

Connectors are often implemented as sets of procedures. A set of procedures frequently has
an associated set of rules or assumptions about how the procedures will be used. These
rules are often highly implicit. They may restrict the order in which procedures are called or
require relations among parameter values. These rules amount to protocols for the interac-
tion. For example, the operations of an abstract data type are used as a bundle; they often
have order restrictions such as “initialize must be called before anything else; push must be
called at least as often as pop.” Explicit restrictions may be expressed in various ways, as
path expressions or traces for execution order restrictions. Although it’s not conventional, it
is useful to think of abstract data types as having a protocol that guides the use of the opera-
tions. This not only captures essentials such as execution order restrictions but also decou-
ples the selection of the abstract type from the selection of an implementation. This is not
unlike Larch’s separation between abstract properties and actual implementations.

Figure 4 suggests the protocols required to construct the system of Figures 1 and 2. These
protocols should exist as independent definitions in the computing environment. They may
take parameters (including partial specifications) and may support several variants. When
they are used, additional specifications may be needed to specialize the protocol or select a
particular form.

Figure 5 shows some of the information that should be in the interface of the central compo-
nent of Figures 1 and 2. This syntax is suggestive rather than definitive. Annotations on the
left side show correspondences to the line styles of the diagram. Each of the nine lines of the
interface describes an interaction with some other component.

ADT Spec
Gorp

ADT Spec
Thud

ADT Spec
Foo

ADT Spec
Baz

Database
Protocol X

Comm
Protocol X

User In t
Protocol X

Pipeline
Protocol X

Figure 4: Constellation of protocol specifications required by example

Central
pipe in A ... <spec> ...
pipe out B ... <spec> ...
data link C protocol X ... <spec> ...
Xwindow D typescript
uses ADT {E1,E2,E3} spec Gorp
uses ADT {F1,F2} spec Thud
uses ADT {G1,G2,G3} spec Foo
uses ADT {H1,H2,H3} spec Baz
accesses DB {Q1,Q2,Q3,Q4} protocol Y

Figure 5: Interface specification of central component, referring to protocols

Shaw: Procedure Calls are the Assembly Language of Module Interconnection11

Note that in several cases the normal notion of exporting some resources and importing oth-
ers does not apply well. For the pipes, additional specifications limit the type of information
passing through the pipe. Similarly, a communication protocol may require additional spec-
ifications. The four abstract data types are all of the same general category of protocols; the
bracketed names are the names by which the central component will call designated opera-
tions of the four types.

4 . 3 . Architectural type structures

A problem akin to type checking arises at three points in an architectural language. Two ap-
pear in the preceding discussion: the types of components and of connectors. As with any
type system, these express the designer’s intent about how to use the element properly. To
be useful, they must also have some enforcement power.

Architectural types describe expected capabilities. They can limit the legitimate ways to use
the construct. They can abbreviate restrictions on what can appear in the construct’s specifi-
cation. Examination of real systems shows that type hierarchies of this sort are useful. For
example, there are many kinds of memories (components) and many kinds of event systems
(connectors). Defining type structures for these elements requires creation of taxonomies
that catalog and structure the type variations.

The third place where something like type checking shows up is at the actual point of asso-
ciating players of components with roles of connectors. Each of the named entities in the
interfaces (of components) and protocols (of connectors) must have enough type and other
specification to check on whether the connector definition allows the components to be as-
sociated as requested.

Because of the need to reuse components and connectors in settings that aren’t all quite alike,
it is important to deal reasonably with associations that don’t quite match. A very common
example is the use of a unix pipe to send data to a file. The definition of a unix filter will
probably say it’s intended to interact with other filters through pipes. However, it is often
(but not always) well-defined to substitute a file (passive component) for a filter (active com-
ponent). The language must provide a way to define and control possible fix-ups, for ex-
ample by supporting rules of the flavor “ this pipe will accept a file in the role of filter under
the following circumstances ...”. Some of the interesting alternatives include:

• Associate anyhow: it will work without extra effort (some subtype relations).
• Rearrange or reformat information (data re-formatters [2], parameter re-mappers [8]).
• Wrap the component in a converter (a procedure wrapper for a filter would feed the in-

put parameters to the input pipe of the filter and collect the result from the output pipe
for delivery as a single value).

• Convert data to and from a shared form (interchange format).
• Convert data of one component to the form expected by another (pairwise compatibility;

common message format, but data may need to be interpreted).
• Insert conversion module (buffer).
• Just say no.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection12

The history of type coercion in conventional programming languages (especially PL/I) pro-
vides convincing evidence that this capability must remain firmly under control of the
software designer at all times.

A special case of compatibility checking and enforcement arises when components are writ-
ten in different programming languages. The difficulty of accomplishing this depends on the
extent of the shared assumptions between the components.

• Sometimes there is no problem: One common easy case when two languages share run-
time systems with common runtime representations, procedures, and protocols
(Fortran/Snobol). A second common case is explicit, loosely-coupled interactions (unix
pipes with ASCII streams).

• Sometimes the problem can be resolved with mediation as described above.
• Sometimes an external representation standard (RTF, PICT, SYLK) or an inter-lan-

guage procedure call can serve as a cross-language connector.
• Sometimes it’s simply too hard (languages with essentially different assumptions: rule-

based; static imperative; dynamic).

4 . 4 . Abstractions for higher-level connectors

The discussion so far has mentioned many different higher-level connectors. These include
client/server relations, messages, event handlers, multicast communication, radio communi-
cation links, unix pipes, shared data, interaction through X/Motif or SQL scripts, hierarchi-
cal layers, and blackboards. The example of Figures 1 and 2 might be instantiated with
SQL, X/Motif, various data abstractions with usage restrictions, unix pipes, and radio data
links. The software development environment should provide the most common of these,
either as part of the programming language, as basic operating system capability, or as part
of the infrastructure (SQL, X/Motif). Protocols for this baseline collection should be primi-
tive to the architectural language. It is still unclear exactly how to define the association of
procedure calls with abstract protocols precisely, and the semantics of abstract connectors are
also an open question at this time. However, it is clear that connectors have interesting in-
ternal structure, much as unix pipes contain buffers.

As discussed in section 2.3, component interfaces often have several distinct segments in or-
der to establish different kinds of relations. Often these will have corresponding protocols.

An architectural language must support not only individual abstract connectors, but also
high-level compositions that involve a number of connectors in specific relations to one an-
other. For example, the language must be capable of capturing the high-level architectural
idioms such as blackboards, interpreters, and various domain-specific architectures as ab-
stractions. I conjecture that non-primitive connectors are the appropriate way to do this, but
it isn’t yet demonstrated.

5 . The promise of explicit architectural notations
What makes the construction of composable systems different from conventional program-
ming? First, composing a system from subsystems is unlike programming the algorithms
and data structures that lie within the primitive subsystems. The semantics of the compo-
nents, the locality of reasoning, the character of interaction with other components, the prop-
erties of interest, and the nature of the reasoning are all different. Second, we are liberating

Shaw: Procedure Calls are the Assembly Language of Module Interconnection13

ourselves from thinking of the task as merely “programming”. We are not merely building a
program that receives inputs, executes, and terminates—we are building a system that has an
enduring existence in some larger environment. Third, our units of manipulation are not
simply conventional modules (which might export data, procedures, and perhaps tasks), but
rather components and connectors.

Identifying connectors as first-class entities in a system can help to break us out of the pro-
gramming-language mindblock for system composition languages. Legitimizing higher-level
interactions among components allows us to understand the procedure call as one—perhaps
the primary—primitive connector of pairs of modules. More significantly, it allows us to
recognize higher-level connectors as critical to system design. We must learn to support
higher-level connectors—composite components and connectors whose properties, ex-
pressed in their interface and protocol specifications, are as understandable as their
constituents.

The view proposed in Sections 3 and 4 addresses the problems identified in Section 2.

• It specifically provides for localizing information about interactions: Nonprimitive
components can invoke rich relations, and they concentrate structural information.

• It introduces abstractions for interactions and provides a starting point for user-defined
abstractions and aggregations.

• It partially addresses the interface structure problem by using the roles of connectors to
identify related operations as players.

• It separates architectural concerns from programming concerns by providing different
language constructs with different semantics.

• It makes provisions for a type-checking system that can adapt to mild mismatches,
thereby enhancing opportunities for reuse.

• It clarifies the conditions under which programming languages can be mixed.
• It offers prospects for improved support of legacy systems by making the architectural

design of the system explicit.

The principled use of compositional structures should have a dramatic effect on software
production. It should permit the choice of design paradigms to match desired system charac-
teristics. It should allow the development of application-specific frameworks and reference
architectures. It should provide the basis for exploiting compositional properties of systems
for formal analysis, code generation, and software reuse. It should support a high level of
visible abstraction for systems designers so that large systems can be more easily designed,
understood, maintained and enhanced. It should enable us to better accommodate old code
by providing ways to recover partial architectural information from existing systems.

Acknowledgments

These ideas have been evolving over a period of several years. They have been substantially
sharpened and worked out in discussion with David Garlan over the past two years. Daniel
Klein implemented the first prototype of the base language, Greg Zelesnik is extending the
prototype, and Rob DeLine’s critique stimulated clarification of the terminology. The CMU
Software Architecture Reading Group has provided valuable feedback both on drafts of the
paper and on the underlying ideas.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection14

References
[1] Robert Allen and David Garlan. Formalizing Architectural Connection. Proc. Sixteenth

International Conference on Software Engineering, 1994.
[2] Brian Beach. Connecting Software Components with Declarative Glue. Proc. Fourteenth

International Conference on Software Engineering, 1992.
[3] Barry W. Boehm and William L. Scherlis. Megaprogramming. Proc. DARPA Software

Technology Conference 1992, pp. 63-82.
[4] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus Programming-in-

the-small. IEEE Transactions on Software Engineering, SE-2(2):80-86, June 1976.
[5] David Garlan and Mary Shaw. An Introduction to Software Architecture. In V. Ambriola

and G. Tortora (eds), Advances in Software Engineering and Knowledge Engineering,
Volume I, World Scientific Publishing Company, 1993.

[6] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, vol 17, no 4, October 1992, pp.
40-52.

[7] R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. Journal of
Systems and Software vol 6, no 4, November 1986, pp. 307-334.

[8] James Purtilo and Joanne Atlee. Module Reuse by Interface Adaptation. Software:
Practice and Experience, 21(6): 539-556, June 1991.

[9] Mary Shaw and David Garlan. Characteristics of Higher-Level Languages for Software
Architecture. Unpublished manuscript, 1993.

[10] Gio Wiederhold, Peter Wegner, and Stefano Ceri. Toward Megaprogramming. Stanford
University Technical Report STAN-CS-90-1341, 1990.

[11] Gio Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3):38-49, March 1992.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection15

Change History
Fixed up TR format 12/22/93, afternoon
Convert to TR format 12/21/93, morning
Fix refs Dec 20, afternoon; sent LNCS version to David Lamb
Tighten prose, Dec 17, evening
Clean up figures Dec 16, 1993 afternoon
Acitvate passive voice Dec 16, 1993 morning
Tighten early prose Dec 15, 1993
Purge obsolete vocabulary; rewrite locally for sensibility. Dec 6, 1993.
Convert to Lamb format Oct 31, 1993
Add text for some finish-up notes; make quote marks pretty; remove Steamboat notes 8:40

AM March 31, 1993
Finish rewrite 11:20 PM March 30, 1993
Convert to David Lamb's format 3:30 PM March 30, 1993
Overall fresh pass on prose 9:30 PM March 29, 1993
Added gobs of notes from DSSA/Prototech meeting 9:28 AM Jan 14, 1993
Finish rewrite, spell check 11:23 PM Jan 7, 1993
Extensive rewrite of second half, with new figures 6:15 PM Jan 7, 1993
Continue smoothing and fleshing out prose 8:55 AM Jan 7, 1993
Rework prose, reformat, resize pictures 9:47 PM Jan 6, 1993
Converted to Word 8:15 AM Sep 1 1992
Rework language elements section 8:10 AM Sep 1, 1992
Pick up characterization from msg to Jeannette; flesh out problems 1:20 AM Sep 1, 1992
Add detail, figures 7:30 PM Aug 31, 1992
Restate point of view 5:30 PM Aug 30, 1992
Emphasized abstract protocols, spell ck 3:20 PM Aug 16, 1992
Expanded outline, started prose conversion 11:53 AM Aug 16, 1992
Expand outline and add detail 11:34 AM Aug 15, 1992
Add Flesh 10:15 AM Aug 14, 1992

Created 9:00 AM Aug 12, 1992

