Procedure Calls Are the Assembly Language
of Software Interconnection:
Connectors Deserve First-Class Status

Mary Shaw!

January 1994
CMU-CS-94-107
CMU/SEI-94-TR-2
ESC-TR-94-002

School of Computer Science and
Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213

Abstract

Software designers compose systems frommponents witten in somepro-
gramming language. They regularly descréystems using abstrapatterns
and sophisticated relations among componenktowever, the configuration
tools at their disposal restrict them to composition mechanisms dirgaty
ported by the programming language. To rem#éudy lack of expressiveness,
we must elevate the relatiomnong components thirst-class entities of the
system, entitled to their own specifications and abstractions.

Keywords: software architecture, system configuration idioms, software design

Presented at Workshop on Studies of Software Design, May 1993.
Also to be published ifProceedings of Workshop on Studies of Software Dgsign
Lecture Notes in Computer Science, Springer-Verlag 1994.

IThis research was supported by the Carnedigllon University School of Computer Scien@nd Software
Engineering Institute (which is sponsored by the U.S. Departmemeédnse) and by arant from Siemens
Corporate Research. The views and conclusions contained irdabisment argahose of the authoand should
not be interpreted as representing the official policies of any of the sponsors.

Table of Contents

Y 1] 1 - V! PP [
BLIE= Lo L= 0 @]] (=T £ iv
O O U4 (=7 o) A o] = Vo 1o =T PP 1
2. Problems with CUMTENt PracCliCe...........couuuiiiii i 2
2.1. Inability to localize information about interactions..............cccccoeeviiiiii i, 3
2.2. o To =0 1S] (= Tox (o] o 1 PPN 3
2.3. Lack of structure on interface definitions............cooviiiiiiiiiii e, 4
2.4. Mixed concerns in programming language specification................ccooeeveenn. 4
2.5. Poor support for components with incompatible packaging...............cccooeeeen.e. 5
2.6. Poor support for multi-language or multi-paradigm sSystems............cccc.ceevnneeee. 5
2.7. Poor support for 1egacy SYSIEMIS.....ccu i 6
3. Afresh view of software system COMPOSItION...........coovviiiiiiiiiii e 6

4. An architectural language with first-class CONNECIOIS...........cceuviviiiiiiiiiiiceeeeeen 8
4.1. (=T Lo T =T == 1 o L1 | = PP 8
4.2. Connectors and their SEMANTCS........ccu i 9
4.3. Architectural type StIUCIUIES. e 11
4.4, Abstractions for higher-level connectors. ... 12

5. The promise of explicit architectural Notations............ccccoeeviiiiiiii e, 13
ACKNOWIEAGMENTS. ...t e e e e e e e eas 4. 1

(RSN (=Y (=] (o <T T P 14

Architectural descriptions treabftware systems as compositions of componentey fo-

cus onthe components|eaving the description of interactions among these components
implicit, distributed, and difficult to identify. If the interfaces to the components are explicit,
they usually consist of import/export lists of procedures and data. Interaatesgressed
implicitly throughinclude files orimport andexport statements, together with the
documentation that accompaniegious libraries. This view of softwasgchitectureorga-
nizes information arounthe components anignoresthe significance of interactions and
connections among the modules.

This paper begins by discussing thmitations of the conventional approachdgstem con-
figuration. It then argues that designers must attend as carefully to connectionscameng
ponents as tthe componentthemselves. It closes by proposinghadel ofsystemcom-
position in which connectors are first-class entities along @othponents.Section 1sum-
marizes current practice and Section 2 describes some of the resulting difficulties. Section 3
gives a fresh view of system configuration and Section 4 sketches a langsageddthat

view.

1. Current practice

When a designer writes a paper about a software system, the first section often includes a di-
agram and &ew paragraphs dext labeled thésoftware architecture.”The textrefers in-
formally to common software notions such as pipelicBsnt-server relations, interpreters,
message-passing systeragd eventandlers. The diagram usuallgonsists of boxes and

lines, but the semantics of the graphic elements varies substaftatlyone figure to an-

other [5]. Figure 1 is typical of these figures. It depicts a sequence of three processing steps
in which the second step also uses faalystract datdypes andcommunicates irvarious

ways with asatellite, an interactivevorkstation, and a databas&he componentdepicted

in the diagram may have substructure, ddtimately the implementations of tlm®mponents

must be written in conventional programming languages.

¢
e

0= 0]

]

Figure 1: Typical box-and-line depiction of a software architecture

Sometimes components haseplicit interfacedefinitions. Thesalefine the externadtruc-
ture of the components. They usually consist of lists of procedexpsyted data, and per-

Shaw: Procedure Calls are the Assembly Language of Module Interconnectionl

haps types, exceptions, et&da’s specification parts andC’s .h files are examples
of such interface definitions. Interfaces do not aggregate these detailled¢bthe more ab-
stract relations they implement. The specifications of functionalitgnyf, are generally
written in prose; formal specificatiortkat provide detailsbeyond type and signature are
relatively rare.

In these conventional designs, all modules have eqatls. Thatis, they are undifferenti-

ated collections oprocedures, datand other constructs dhe underlying programming
language. Nothing analogous to a type system indicates that a module has special properties,
discriminates among differelkinds of modules, ordentifies specifickinds of analysis
available. In the associated implementatiomgort andexport statements ireach

module establish the dependencies amoogules. InAda these areuses clauses; in C

they arancludes . Specific associations, for example between a procedure definition and

its call, rely on matching the names at the definition and use sites.

The modeldgmplicit in designersiarchitecturaldescriptions (bothext and diagrams) do not
match the actual realization of these models in cotlehitecturalmodels areich, abstract,
spontaneous, and almost wholly informal. Howetsg, implementatiofanguagesinclud-
ing module interconnectiomanguages,are rigorous, precisely defined, andlimited in
expressiveness to the constructs of the underlying programming language.

As a result of these mismatchéise code fails to captuesigners’ intentionfor the soft-

ware explicitly and accurately and precise design documentation does not persisiinmés

nance. This impedasmmediate checkingnd future guidanctr development andhainte-

nance activities. Even insofar as the code actually captures parts of the design, it does so in a
highly distributedfashion,and it is hard for aeader to get a system-lewaVerview. The

need to address abstractions for system configuratibecisming widely recognizef@, 5,

6, 9, 10].

2. Problems with current practice

Current practice in architectural, @ystem-level, design focuses on components. For a
system to work well, howevethe relations amongomponents, oconnectorsrequire as
much design and development attention as the components.

Connectors are less obviously objects of design than are compoAdetsall, the connec-

tors often do not have code—hence identity—of tlesim. They may be realized idis-
tributed fashion by aariety of system mechanisms. Indeed, syst@echanismsuch as
common scheduling and synchronization policies oratralable communicationsrotocols

may constrain the designers’ choices. Manthefproblems with current techniqués ar-
chitectural definition revolve around inadequacies of the mechanisms for defining component
interconnection.

This section reviews some of the problems with the conventional approach of embedding the
interactions among components within the components.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection2

2.1. Inability to localize information about interactions

Most current module interconnectitechniques, including programming languagesh as
Ada, depend on import and export commands lodgeldeirtode modules of theystem [4,
7]. A link editor then connects the components by matching the names of exported and im-
ported constructs, possibly witluidance fronthe import andexport statements about
the scope of names. This has three major problems
» Forced agreement in spellingfhe importer must use the same name aexperter. In

at least on€ase, dreusable” librarywas not usable because its names conflicted with
existing names of a system.

 Dispersion of structural informationAn import/export strategy distributes structural in-
formation throughout the system. This hides the system structure and impedes reuse by
creating embedded references to other components.

» Forced asymmetry of interactionThe import/export modedssumessymmetrical rela-
tions—there must be an owner andser, or anaster and alave, or a sourcand a
destination. Although many interactions are binary and asymmetricalll aog: peer-
to-peer communication is symmetrical, client-server relations can rhaitple com-
ponents in each role.

Current practice is also unableltzalize the relatedbstractions.There is no natural home
for the definitions that govern a class of interactions. Interacti@aovided and defined
by the operatingsystem,the programmindanguage, subroutine librariesmbedded lan-
guagesand ad hoc user-defined mechanisms. Gilgggtimate, uniform status to defini-
tions of interactions would improve system understanding and analysis.

2.2. Poor abstractions

Boxes, lines,and adjacencylon’t have consistentneaningacross system structuidia-
grams. They usually represent abstract interactions rather than the procedure caldaand
declarations of theode. Practicalsystemshave quite sophisticatedles about component
interaction andshared representations. Existidgfinition mechanisms don'’t allow those
design decisions to be captured in the code, so they can’t be exploited for anatyaister
nance. The abstractions are hidden for several reasons:

* Inability to associate related elements and name the clugtemodule interface may ex-

port a large number of named element8part from comments—which have no

force—there is n@ood way todeclare that set of these elements behaves a®a@r-
dinated group. Further, there is no way to name the cluster for reference as a whole.

* Inability to specify relations among related elemenibe ordering and state consistency
requirements among a coherent set of calls are usually implidiis is almost in-
evitable, for there is no logical place to state them.

* Inability to specifyaggregateproperties of a collection of element&ven without ex-
plicit names, practical systems have quite sophisticated rules about protocols and shared
representations. Individual procedure aath elemenspecificationdocalizeinforma-
tion and are not adequate to express these relations.

In Figure 1, shapes help theader differentiate among differéanhds of componentsven
though the programming language and module interconnection language rsappmt the
distinctions. Howeverall the connections inthat figure are represented in the same

Shaw: Procedure Calls are the Assembly Language of Module Interconnection3

way—assimplelines. Figure 2 shows amproveddrawing, withdifferent line textures
denoting different kinds of interactions.

Designers haveabstract, sophisticated intentiofier the relations amongomponents.
However,they have no reasonabhMay to capture theselesign intentions as jgermanent
part of thesoftware. Evenworse, the abstract relations are almasivaysrealized as se-
guences of procedure calls embedded in modutesse ostensibléunction is something
entirely different. Usuabpracticedoes notidentify the abstracfunctions ofthe procedure
calls, nor does it explain the rules about required order of operations.

Real-time :(
communication/

Pipe Pipe

Database
access

X Wmdows/
Ho=¥

Figure 2: Revised architecture diagram with discrimination among connections

2.3. Lack of structure on interface definitions

As notedabove, wdack awidely-used notatiotior structuringinterface definitions sthat

they cluster cohererstubsets of operations. pwactice,though, amodule is likely to have
interfacesfor one ormoresets ofprimary users(to provide the oversystem function) and
additional special operations for such speagds asudittrails, monthly reports,executive

control (setpoints or systemuning), systeminitialization, monitoring, anddebugging.
Monolithic interfaces can neither clarify nor enforce these distinctions.

Two levels of structure and abstraction are missing:
» Abstractionsfor connections: aggregation of primitive import/exports smow the in-
tended abstract function of the connection.

» Segmentation ointerfaces: decomposition of an interface intoore-or-less conven-
tional segments corresponding to differgmbups of users adifferent classes of func-
tionality; each of these may involve several abstract connections.

2.4. Mixed concerns in programming language specification

Programming languages were designed to describe algorithmic operations oftdagtaare
very good at defininglatastructures and algorithimbat operate omhosedatastructures.
Extensions allovthem todescribe computationatructures such as concurrendyey are
not particularly good at describing reliability, absolute time, andrety of extra-functional
properties. Noiare theygood at definingnteractions among other modulést are more
abstract than procedure calls and shared data.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection4

Two problems result. Firsgll interactions not directigupported bythe programming lan-
guage must be encoded as sequences of procedllse Second, constructs for system
composition have been grafted onto programnigmguages, with lesthan idealresults
(e.g.,private parts of Ada).

The concerns ofarchitecturaldesignare notwith algorithms andlatastructures, butather

with system topology, assignment adpability tocomponentsinteractions among compo-
nents,and performance characteristics. Therefore it is unrealistic to expect conventional
programming languages to serve. Much of the current awkwardness seems to arise from at-
tempts to add capabilities to conventional programming langubgestretch thentbeyond

their design limits.

2.5. Poor support for components with incompatible packaging

When multiple components are reused—for example from different libraries—their interfaces
do not always mestvell, even if their computational capabilities are substantially compati-
ble. For example,
» If a component is cast as a filtercén’'t beused as procedudgecause idoesl/O to
pipes instead of through procedure parameters.
» If a component is cast interactively, it often can't be called by another program.

 If semantics are suitable but packaging detailsh amnameand parameteorder differ,
the user must write ad hoc conversions.

Something akin to typing is going on here:use a component, yaweed toknow not only

what it computes but also how it delivergat computation. In many of thesasesthe in-
compatibilities can be overcome by introducing mediatioas accommodate discrepancies
between the protocol expected by the component and the protocol requested by the designer.

2.6. Poor support for multi-language or multi-paradigm systems

The connection between components is substantially independent of the programming lan-
guages of the components. For example, this is usialgasevhenthe components run

as separate processes. Connectors that maitkally in these casé@sclude unixpipes and

many message systems.

In othercasesthe connection between componedependsdirectly on the programming
language. This is often the case when components share assumptions about runtime systems
such as representations of data types.

The conditions under which components in different languages can interact mdetailed
in such a waythat asystem development tochn tellwhich connectionsare allowable,
which can be mediated, and which cannot be supported.

Furthermore, tooldntended tosupport onearchitectural paradigm—object management
tools, unix shell—offer little assistance in creating a sydteath mixes different architectural
idioms.

2.7. Poor support for legacy systems

Most softwaredevelopmentow involvesmodification of existingsystems. Most of these
systemsevolved without configuration tools any more sophisticatiean, say, make.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection5

Syntactic tools make it possible to extract $lgnatures—the names and typesngborted
and exported entities. However, they offer no help in recovénmdnigher-level intentions
such as which set of procedures collectively implements a given abstract prd@wenlhalf

of systemmaintenanceffort goesinto deciphering whathe softwarealreadydoes, so the
inability to record and retain thgesigner'shigher-level intentions about component interac-
tions is a major cost generator.

3. A fresh view of software system composition

Systemsare composed fromdentifiable components ofarious distinctypes.The compo-
nents interact in identifiable, distinct way§&omponentsoughly correspond toompilation
units of conventional programminignguages. Connectorsmediate interactions among
componentsthatis, they establish theulesthatgovern componeninteraction and specify
any auxiliary mechanism required. Connectors do ngemeralcorrespondndividually to
compilation units; they manifest themselves as table entries, instructions to adymieenic
datastructures, system callsinitialization parameters, servethat supportmultiple inde-
pendent connections, and the like.

It is helpful to think of the connector as defining a setotds that specific named entities of
the components muptay.

Software systems thus comprise two kinds of distidettifiable entitiescomponentand
connectors
» Componentsare thelocus of computation anstate. Each componerttas aninterface
specificationthat defines its properties.These properties include trggnatures and
functionality of its resources together with global relations, performpraggerties, etc.
Each is ofsome type or subtypge.g., filter, memory, server). The specific named
entities visible in the interface of a component arplégers

» Connectorsare the locus of relations among components. Timegiate interactions but
are not “things” to be hooked up (they are, rather, the hookersHgzh connector has
aprotocol specificatiorthat defines itproperties. These properties includeles about
the types of interfaces it &ble to mediatéor, assuranceabout properties of the inter-
action, rules about the order in which things happed, commitments about the inter-
actionsuch as ordering, performance, et€ach is ofsome type or subtyp@.g., re-
mote procedure call, pipelinbroadcast, event)The specific named entities visible in
the protocol of a connector ar@esto be satisfied (e.g., client, server).

Components may be either primitive or composite. Primitive components are usually code in
the conventional programming language yolur choice. Composite componersfine
configurations in a notation independent of conventional programiaamgages. This no-
tation must be able to identify the constituent components@maectorsmatch the connec-

tion points of components with roles odnnectors, an@dheck that theesulting composi-

tions satisfythe specifications oboth the components’ interfaces antthe connectors’
protocols.

Similarly, connectorgnay be either primitive ocomposite. They are of many different

kinds: sharedlatarepresentationsemote procedurealls, dataflow, document exchange

standards, standardized network protocols. The s@hinough to require a taxonomy to
show relations among similakinds of connectors.Primitive connectors may binple-

Shaw: Procedure Calls are the Assembly Language of Module Interconnection6

mented in a number of ways: lsilt-in mechanisms of programming langua¢esy., pro-
cedure calls associated by a linker); as system functions of the operating systaser(@imy.,
kinds of message passing); ldgary code in conventional programming languaesy.,
X/Motif); as shareddata(e.g., FortranCOMMO®BF Jovial COMPOQLas entries in task or
routing tables; as a combination of librgsgocedures and a single independaaicess for
the connectole.g., certainkinds of communication services); as interchange formats for
static datge.g., RTF); asinitialization parameterée.g., process priority in aeal-time op-
eratingsystem) and probably in\ariety of otherways. Compositesmay also appear in
these diverse forms; we need (but do not yet have) ways to define them, as well.

Connectors are properly treated separately from components because:

» Connectorsmay bequite sophisticatedrequiring elaborate definitions and complex
specifications that deserve their own homes. In many cases, no single component is the
appropriate location for a protocol specification.

» The definition of a connector should be localizddst as goodhethodology requires a
single locatiorfor the definition of acomponent, good methodology requiresimgle
location for the definition of an interaction. Thispports both desigfespecially anal-
ysis during design) and maintenandeurther,connectors can be riddnough fortheir
definitions to deserve their own homes.

* Someinformation about thesystem doesot have goroper home in anycomponent.
For example, in a real-time system it may be appropitatéasks todeclare theineeds
and for a separate scheduler to satisfy them.

» Connectorsare potentially abstract. They may be parameterizable. They may define
classes of interactions that require additional scripting at the time of instantibitsams
may wish to define their own connectorsptake theirown specializations, aéxisting
connectors, or to compodsieeir own connectors. Aingle connector may be instanti-
ated multiple times in a single systefor example, anulticast capability couldupport
many distinct sets of communicating processes.

» Connectorsmay require distributed systemsupport. The mechanism required by a
connector is not alwaylecalized to individuauses. Foexample, a message passing
system may require exactly one server per processor for any nundmnmiinicating
processes.

» Components should be independefite interface specification of a componshbuld
provide acomplete specification of the capabilities of that compobahtremain silent
on how it is actually used.

» Connectorsshould be independentA single (high-level) connector mighmhediate
relationsfor a dynamically changing set @omponents.Wiederhold describesuch a
scheme [11].

* Relations among components are not fixddcomponent may be capable of beusgd
differently by different kinds of connectors. For examplelient might be indifferent
to whether its server is dedicated, shared, or distributed. In addition, sy®tesctiv-
ity can change dynamically.

System compositions quite frequently reuse patterns of composition; some of these patterns
are commonlyunderstood, ateast intuitively: pipeffilter, client/server, layeresl/stem,
blackboard. These common idiorran be defined as generic pattettmet restrict theypes

of components and connectors to be used and de$mbéhe pattern is implementd8].

This may involve constraining the topologies of interconnection. Current module interconn-
ection languages are wholly inadequate to this task for reasons elaborated in Section 2.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection?

4. An architectural language with first-class connectors

Software system composition involves different tasks from writing modihlesystem de-

signer defines roles and relationships rather than algorithmdagastructures. These con-

cerns are sufficiently different to require separate languages. The architectural language must
support system configuratiomdependence of entities (heneisability), abstraction, and
analysis of properties ranging from functionality to security and reliability [9]. The design of
such a language is not straightforward. In addition to having a syntax, it must:

» Define semantics for connectors and their compositions.

* Generalize the import/exportules to address asymmetrynultiplicity, locality,
abstraction, and naming.

» Establish type structurder system organizations, components, connectors, and the
primitive units of association of thesdementsihis includes defining taxonomies for
the types.

» Set out appropriate rules for architectural abstractions.
This section contains some initial notes on these language design problems.

4.1. Language structure

As suggested abovi#he languageneeds separate (bparallel) constructs for components

and connectors. It must provide notations for composition and a set of primitives (including
primitives defined in conventional programmitegnguages). For simplicitghe constructs

for components and connectaan besimilar. Figure 3 suggestke essential character of

the language. Each construct is typed. It has a specification part and an implemgatation
The specification part defines specific units of association to be used in system composition.

Element Component Connector
o / I
Specification Interface Protocol
Type Component Type Connector Typ e
Unit of association Player Role
Implementation klmplementation J Implementation
o

Figure 3: Gross structure of an architecture language

It is sometimes useful teay explicitly that an element is primitivéhis meanghat it is not
further defined at the architectulevel but is implemented in a programming language or
with system-level mechanisms.

For a nonprimitive element, theplementation partonsists of a parts listomposition in-
structions, and related specifications. This establiskgltcit associations and specification
matches, thereby breaking free of name matching as the sole means of making connections.

The specificationshould be‘open” with respect to construction and analysisls. Many
different approaches asailablefor specifying and verifying system propertiesirterest;
the languages should be able to accept those as unintegxptedsions aniteractappro-
priately with the specialized tools.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection8

4.2. Connectors and their semantics

Most programming languages support some sort of intermodule connection. It aspally
ports only the primitive units of association othe language, such as procedure calls.
Making the connectorfirst-class requires careful analysis alf the roles these constructs
play in the definition of a system.

A connector mediates the interaction of two or mmmponents. It is not igeneral imple-

mented as a single unit of code to be composed. The previous section describes a number of
the implementation possibilities. Whatever the implementation of a connector (especially an
abstract one)detail about the implementation technique is encapsulatezhthe connector

Is used. Moreovemany orall connectors of the same type mslyarethe same code or

data. Allen is investigating formal specifications of the semantics of certéasses of
connectors [1].

Like components, connectors require specifications. Specificdtortonnectorsare called
protocols Since protocols can be of many differkimds, languages shouldllow for flex-

ible specifications. One possibility is heavyuse of propertyists, with some standard at-
tributes and some attributes specific to particular connector types. This allows for properties
as diverse as:

» guarantees about delivery of packets in a communication system
 ordering restrictions on events using traces or path expressions

* incremental production/consumption rules about pipelines

« distinguishing between the roles of clients and servers

» parameter matching and binding rules for conventional procedure calls

* restrictions on parameter types that can be used for remote procedure calls

Primitive connectors include at least tbheesdirectly supported bythe programming lan-
guage or operating system. Thesetainly include the proceducall anddataaccessors of
each programming language; they also include language-specific process intesactions
the Adarendezvous . Careful attention to the roles involved in primitive connecstisw

the need tsupportasymmetry: a proceduteas adefiner andmultiple callers; datdas an
owner and multiple users. On the other handsetainclasses otventsystemsall entities

are equally entitled to generaiad recognizevents, so it is also necessarydfine sym-

metric roles in a protocol. The usual import/export or provides/requiredation is too
restrictive.

The simplest kind of abstract connector is binary (its protocol hasales, forexample de-
finer anduser). Some of thesare direct analogs of tHanguage-supported connectors,
such as procedure call. #&te architecture level the relationaien moreabstract. For ex-
ample, it may be desirable to sepafaben the definition of a procedure the decision about
whether it is to be a local or remote procedure call.

N-ary connectors that involvaultiple components aralso important. Thesaay besym-
metrical, withall connected components playing the same (®@Ig., multicast). They may
(probably more commonly) be asymmetrical, with different roles for different components or
sets of components (e.g., client-server systems).

Shaw: Procedure Calls are the Assembly Language of Module Interconnection9

Connectors are often implemented as sets of procedures. A set of procedures frequently has
an associated set of rules or assumptions abowtthe procedures will baised. These

rules are often highly implicit. They may restrict the order in which procedueesalled or
require relations among parametatues. These rules amount to protocéts the interac-

tion. For examplethe operations of an abstratdta type areised as &dundle; they often

have order restrictions such ‘@gtialize must becalledbefore anything elsggush must be
called at least asften aspop.” Explicit restrictions may bexpressed in variousays, as

path expressions or traces for execution order restrictions. Although it's not conventional, it
is useful to think of abstract data types as having a protoatduidesthe use ofthe opera-

tions. This not only captures essentials sucexasution order restrictions but also decou-
plesthe selection of the abstract tyfrem the selection of an implementatiohis is not

unlike Larch’s separation between abstract properties and actual implementations.

Figure 4 suggests the protocols required to constinectystem of Figures 1 and ZThese
protocols should exist as independent definitionthéncomputingenvironment. They may

take parameters (including partial specificaticas)l maysupportseveralvariants. When

they areused,additional specifications may be needed to specialize the protocol or select a
particular form.

Pipeline Comm User Int Database
Protocol X Protocol X Protocol X Protocol X

/ ; =" %

ADT Spec ADT Spec ADT Spec ADT Spec

Gorp Thud Foo Baz

Figure 4: Constellation of protocol specifications required by example

Figure 5 shows some of the information that should llearinterface of the central compo-

nent of Figures 1 and 2. This syntax is suggestive rather than definitive. Annotations on the
left side show correspondences to the line styles of the diagram. Each of the nine lines of the
interface describes an interaction with some other component.

/Central \

pipe in A ... <spec> ...

pipe outB ... <spec> ...

data link C protocol X ... <spec> ...
Xwindow D typescript

uses ADT {E1,E2,E3} spec Gorp

uses ADT {F1,F2} spec Thud

uses ADT {G1,G2,G3} spec Foo

uses ADT {H1,H2,H3} spec Baz

_ accesses DB {Q1,0Q2,Q3,Q4} protocol Y/

Wl

Figure 5: Interface specification of central component, referring to protocols

Shaw: Procedure Calls are the Assembly Language of Module Interconnection10

Note that in several cases the normal notion of exporting some resources and importing oth-
ers does not apply well. For the pipes, additional specificationsthmitype of information
passing through the pipe. Similarlyc@ammunication protocol may require additiospkec-
ifications. The four abstract data types ateof thesame general category of protocols; the
bracketed names are the namesmMbych the central component witall designated opera-

tions of the four types.

4.3. Architectural type structures

A problem akin to type checking arises at three points in an architeletogalage. Two ap-
pear in the precedindiscussionthe types of components and of connectors. As with any
type system, these express the designetesnt abouthow to usethe elemenproperly. To

be useful, they must also have some enforcement power.

Architectural types describe expected capabilities. Theyirodrthe legitimateways to use
the construct. They can abbreviate restrictions on what can appearcongteict’s specifi-
cation. Examination of real systems shows that type hierarchies sbthareuseful. For
example, there are many kinds of memories (components) andkimaisyof eventsystems
(connectors).Defining typestructures forthese elements requires creation of taxonomies
that catalog and structure the type variations.

The third place where something like type checlshgws up is ahe actuapoint of asso-
ciating playersof components witholes of connectors.Each of the named entities in the
interfaces(of components) and protocols (of connectors) rhase enough type and other
specification to check on whether the connector defingibmvs the components to be as-
sociated as requested.

Because of the need to reuse components and connectors in settings that aren’dikeyuite
it is important to deateasonably with associatiotisat don’t quite match. A verycommon
example is thaise of a unixpipe tosenddata to dile. The definition of aunix filter will
probably say it'sntended to interaatith other filters througtpipes. However, it isften
(but not always) well-defined to substitute a file (passive component) for a(dittiare com-
ponent). The languagenust provide a way tdefine and contrgbossible fix-ups, for ex-
ample by supporting rules of the flavdhis pipe will accept &le in the role of filterunder
the following circumstances ...”. Some of the interesting alternatives include:

» Associate anyhow: it will work without extra effort (some subtype relations).
* Rearrange or reformat information (data re-formatters [2], parameter re-mappers [8]).

» Wrap the component in a converter (a procedure wrdppexfilter would feed the in-
put parameters to the input pipe of the filter aotlect theresult fromthe output pipe
for delivery as a single value).

» Convert data to and from a shared form (interchange format).

» Convert data of one component to the form expected by another (paiomipatibility;
common message format, but data may need to be interpreted).

* Insert conversion module (buffer).
e Just say no.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection11

The history of type coercion in conventional programming languégssecially PL/I)pro-
vides convincingevidence thathis capability must remain firmly under control of the
software designer at all times.

A special case of compatibility checking and enforceraeises when componerdse writ-
ten in different programming languages. The difficulty of accomplishing this depends on the
extent of the shared assumptions between the components.
» Sometimes there is no problem: One common easydase two languages share run-
time systems with common runtime representations, procedureand protocols

(Fortran/Snobol). A second common case is explicit, loosely-coupled interactions (unix
pipes with ASCII streams).

» Sometimes the problem can be resolved with mediation as described above.

* Sometimes an external representation stand@dF, PICT, SYLK) or an inter-lan-
guage procedure call can serve as a cross-language connector.

» Sometimes it's simply too hard (languages with essentially different assumptions: rule-
based; static imperative; dynamic).
4.4 . Abstractions for higher-level connectors

The discussion so far hasentioned many different higher-levannectors. These include
client/server relationgnessagesgventhandlers multicast communication, radio communi-
cation links, unix pipes, shared dait@geractionthroughX/Motif or SQL scripts, hierarchi-
cal layers,and blackboards.The example oFigures 1 and 2night be instantiated with
SQL, X/Motif, variousdataabstractions with usage restrictions, upiges,and radiodata
links. The softwaredevelopment environmestould providghe most common othese,
either as part of the programmitanguage, as basic operating system capability, pads
of the infrastructure (SQL, X/Motif). Protocols for thiaseline collectioshould beprimi-
tive to the architecturdhnguage. It istill unclear exacthyhow todefine the association of
procedure calls with abstract protocols precisely, and the semantics of abstract connectors are
also an open question at this timeowever, it isclear thatconnectors have interesting in-
ternal structure, much as unix pipes contain buffers.

As discussed in section 2.3, component interfaces often have several distinct segments in or-
der to establish different kinds of relations. Often these will have corresponding protocols.

An architectural languagmust support not onlyndividual abstractconnectors, but also
high-level compositions that involve a number of connectors in specific relations to one an-
other. For exampldhe languagenust becapable of capturing the high-level architectural
idioms such as blackboards, interpreters, and vadousain-specific architectures as ab-
stractions. | conjecture that non-primitive connectors are the appropagteo do this, but

it isn’t yet demonstrated.

5. The promise of explicit architectural notations

What makes theonstruction of composabtystemddifferent from conventional program-
ming? First, composing a system from subsystemsintike programming the algorithms
anddatastructureghat lie within the primitive subsystemsThe semantics of the compo-
nents, the locality of reasoning, the character of interaction with other compdhemtsyp-
erties of interest, and the nature of the reasoaragalldifferent. Second, ware liberating

Shaw: Procedure Calls are the Assembly Language of Module Interconnection12

ourselves from thinking of the task as merely “programming”. We are not merely building a
program that receives inputs, executes, and terminates—we are building athgstess an
enduring existence in some largamvironment. Third, our units ohanipulation are not
simply conventional modules (which might export data, procedaresperhapsasks), but
rather components and connectors.

Identifying connectors as first-class entities in a systamhelp to break us out of tpeo-
gramming-language mindblock for system composition languagggimizing higher-level
interactions among components allows us to understengrocedureall asone—perhaps
the primary—primitive connector gfairs of modules.More significantly, it allows us to
recognize higher-level connectors @gtical to system design. We mularn tosupport
higher-level connectors—composite components and conneetoose properties, ex-
pressed intheir interface and protocospecifications,are as understandable #seir
constituents.

The view proposed in Sections 3 and 4 addresses the problems identified in Section 2.
It specifically provides for localizing information about interactions: Nonprimitive
components can invoke rich relations, and they concentrate structural information.
* Itintroduces abstractions forteractions angbrovides a starting poirfor user-defined
abstractions and aggregations.

« It partially addresses the interface structure problemdiyg the roles of connectors to
identify related operations ptayers

* It separates architecturabncerns from programming concerns by providing different
language constructs with different semantics.

» It makesprovisions for atype-checking systenthat can adapt to mildnismatches,
thereby enhancing opportunities for reuse.

* It clarifies the conditions under which programming languages can be mixed.

* It offers prospects for improved supportlefacysystems bymaking the architectural
design of the system explicit.

The principleduse ofcompositional structureshould have a dramatic effect ogsoftware
production. It should permit the choice of design paradignmsatichdesired systensharac-
teristics. It shouldallow the development of application-speciframeworks andeference
architectures. It should providke basis forexploiting compositional properties ef/stems
for formal analysis,code generation, argbftware reuse. It should supporhigh level of
visible abstraction for systems designerghsi largesystemscan be more easilgesigned,
understood, maintained and enhanced. It shenddle us to better accommodal@ code
by providing ways to recover partial architectural information from existing systems.

Acknowledgments

These ideas have been evolving over a period of several years. They have been substantially
sharpened and worked out in discussion with David Garlantbegrast twoyears. Daniel

Klein implemented thérst prototype ofthe base language, Grefglesnik is extending the
prototype, and Rob DeLine’s critique stimulated clarification oftémminology. The CMU

Software Architecture Readin@roup has provideslaluable feedback both alrafts of the

paper and on the underlying ideas.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection13

References
[1] Robert Allen and David GarlanFormalizing Architectural Connection. Pro&ixteenth
International Conference on Software Engineeyith§94.

[2] Brian Beach. Connecting Software Componenith DeclarativeGlue. Proc. Fourteenth
International Conference on Software Engineerit§92.

[3] Barry W. Boehm andWilliam L. Scherlis. Megaprogramming. Proc. DARPA Software
Technology Conference 1992, pp. 63-82.

[4] Frank DeRemer and Hans H. KrorProgramming-in-the-largeversusProgramming-in-
the-small. IEEE Transactions on Software Engineerir8E-2(2):80-86, June 1976.

[5] David Garlan and Mary ShawAn Introduction to Software Architecturdn V. Ambriola
and G. Tortora (eds), Advances in Softwd&gagineering and Knowledgdngineering,
Volume |, World Scientific Publishing Company, 1993.

[6] Dewayne E. Perry and Alexander MWolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT SoftwarEngineeringNotes vol 17, no 4, Octobet992, pp.
40-52.

[71 R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languabmsnal of
Systems and Softwawel 6, no 4, November 1986, pp. 307-334.

[8] James Purtilo and Joanne Atlee. Module Reuse by Interface Adaptdbioftware:
Practice and Experien¢e1(6): 539-556, June 1991.

[9] Mary Shawand David Garlan. Characteristics of Higher-Levelanguagesfor Software
Architecture Unpublished manuscript, 1993.

[10] Gio Wiederhold, Peter Wegner, and Stefano Cé&oward Megaprogramming Stanford
University Technical Report STAN-CS-90-1341, 1990.

[11] Gio Wiederhold. Mediators in the Architecture of Futunéormation Systems. IEEE
Computer 25(3):38-49, March 1992.

Shaw: Procedure Calls are the Assembly Language of Module Interconnection14

Change History
Fixed up TR format 12/22/93, afternoon
Convert to TR format 12/21/93, morning
Fix refs Dec 20, afternoon; sent LNCS version to David Lamb
Tighten prose, Dec 17, evening
Clean up figures Dec 16, 1993 afternoon
Acitvate passive voice Dec 16, 1993 morning
Tighten early prose Dec 15, 1993
Purge obsolete vocabulary; rewrite locally for sensibility. Dec 6, 1993.
Convert to Lamb format Oct 31, 1993

Add text for some finish-up notes; make quote marks pretty; remove SteambemB:40
AM March 31, 1993

Finish rewrite 11:20 PM March 30, 1993

Convert to David Lamb's format 3:30 PM March 30, 1993

Overall fresh pass on prose 9:30 PM March 29, 1993

Added gobs of notes from DSSA/Prototech meeting 9:28 AM Jan 14, 1993
Finish rewrite, spell check 11:23 PM Jan 7, 1993

Extensive rewrite of second half, with new figures 6:15 PM Jan 7, 1993
Continue smoothing and fleshing out prose 8:55 AM Jan 7, 1993

Rework prose, reformat, resize pictures 9:47 PM Jan 6, 1993

Converted to Word 8:15 AM Sep 1 1992

Rework language elements section 8:10 AM Sep 1, 1992

Pick up characterization from msg to Jeannette; flesh out problems 1:20 AM Sep 1, 1992
Add detail, figures 7:30 PM Aug 31, 1992

Restate point of view 5:30 PM Aug 30, 1992

Emphasized abstract protocols, spell ck 3:20 PM Aug 16, 1992

Expanded outline, started prose conversion 11:53 AM Aug 16, 1992
Expand outline and add detail 11:34 AM Aug 15, 1992

Add Flesh 10:15 AM Aug 14, 1992
Created 9:00 AM Aug 12, 1992

Shaw: Procedure Calls are the Assembly Language of Module Interconnection15

