Proceedings of the 21st International Conference on Software Engineering, IEEE Computer Society, 1999, pp. 97-106

Avoiding Packaging Mismatch with Flexible Packaging

Robert DeLine
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh PA 15213
412-268-2582
rdeline@cs.cmu.edu

abstract

To integrate a software component into a system, it must
interact properly with the system's other components.
Unfortunately, the decisions about how a component is to
interact with other components are typically committed
long before the moment of integration and are difficult to
change. This paper introduces the Flexible Packaging
method, which allows a component developer to defer
some decisions about component interaction until sys-
tem integration time. The method divides the compo-
nent's source into two pieces: the ware, which
encapsulates the component's functionality; and the
packager, which encapsulates the details of interaction.
Both the ware and the packager are independently reus-
able. A ware, as a reusable part, allows a given piece of
functionality to be employed in systems in different
architectural styles. A packager, as a reusable part, encap-
sulates conformance to a component standard, like an
ActiveX control or an odbc database accessor. Because
the packager’s source code is often formulaic, a tool is
provided to generate the packager's source from a high-
level description of the intended interaction, a descrip-
tion written in the architectural description language
UniCon. The method and tools are evaluated with two
case studies, an image viewer and a database updater.

1 introduction
In order to reuse a software component, not only must a
developer consider what the component computes, but
also how it makes that computation available to other
components. A component that expects to interact with
other components through procedure calls, for example,
is difficult to reuse in a system where components interact
by exchanging messages, or by raising and listening for
events, or by accessing data in shared memory. The
assumptions a component makes about how it interacts
with other components constitutes its packaging. Today,
reusing a component in a new system requires attention
to both its functionality and its packaging.

The motivation for selecting a component for reuse is

typically its functionality. Often the only preference a
developer has about packaging is that it be appropriate to
the system in which the component is to be integrated. A
Windows developer, for example, will shop for an
ActiveX control with the desired functionality for his
application, whereas a Unix developer will look for a fil-
ter. Today’s off-the-shelf components come prepackaged:
decisions about the component’s packaging are made at
development time, before the component is made avail-
able for reuse. When the packaging decisions encapsu-
lated in a reused component are unsuitable in the context
of a new system, the condition is called packaging mis-
match [6][12].

When packaging mismatch occurs, the system integra-
tor must undo or circumvent the unsuitable packaging
decisions, which is often an expensive proposition. In the
source code of a conventional software component, the
code that accomplishes the interactions tends to be inter-
spersed with the code that accomplishes the component’s
functionality. This makes it difficult to identify the code
related to packaging. When changing the source code is
infeasible or overly expensive, the system integrator typi-
cally overcomes packaging mismatch by introducing
“glue code” in the form of wrappers or mediators [10].
For example, if a component packaged to interact
through procedure calls is to be used in an event-based
system, the system integrator might place a wrapper
around the component that receives events and that
makes the appropriate procedure calls on the wrapped
component. This glue code becomes another part of the
system to test and maintain.

The heart of the packaging mismatch problem is that
engineering decisions are being made too early, when too
little of the relevant information is known —a violation of
Parnas’ widely accepted information hiding principle
[11]. Since packaging decisions are largely about system
integration, they should be deferred until the information
about the integration context is known. This paper intro-
duces a method, called Flexible Packaging, for structuring
a software component’s source code to defer decisions
about interaction until integration time. Of course, not
all decisions about interaction can be deferred: a compo-
nent’s functionality cannot be expressed without men-
tioning some aspects of interaction. Flexible Packaging
provides a mechanism for specifying those aspects of
interaction that are essential to the functionality, while

@)

for each student S (b)
total =0
count=0
for each score s of student S
total = total +s
count=count+1
report S’s mean is total/count

#define cellref(C,R) (sprintf(cell, "%c%d", C, R), cell)

void main(int argc, char** argv) {
_ApplicationPtr app;
_WorksheetPtr sheet;
char cell[10], col; float total; int row, count;

app.Createlnstance(L"Excel.Application.8");
app - Visible = VARIANT_TRUE;

sheet = app - Workbooks - Open(argv[1]) — ActiveSheet;
for (row=2; sheet - Range[cellref('A’, row)] - Value.vt I= 0; row++) {
total = 0.0; count =0;
for (col="B'; sheet - Range[cellref(col, row)] - Value.vt = 0; col++) {
_bstr_t value = (_bstr_t)sheet — Range[cell] - Value;
total += atof((char*)value); count++; |

sheet - Range[cellref(col, row)] - Value = total/count; |

app - Quit();
}
() name: John Smith d) %{
id: 123456789 float total;
score 1: 86.0 int count;
score 2:90.5 char* name;
score 3:88.0 1%

name: Sally Jones
id: 987654321

%token STRING
%token NL /* newline */

score 1: 92.0
score 2:91.0 %token INT
score 3:80.0 %token FLOAT

%%

start: student start | student ;

student: name id scores { printf("%s %f\n", name, total/count); } ;

name: "name" ":" STRING NL { name = $3; total = 0.0; count =0;} ;

id: "id:"INTNL;

SCOres:score scores | score;

score:"score” INT ":" FLOAT NL {total +=$4; count++;}; |

%%

main() { yyparse(); }

Figure 1. The source code for a component that computes the means of students’ scores, when implemented (a)
in pseudocode, (b) as a spreadsheet update, and (d) as a filter that processes records formatted like those in (c).

deferring the incidental details.

As one would expect, every component cannot be
packaged in every way; the fact that the functional and
interactive concerns can be separated does not imply that
arbitrary mix-and-match between them is feasible [5].
This paper focuses on the mechanism that achieves the
separation between these concerns. Describing abstract
patterns of interaction based on this mechanism, which
would allow compatibility checks between the function-
ality and packaging, is the next phase of the research.

The remainder of this paper discusses Flexible Packag-
ing in more detail. Section 2 uses a simple example to
contrast the current practice of packaging components
with Flexible Packaging. Section 3 explains the technol-
ogy and tools behind Flexible Packaging. Section 4 dis-

cusses our use of case studies to evaluate the method.
Section 5 reviews related research, and Section 6 con-
cludes.

2 Flexible packaging in action

To illustrate the problems with today’s component devel-
opment and integration and to contrast current practice
with the Flexible Packaging method, this section uses an
example component that is small enough for complete
source code to be shown but representative of a larger
class of computations. The example component’s func-
tion is to compute the arithmetic mean of all the scores of
each student enrolled in a course. In pseudocode, this
could expressed as in Figure 1(a). Suppose that this aver-
aging component needs to be packaged two ways. For the

(a) channel in stream char* StudentNames;
channel in stream float Scores;
channel out stream (char*, float) Means;
char* name;
float score;

while (more(StudentNames)) {
float total = 0.0, mean;
int count =0;
in(StudentNames, name);
while (more(Scores)) {
in(Scores, score);
total +=score; ©
count++;
mean = total/count;
out(Means, name, mean);

(b) INTERFACE SpreadsheetAccessor WITH
Names: PLAYER SpreadsheetRead WITH

range: ((Col("A"), Row("2")), (Col("A"), FirstEmptyCell));
Scores: PLAYER SpreadsheetRead WITH

range: ((Col("B"), Current), (FirstEmptyCell, Current));
END
Mean: PLAYER CellWrite WITH

cell: (FirstEmptyCell, Current);
END

END
END

INTERFACE Filter WITH
In: PLAYER StreamIn WITH

format: Seq [
Lit("name:"), Named("Name", Plus(InSet("0-9"))), EndOfLine,
Lit("id:"), Plus(InSet("0-9"))), EndofLine,
Star(Seq [
Lit("score "), Plus(InSet("0-9")), Lit(": "),
Named("Score", Star(InSet("0-9."))), EndOfLine])] ;

END
Out: PLAYER StreamOut WITH

format: [PrintVar(“Name"), Print(" "), PrintVar("Mean")];

END

END

Figure 2. The component from Figure 1, re-implemented using Flexible Packaging.

first way, both the student scores and the means to be
reported are stored as cells in a Microsoft Excel spread-
sheet, which the component accesses through ActiveX.
For the second, the component is a filter which reads stu-
dent records, formatted as in Figure 1(c), from standard
input and reports the means to standard output.

Current practice: mixing concerns

The source code for the spreadsheet version of the aver-
aging component is shown in Figure 1(b); the source code
for the filter version, a script that is input to the parser
generator Yacc, is shown in Figure 1(d). Several important
aspects of today’s practice can be readily seen in this
example. First, the code that implements the packaging
and the code that implements the functionality are com-
pletely intermingled. Indeed, even visually spotting the
key lines from the pseudocode version is difficult. (The
change bars at the right of the figure highlight those lines
of code.) Second, the implementation of the packaging
can cause the expression of the component’s functionality
to be obscured. For example, the arrangement of the code
that Yacc induces in Figure 1(d) has little relation to the
pseudocode in Figure 1(a). Third, the two versions of the
code are very different from one another. Changing the
implementation of the averaging component from one
version to the other would be challenging.

Separating the concerns

In contrast to current practice, the Flexible Packaging
method advocates and supports the separation of a com-
ponent’s functionality and its packaging into distinct

software artifacts. The component’s functionality is
encapsulated in a reusable part called a ware; its packag-
ing, in a reusable part called a packager. The ware and
packager, when compiled together, form a complete com-
ponent.

Figure 2(a) shows the source code for the ware for our
averaging component. It is written in a language called
Ciao, which is the C programming language supple-
mented with high-level constructs for describing the
intended interaction with other components. Packagers
are also written in Ciao. Rather than being implemented
by hand, a packager’s source code is typically automati-
cally generated from a high-Ilevel description of the pack-
aging, written in the architectural description language
UniCon. Figure 2(b) shows a UniCon description of the
packaging for the version of our averaging component
that accesses the Excel spreadsheet; Figure 2(c) shows a
description of the packaging for the filter version. When a
system integrator gives the ware code in Figure 2(a) and
the packaging description in Figure 2(b) to the Flexible
Packaging tools, these tools automatically produce a soft-
ware component whose behavior is the same as the hand-
made component from Figure 1(b). Alternatively, he
could give the ware and the packaging description in Fig-
ure 2(c) to the tools, which would create a component
like that in Figure 1(d). By coupling the component’s
functionality with a description of its packaging at sys-
tem integration time, the component’s packaging can be
tailored to the context of integration.

ware code packager code

(@ void compute() {
output_name(n);
...compute the mean ...
output_mean(m);
...compute the grade ...
output_grade(g);

(b) void compute() {
begin_output();
output_name(n);
...compute the mean ...
output_mean(m);
...compute the grade ...
output_grade(g);
end_output();

void output_name(char* n) { begin_transaction(); update_field("NAME", n); }
void output_mean(float m) { update_field("MEAN", m); }
void output_grade(char g) { update_field("GRADE", g); end_transaction(); }

void begin_output() { begin_transaction(); }

void output_name(char* n) { update_field("NAME", n); }
void output_mean(float m) { update_field("MEAN", m); }
void output_grade(char g) { update_field("GRADE", g); }
void end_output() { end_transaction(); }

Figure 3. Using a procedural interface between the packager and the ware causes either (a) the packager’s
computation to be awkwardly decomposed or (b) the ware’s interface to be poorly abstracted.

3 the flexible packaging method and tools

This section describes in detail the method and tools that
allow the system integration scenario sketched in the pre-
vious section. This section covers design choices at the
heart of any software method: what commitments are to
be made by whom, what knowledge is needed to make
them, when the commitments are made, and how the
commitments are expressed.

Setting for the technology

The Flexible Packaging method recognizes three distinct
roles in the development and deployment of a software
component: (1) the ware developer, whose expertise cov-
ers the problem domain that the component’s functional-
ity is solving; (2) the packaging specialist, who expertise
covers a particular architectural style or component
interface standard (such a pipes and filters, ActiveX and
com, or relational databases); and (3) the system integra-
tor, whose expertise is in assembling components in a
given architectural style. To make these distinctions clear,
consider an ActiveX component that analytically solves
differential equations. The expertise behind the function-
ality of this component (the convergence properties of
various numerical methods, the effects of floating-point
round-off, and so on) is obviously distinct from the
knowledge of what it takes for a given piece of software to
be an ActiveX component. But notice also that second
and third roles are distinct: there are many more Visual
Basic programmers who use ActiveX components in their
vb applications than developers who create ActiveX com-
ponents. Given the diversity of the expertise behind these
three roles, it would not be unusual for three different
people to play them and at different times. As such, the
required coordination among the people playing these
roles should be kept to a minimum.

The Ciao language

As was illustrated with the example in Section 2, each of
the packager and the ware has computation associated
with it. The packager’s computation achieves the interac-
tion (for example, the calls to ActiveX interfaces in Figure
1); the ware’s computation achieves the functionality (the
calculation of the mean scores). Given that these two
computations must be combined to achieve the compo-
nent’s total behavior, what mechanism should be used to
coordinate the two computations, i.e. to allow them to
exchange control and data? Given that the packager and
the ware are to be produced independently and that the
ware should be usable with a variety of packagers (and
vice versa), whatever mechanism is chosen must support
this independence.

The most ready choice is the mechanism that today’s
tools support best and that is best understood in practice,
namely the procedure call (or its relatives, method call
and higher-order function call). Using this mechanism,
the packager and the ware could each be encapsulated in
its own module, with procedure calls between them for
exchanging control and data. Unfortunately, this choice
of mechanism violates our desire to make the packager
and ware independently reusable pieces. To see this, we'll
explore several design alternatives for a small example.

Consider a ware that needs to output three values and a
packager that transactionally writes those three values to
a database. Figure 3(a) illustrates a procedural interface
between the ware and packager that is designed for the
convenience of the ware. Although this interface presents
a clean abstraction for the ware (there is one procedure to
call to accomplish each of the outputs), the packager’s
implementation of this interface must awkwardly fit the
begin and end transactions calls into the implementation
of these procedures. Figure 3(b) shows the alternative

where the interface is designed to clean up the structure
of the packager’s computation, but at the price of adding
two new procedures to the interface that are fundamen-
tally not part of the ware’s abstraction. Alternatively, we
could place the transaction brackets and database
updates together in the same procedure body in the pack-
ager, but this would constrain the ware to perform its out-
put in one batch, rather than incrementally.

In general, a procedural interface serves two distinct
purposes: (1) it provides an abstraction of a computa-
tional service to the interface caller; and (2) it provides a
preliminary decomposition of the interface definer’s
computation. These two purposes may be at odds. With a
procedural interface, one of the two modules must be
written to deal with the constraints imposed by the other,
which reduces their independence.

To promote independence, the Flexible Packaging
method provides its own mechanisms for tying together
the packager and the ware: channels, for exchanging data;
and coroutines, for exchanging control. Packagers and
wares are written in a language called Ciao, which isthe C
programming language with a few additional constructs:

channel [in|out|inout] [stream] <type> <cname>;

in(<cname>, <varname>);

out(<cname>, <expression>);

alt { (<in>: <statements>)+ }

The first of these constructs declares a channel, which is a
communication medium between the packager and ware
and is reminiscent of channels in occam [8]. If one of the
two declares the channel as in and the other as out, then
data flows unidirectional across the channel from the out
declarer to the in declarer. If both declare the channel as
inout, then dataflow is bidirectional. (Other combina-
tions of in, out, and inout are reported as erroneous.)
The in statement is used for receiving data from a chan-
nel; the out statement, for sending data to a channel. Both
the dataflow direction and the type of the data specified
in an in or out statement must be consistent with the
channel declaration. It is erroneous, for example, for an
out statement to name a channel declared as in, and it is
illegal for an out statement to send a floating point value
on an out channel of type int. Stream channels are used
to communicate multiple values between the ware and
packager; they support a function to express that no
more values will be written to the channel (“close™) and
another to test for this condition (“more”). The alt con-
struct, like its namesake in occam, allows an input to
occur from any one of a set of in statements for which
input is ready.

The ware and packager computations are run in a style
that is analogous to coroutines. The component as a
whole has a single thread of control that is passed back
and forth between the ware’s computation and the pack-
ager’s. The thread is switched between computations
whenever the currently running computation performs
an out statement or performs an in statement on an

void ware() {
channel out char* Name;
channel out float Mean;
channel out char Grade;

void packager() {
channel in char* Name;
channel in float Mean;
channel in char Grade;

out(Name, name); begin_transaction();

... calculate the mean ... in(Name, n);
out(Mean, mean); update_field("NAME", n);
...calculate the grade ... in(Mean, m);

out(Grade, grade); update_field("MEAN", m);
} in(Grade, g);
update_field("GRADE", g);
end_transaction();

}

Figure 4. The ware and packager from Figure 3 rewritten in
Ciao, which allows each to have a clean functional decom-
position and a clean interface between them.

empty channel. This allows one of the computations to
produce a value that the other may immediately con-
sume. Because the packager governs the component’s
interaction and because exchanging a thread of control
among components is a form of interaction, the pack-
ager’s computation always gets the thread of control first.

Figure 4 shows the example from Figure 3 re-written in
Ciao. The thread of control begins in the packager. The
packager executes until it reaches the first in statement.
Because no value has been yet sent along the Name chan-
nel, the thread of control switches to the ware, which exe-
cutes its first out statement. The thread is then given back
to the packager which executes until the next in state-
ment, and so forth. In this way, the ware’s computation
and packager’s computations are effectively interleaved.
Notice that this channel mechanism avoids the pitfall dis-
cussed before with procedure calls: both the ware and
packager may be structured into procedures in whatever
way is natural.

The Flexible Packaging toolset includes a Ciao com-
piler, which translates Ciao files into C code. The chan-
nels are implemented with dynamic arrays; the
coroutining, with the Windows nt Fiber library (light-
weight threads). Ciao was implemented as a language
extension rather than a C library to allow channels to be
type-checked.

Mismatch-in-the-small
Although the Flexible Packaging method addresses mis-
matches in interaction among components, there is still
the opportunity for mismatch between the packager and
the ware. Given that the packager and the ware are inde-
pendently written in Ciao — typically by two different
developers who never meet — there is no reason to assume
that their use of channels will be consistent. In particular,
the ware and packager may be inconsistent from one
another in four aspects of their channel use:
+ They may use different names for the same channel
(name mismatch). For example, the ware could call a

channel “Init;” whereas the packager calls it “Begin.”

+ They may differently represent the data on a channel
(datatype mismatch). For example, the ware may send
an ascii string on a channel; whereas the packager
expects a Unicode string.

* They may differ in the order in which they use the
channels (ordering mismatch). For example, the ware
may do an in on channel A then an in on channel B;
whereas the packager may do an out on channel B then
an out on channel A.

+ They may use different numbers of channels to interact
(aggregation mismatch). For example, the ware may
send one integer apiece on two channels; whereas the
packager expects to receive a pair of integers on one
channel.

To accommodate name and datatype mismatch, which

are anticipated to be quite common when the ware and

packager are separately taken “off the shelf” for reuse, the

Ciao compiler accepts an explicit map between ware and

packager channel names. For each pair of names, the

map may also contain a small Ciao program to overcome
datatype mismatch. For example, if the ware contains this
channel declaration

channel in double Grade;
and the packager contains this channel declaration

channel out char* Score;

a map entry that unifies these two channels would look

like this

(Grade, Score, TypeFixupCode("

channel in char* String;
channel out double Real;
char*s;

doubler;

in(String, s);

r = atof(s);

out(Real, r); "))

The fix-up Ciao code must contain exactly one in and
one out channel declaration. The Ciao compiler then
unifies the fixup code’s out channel with the mismatched
code’s in channel and vice versa (e.g. Score and String are
unified, and Grade and Real are unified). Given these
name associations, the Ciao compiler then inlines the fix-
up code wherever an out statement appears in the origi-
nal mismatched code (e.g. all out statements on the chan-
nel Score). Datatype mismatches on inout channels,
which would require a bidirectional conversion, are not
currently supported.

In order to accommodate ordering mismatch, the
meaning of out statements has been made looser than the
equivalent in occam. In occam, out statements block
until the corresponding in statement is ready to execute.
Although this semantics could have been chosen for
Ciao, it would mean that the ware and packager would
have to agree exactly on the order in which they use chan-
nels. Instead, out statements buffer their data until the
corresponding in statement occurs; an out statement

never blocks. (Clearly, in statements still block until their
corresponding out statements happen; otherwise, there
would be no value to assign to the variable in the in state-
ment. If both the ware and packager are blocked on in
statements, the resulting deadlock is detected at runtime
and reported.)

Although this semantics does accommodate a certain
amount of ordering mismatch, there is a price for this
looseness: a computation committing an out statement
has no guarantee about when, if ever, its sister computa-
tion will “react” to the output it has given. Indeed, under
this looser semantics, the Ciao compiler does not even
insist that there be an in statement corresponding to
every out statement. This design trade-off between acco-
modating ordering mismatch and providing consump-
tion guarantees may need to be revisited as more
experienced is gained with Flexible Packaging. With the
case studies discussed in Section 4, the tolerance for
ordering mismatch proved to be useful; whereas no need
for a consumption guarantee was encountered.

The Ciao tools currently do not accomodate aggrega-
tion mismatch. A variation on the approach taken for
datatype mismatch could be added.

Generating packagers

Although both the packager and the ware are written in
Ciao, there are two important ways in which the pack-
ager’s source code differs from the ware’s. First, the pack-
ager’s source code is both tediously detailed and
formulaic in nature. This makes the task of writing the
packager’s source code both unrewarding and error-
prone. Second, whether a given packager’s source is
directly reusable varies a lot from packaging to packag-
ing. Such packagings as Netscape plug-ins are exactly the
same from component to component. No matter what
functionality a given Netscape plug-in provides, its inter-
face to Netscape is always the same; thus, a single pack-
ager can encapsulate Netscape-plugin-ness and be reused
directly with different wares. Other packagings, however,
vary from component to component. For example, a
packager that is used to access a particular database will
contain details specific to that database, like queries that
reflect a given schema. This packager could not be used
to access a database with a different schema. Hence reus-
ing a particular ware with different packagers is often
more plausible than reusing a particular packager with
different wares.

Software generation addresses both the formulaic and
situated nature of packager source code. Given a high-
level description of a component’s packaging in the archi-
tecture description language UniCon [13], a Flexible
Packaging tool, called a packager maker, generates the
packager’s source code. Examples of such packaging
descriptions were shown previously in Figures 2(b) and
2(c). Consider the description of the filter packaging
shown in Figure 2(c). It describes the intended packaging

in high-level terms: how many input streams and output
streams the filter has and, for each stream, the format,
given as a regular expression, of the ascii text flowing on
the stream. The filter packager maker reads this descrip-
tion and from it generates both the Yacc script needed to
parse the input and the print statements needed to pro-
duce the output. The result (in this case after Yacc has
been run) is a Ciao source file that uses channels to out-
put the results of parsing and to get the input to the print
statements. The names of the channels are derived from
the filter’s UniCon description.

Another important observation about packaging is
that for a piece of software to achieve a given packaging is
often not just a question of the content of its source code
but also the software construction steps used to process
that source code. Consider the list of requirements a
component must meet to be a Netscape plug-in: it must
implement sixteen particular functions and use memory
management functions that Netscape provides; it must be
compiled into a dynamically linked library (dl1) that
exports three particular functions and that contains a
resource fork with two particular text resources; the d11’s
name must be in dos 8.3 format and begin with the let-
ters NP; the dI1 must appear in a particular directory. Of
these, the first is about the content of the component’s
source code; the rest, about its construction. Here, too,
software generation is helpful. The Flexible Packaging
toolset comes with a set of tools, called experts [13]. For a
given component packaging, a packaging expert pro-
duces construction instructions (in the form of a Make-
file) that perform the necessary steps to process the
component’s source code.

In summary, there are three forms in which a packag-
ing specialist can capture his knowledge. If the packaging
does not vary from component to component, the
knowledge is encapsulated as packager source code writ-
ten in the Ciao language. If the packaging does vary from
component to component, then the knowledge is encap-
sulated in the form of a packager maker. This packager
maker reads a UniCon description (which captures the
dimensions along which the packaging varies) and gener-
ates the packager source code. Finally, in either case, the
knowledge of the construction steps necessary to achieve
the packaging is encapsulated in a packaging expert.
Given the variety of packagings in the world and that new
packagings appear over time, the Flexible Packaging
toolset provides a framework for easing the job of creat-
ing new packager makers and packaging experts.

Flexible Packaging at a Glance
Figure 5 summarizes the major tools and files associated
with the Flexible Packaging method. The developers
playing each of the three roles makes his own indepen-
dent contribution. The products they create are shown
with thicker lines.

The ware developer programs the component’s func-

D (0)

packaging description

(b) (b)

G)ackaging expert) (packager maker)

(@

Ciao channel map Ciao

packager source ware source

\ /
(Ciaocompiler)

AN AN

Makefile packager source ware source

-

Figure 5. The major tools associated with Flexible Packag-
ing and the files that these tools produce and consume.

tionality as a Ciao file (or a set of Ciao files), labeled (a) in
Figure 5,and places the file(s) on the shelf for reuse.

The packaging expert, independently, uses a frame-
work provided with the Flexible Packaging toolset to
encapsulate her knowledge of a particular packaging in
the form of a packager maker and a packaging expert,
labeled (b). The packaging expert then makes these tools
available for reuse.

The system integrator decides on the required func-
tionality and packaging for a component to be integrated
into his system. He acquires a ware that achieves the
desired functionality and a set of packaging tools that
achieve the desired packaging. He then produces a Uni-
Con description of the desired component packaging,
labeled (c). He runs the packager maker on the descrip-
tion, which automatically produces a packager (one or
more Ciao files). With a packager and a ware now in
hand, the system integrator edits the UniCon description
to add a channel map to show the associations between
the ware and packager channels and to overcome any
datatype mismatch. Finally, he feeds the UniCon descrip-
tion to UniCon, which automatically does the rest. Uni-
Con invokes the Ciao compiler on the Ciao sources to
produce standard C source files and invokes the packag-
ing expert on the component’s description to produce a
Makefile. UniCon then invokes Make on the C sources
and Makefile to produce the final component.

4 case studies

To test the feasibility of using Flexible Packaging to
develop to “real-world” components, | performed two
case studies. Each case study consisted of developing one
ware and packaging it three different ways. The emphasis

of these initial case studies is on the packagings: Can
Flexible Packaging handle the complexity of packagings
used in practice today? As such, while the six packagings
are all drawn from current practice, the two wares in the
study are relatively simple; an on-going case study is test-
ing whether the method works for more complex wares.
All of the materials associated with these case studies,
including complete source code, are publicly available at
www.cs.cmu.edu/~Compose/packaging.

Case study 1: Area code converter

In order to accommodate an ever increasing need for new
telephone numbers in western Pennsylvania (usa), the
412 telephone area code was recently split into two area
codes, 412 and 724. Whether a given phone number
remained in the 412 area code or switched to the new 724
area code was determined by its exchange (first three dig-
its). One of the effects of this change is that phone num-
bers must be updated in many databases and other
electronic artifacts. The variety of artifacts to be updated
is staggering: traditional databases from a number of
vendors, spreadsheets, formatted text files, text docu-
ments and document templates, web pages, electronic
business cards, address books in contact managers, and
many others.

Such a problem provides a natural opportunity to use
Flexible Packaging. The goal is to create a family of tools
that all share a common function — the ability to update
the area code of a phone number — but differ in the kind
of database each updates. This case study involved creat-
ing three batch programs, each of which accesses a differ-
ent kind of database: a Microsoft Access database
(accessed via odbc); a Microsoft Excel spreadsheet
(accessed via com); and a text file formatted with one
record of comma-delimited values per line (accessed via
ascii streams). The database and spreadsheet programs
perform in-place updates of the data, while the text file
program acts as a filter. All three programs share an iden-
tical ware but use different packagers, generated from
UniCon descriptions. All three components run on a
Pentium running Windows nt.

Case study 2: PNG image viewer

The Portable Network Graphics (png) image standard
was recently designed to be a successor to the popular gif
standard. One of the reasons the gif standard still pre-
vails is that many different kinds of software need to dis-
play images — drawing programs, document editors,
stand-alone image viewers, user interface design tools,
web browsers — and each imposes its own packaging
requirements on the image-handling component. Creat-
ing a png viewing component for each of these niches
takes time. Here, too, is a natural opportunity for Flexible
Packaging. We would like to capture the functionality of
parsing and displaying a png image once and reuse it in
many different contexts.

The second case study involved creating three different
components for displaying png images: a Netscape (ver-
sion 4) plug-in; an ActiveX control; and a stand-alone
Windows application. As with the previous example, all
three programs share an identical ware but use different
packagers, generated from UniCon descriptions.

Observations

The primary result of the case studies is an initial valida-
tion that Flexible Packaging can be used to develop “real-
world” components. Beyond this, several observations
can be drawn from the experience.

Non-code artifacts and software construction

Getting a component to have a particular packaging is
not always merely a question of calling the right i/o rou-
tines in the component’s source code. As was previously
mentioned, it can also involve a component’s construc-
tion steps, including the creation of non-code artifacts.
The two case studies differ greatly in this regard. With the
area code case study, achieving the desired packaging was
a question of calling the right i/o routines: the standard C
i/o routines, for the filter; the odbc library, for the data-
base accessor; and Excel’s exported com interface, for the
spreadsheet accessor.

In contrast, the png case study involved software con-
struction steps, not i/o libraries. Section 3 sketched the
construction steps needed to package a component as a
Netscape plug-in. The UniCon Netscape plug-in expert,
created for this case study, automates all these construc-
tion steps, including the generation the two non-code
artifacts involved: a file that the linker uses to guide dl1
construction and a file that describes the resources
(name/value pairs) associated with the dl1. Unlike the
analogous Microsoft wizard, this expert completely hides
the existence of these non-code artifacts. Similarly, the
Windows application packaging involves the creation of a
resource file. The ActiveX packaging involves the creation
of four non-code artifacts: a linker file and a resource file,
like those needed for Netscape plug-ins; a description of
the component’s com interfaces in the Interface Defini-
tion Language (idl); and a file that instructs Windows on
how to place the ActiveX component in the system regis-
try.

Internal versus external control

The example averaging component introduced in Section
2 is similar to the area code component and can be used
as a surrogate for making an observation. Notice the dif-
ference between the pseudocode in Figure 1(a) and its
implementation as a Yacc script in Figure 1(d). The
former is expressed using what is often called “internal
control,” where the algorithm itself determines the order
in which the computational steps proceed. The latter is
expressed using “external control,” where the content of
the data being parsed determines the order in which the

steps proceed. In the case of the grading component,
except for the breaks between student records, we know
exactly what data to expect from input to input, hence
expressing the algorithm using internal control is a natu-
ral fit; this is simply not a situation where the data drives
the computation. The nature of the Yacc tool — the fact
that it supports the description of variable data — artifi-
cially induces the expression of the algorithm using exter-
nal control in Figure 1(d). In contrast, as Figure 2(a)
shows, the use of channels in the interface between the
packager and the ware allows the algorithm to be
expressed using internal control, even when the tool used
to produce the packager, like Yacc, induces the use of
external control.

On the other hand, the nature of the png component is
to offer two services — the parsing and painting of png
files — that may be used in whatever order and as many
times as the client desires. In this case, external control is
endemic to the component and is expressed in the ware’s
main routine in the form of a loop:

while (!done)alt{...}

This kind of alt loop is typical of many different kinds of
service-based components: rpc-based servers; Unix
socket-based servers; components that listen for events or
that receive messages; components with user interfaces;
and command interpreters. In short, the use of in, out,
and alt statements allows the ware developer explicitly
and directly to express his expectations about the order
and variability of interaction, regardless of how the pack-
ager is expressed.

Packaging abstractions

Given the tedious, detailed nature of typical packager
source code, the Flexible Packaging method asks the
packaging specialist to create two important abstractions.
The first abstraction is a set of UniCon definitions, based
on which the system integrator will describe his compo-
nent’s packaging. A Netscape plug-in specialist, for exam-
ple, must decide what it means for a system integrator to
describe a component in UniCon as being packaged as a
Netscape plug-in — for example, what properties must
appear in the description. Because the system integrator’s
packaging description is the input to the packager maker,
the needs of the packager generation process influence
the creation of this abstraction.

The second abstraction for which the packaging spe-
cialist is responsible is how the packager appears to the
ware in form of channels. The design tension here is to
hide unnecessary details from the ware without preemp-
tively concealing information that a ware might find use-
ful. As an example, while the sixteen required Netscape
plug-in operations provide a strong hint about what
information to out to the ware, only some of the opera-
tion’s parameters are included in the out statements.

Performance

One of the costs of using Flexible Packaging is the run-
time overhead that the channel mechanism imposes. This
is not a fixed cost, but varies depending on the number of
channel communications and the amount of computa-
tion performed between those communications. The
more channel communications there are between the
ware and the packager, the more run-time overhead the
component will experience; the fewer computations per-
formed between communications, the more run-time
overhead the component will experience.

To measure this overhead, I re-implemented the three
components from the area code case study to combine
the code from the packager and ware into one module,
removing the use of channels. I then measured the differ-
ence in execution time between the original and hand-
altered versions of the components. Based of these mea-
surements, each component experiences the following
percentage of run-time overhead due to channels: 8% for
the filter; 2% for the odbc database accessor; 1% for the
Excel spreadsheet accessor. The variation is due to the
different execution times of the three packagers. Taking
consistent measurements for the three png components
is infeasible because these components interact with the
user.

5 related work

The observation that a component’s interaction should
be separated from its functionality is not new. Gelertner
argued for this separation in his work on Linda [7].
Although Linda does allow a component’s interactive and
functional concerns to be separated, it does so at the cost
of making interaction a second-class concern: the only
interaction mechanism between components that he sup-
ports is sharing a Linda “tuplespace.”

Closer in spirit to this work is that of Callahan and
Purtilo [2]. Like Flexible Packaging, their system Nimble
also allows a component to be accessed through different
interaction mechanisms, restricted to members of a fam-
ily: procedure call, cross-language procedure call, and
remote procedure call. This restriction allows them both
to develop their equivalent of wares in standard program-
ming languages and to infer and generate the packager to
be used. This work and its later extension to handle mis-
matches in event systems [3] inspired the channel maps
used in Flexible Packaging.

Contemporary projects have also influenced the
research on Flexible Packaging. The Flexible Packaging
framework for creating packager makers and packaging
experts is a locally implemented variation on Batory,
Lofaso, and Smaragdakis’ Jakarta Tool Suite [1], support-
ing C rather than Java.

The Aspect-Oriented Programming project [9]
directly influenced the expression of a flexibly packaged
component as the combination of a ware (“component”
in the aop lexicon) and a high-level, declarative descrip-

tion of its packaging (“aspect” in the aop lexicon). While
similar, aop and Flexible Packaging have taken different
design paths: with aop, “aspects” are always specified rel-
ative to particular “components;” with Flexible Packag-
ing, packaging descriptions are specified independently
of any ware. As a consequence, the source code generated
from an “aspect” can be interleaved (“woven”) with the
“component” source code at compile-time; whereas, a
packager and ware’s computations are interleaved at run-
time via channels.

6 conclusion
This paper introduces the Flexible Packaging method,
which allows a component’s functional and interactive
concerns to be separated. A component’s functionality is
captured in a ware. A ware’s use of channels allows it to
specify enough about interaction to express its function-
ality, while leaving most details unspecified. A compo-
nent’s interaction is captured in a packager, which may
either be reused directly or automatically generated from
a high-level description of the component’s packaging.
This method supports the following reuse scenario: a sys-
tem integrator takes a ware “off the shelf” with function-
ality that she needs, describes the packaging it must have
to be compatible with the system’s architectural style, and
then uses the Flexible Packaging tools to turn the ware
and the packaging description into a software component
with the specified packaging. This tailored software com-
ponent can then be directly integrated into the system.
What is missing from this scenario is a means to tell
whether the ware and the packager are compatible. Each
of them advertises a list of channels — their names, types,
and directionality. Through the process of matching up
these channels, the system integrator can tell something
about their compatibility; documentation about the ware
and packager would have to provide the rest. (This is not
very different from reusing a procedure or class library
today, where a combination of the procedure/method
signatures and the library documentation informs the
developer about the library’s use.) The next phase of this
research is to create interaction abstractions, namely pat-
terns of channel use that clarify the intentions of the
packager or ware’s creator and that support compatibility
checking.

ACKNOWLEDGMENTS

I am grateful to Mary Shaw for her timely, helpful feed-
back on this paper and for suggesting the area code case
study. The Wright Laboratory, Aeronautical Systems Cen-
ter, Air Force Materiel Command, usaf, and the
Advanced Research Projects Agency have supported this
work under grant £33615-93-1-1330. This paper represents
the views of the author and not of Carnegie Mellon Uni-
versity nor of any of the sponsoring agencies.

REFERENCES

[1] Don Batory, Bernie Lofaso, and Yannis Smaragdakis.
“JTS: A tool suite for building GenVoca generators.”
In Proc. International Conf. on Software Reuse, 1998.

[2] John R. Callahan and James M. Purtilo.“A packaging
system for heterogeneous execution environments.”
University of Maryland Technical Report cs-tr-
2542,1990.

[3] Chen Chen and James M. Purtilo. “Event adaptation
for integrating distributed applications” In Proc.
International Conf. on Software Engineering and
Knowledge Engineering, 1995.

[4] Melvin E. Conway.“Design of a separable transition-
diagram compiler” Communications of the ACM
6(7): 396-408, 1963.

[5] Robert DeLine, Gregory Zelesnik, and Mary Shaw.
“Lessons on converting batch systems to support
interaction.” In Proc. International Conf. on Software
Engineering, 1997.

[6] David Garlan, Robert Allen, and John Ockerbloom.
“Architectural mismatch, or Why it’s hard to build
systems out of existing parts.” In Proc. International
Conf. on Software Engineering, 1995.

[7] David Gelertner and Nicholas Carriero. “Coordina-
tion Languages and their Significance”” Communica-
tions of the ACM 35(2): 97-107, 1992.

[8] Inmos Ltd. occam?2 reference manual. Prentice-Hall
International Series in Computer Science, 1988.

[9] Gregor Kiczales, John Lamping, Anurag Mandhekar,
Chris Maeda, Christina Lopes, Jean-Marc Loingtier,
and John Irwin. “Aspect-Oriented Programming.”
Xerox parc Technical Report spl-97-008, 1997.

[10] Diane E. Mularz. “Pattern-based integration archi-
tectures.” Chapter 7 in James O. Coplein and Dou-
glas C. Schmidt, editors, Pattern Languages of
Program Design, 1995. Addison-Wesley.

[11] D. L. Parnas. “On the criteria to be used in decom-
posing systems into modules” Communications of
the ACM 15(12).

[12] Mary Shaw. “Architectural issues in software reuse:
It's not just the functionality, it’s the packaging.” In
Symposium on Software Reusabilty, 1995.

[13] Mary Shaw, Robert DeLine, and Gregory Zelesnik.
“Abstractions and implementations for architectural
connections.” In Proc. Conf. on Configurable Distrib-
uted Systems, 1996.

Microsoft, ActiveX, and Windows nt are trademarks of the
Microsoft Corporation.

