To appear in Proceedings of 8th International Workshop on Software Specificatin and Design, March 1996

Truth vs Knowledge:
The Difference Between What a Component Does and What We Know It Does

Mary Shaw
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213

Abstract

Conventional doctrine holds that specifications are suffi-
cient, complete, static, and homogeneous. For system-
level specifications, especially for software architectures,
conventional doctrine often fails to hold. This can happen
when properties other than functionality are critical, when
not all properties of interest can be identified in advance,
or when the specifications are expensive to create. That is,
the conventional doctrine often fails for practical software
components. Specifications for real software must be
incremental, extensible, and heterogeneous. To support
such specifications, our notations and tools must be able
to extend and manipulate structured specifications. In the
UniCon architecture description language, we introduce
credentials, a property-list form of specification that
supports evolving heterogeneous specifications and their
use with system-building and analysis tools.

Conventional software doctrine calls for component
specifications that are:

= Sufficient and complete: the specification of a
component says everything a user needs to
know or is permitted to rely on about how to
use the component,

= Static: the specification can be written once
and frozen, and

= Homogeneous: the specification is written in a
single notation.

For example, a typical discussion of the promise of
reuse [Ben95] is introduced,!

Three prerequisites must be met for a compo-
nent to be used in more than one system: com-
plete, opaque enclosure; complete specification

INote that this description comes from the applications
community, not the formal methods community.

of its external interface; and design consistency
across all sites of reuse. Without these, reuse
will remain an empty promise.

It may be possible to adhere to the conventional
doctrine for algorithms and data structures, or when
functionality is the only property of interest.
However, architectural, or system-level, components
cannot in practice satisfy these criteria. Indeed, they
inevitably will not, and it is impractical to try.

This paper is about what this implies and how to
cope with it: why architectural specifications are
insufficient, incomplete, incremental, and heteroge-
neous -- and how software development methods
and tools must adapt in response.

Section 1 describes architectural components and
explains why they cannot adhere to the conventional
doctrine. Section 2 considers many of the properties
that need to be specified. Section 3 sets out require-
ments for architectural specifications. Section 4
introduces an approach to a solution, credentials for
those properties that have been specified to date.

1. Architectural components and their
specifications

Software architecture deals with the overall structure
and properties of software systems. The most com-
mon architecture description languages (ADLS)
support components, connectors, and other aspects
of the system such as styles, constraints, or design
rationale [ShawGar96, PerWolf92]. Although the
issues raised here apply to all architectural elements,
this discussion focuses on specifications of the com-
ponents, which may be either primitive (i.e., written
in a programming language) or composite (i.e.,
defined in the ADL).

The information required to use an architectural
component goes beyond computational functionality
to include structural properties that affect how the



component can be composed with other compo-
nents; extra-functional properties that describe per-
formance, capacity, environmental assumptions, and
global properties; and family properties that assert
relations among similar or related components.
Software development environments should
accommodate an open-ended collection of tools for
construction and analysis. Different tools may
depend on different properties, and some tools may
generate new specification information [ICSE95].

Specifications of architectural components are
intrinsically incomplete because system correctness de-
pends not only on computational functionality but
on other properties as noted above [Shaw85,
GAOQ95]. It’'s impractical to expect full specifications
of all these properties because of the prohibitive
effort required to specify a wide variety of proper-
ties, whether or not anyone will use the information.
Worse, it’s impossible: the developer cannot antici-
pate all the aspects of the component that its users
might care about. As an added complication, the de-
gree of precision in the specification may be influ-
enced by the tradeoff between the costs and benefits
of improved precision [Shaw81]. Although com-
pleteness is impractical, it is still appropriate to ex-
pect specifications for a common core of properties,
and it is reasonable for a tool to require certain
properties. Reasoning with partial specifications has
already received some attention [Jac94, Per95].

Specifications of architectural components must be
extensible, because developers discover new kinds of
dependencies as they attempt to reuse indepen-
dently-developed components together. Even with
the best of good faith, component developers cannot
describe all the incidental ways their components
may interact with the entire environment. Garlan
and colleagues analyze the implicit assumptions that
interfered with one instance of attempted reuse
[GAO95]. Not only is much important information
implicit, but users have no effective way to capture
information they discover for future reference. As
the specifications are extended, information about a
property may be received from multiple sources;
these must be reconciled [BarWing90].

Specifications of architectural components must be
heterogeneous, because of the diversity of significant
properties, as described in Section 2. It is unreason-
able to expect a single notation to serve for all of
them.

Thus the drivers of specification incompleteness,
extensibility, and heterogeneity are

= Open-ended needs: The designer cannot antici-
pate all properties that may ever be of interest
to some user. Further, future users may find
new ways to take advantage of old properties.
Interesting properties are of many different
kinds.

= Cost of information: Even for common proper-
ties, it is not practical to produce a complete
specification. Further, the precision of a
specification may be selected to balance the
cost of getting a tight bound against how
badly it’s needed. The cost of understanding
a specification also affects its utility.

= Evolution: As time passes, new properties
may be added to a specification because
someone (not necessarily the developer) dis-
covers new information or new dependencies.
Developers can often make progress with
partial information but take advantage of
additional information.

2. Architectural properties

The main reason why architectural components re-
quire incomplete, extensible, and heterogeneous
specifications is the diversity of facts about a compo-
nent that may affect a designer’s ability to compose it
with other components and achieve a correct and
consistent result. This section describes three major
classes of properties that augment the conventional
functional properties of type, signature, and
pre/post conditions.

2.1

The most significant properties for architectural de-
sign deal with the ways components interact, and
hence with the ways those components can be com-
bined into systems. Especially important is the
packaging of a component, which includes the type of
component and the types of interactions it is pre-
pared to support. The choice of packaging is often
largely independent of the underlying functionality,
but components must be packaged in compatible
ways if they are to work together smoothly. For
example, unix provides both a sort system call and a
sort filter; although they have the same functionality,
they are far from interchangeable. Some common
packagings for components and the ways they
interact are:

Structural properties

Component type | Common types of interactions

Module Procedure call, data sharing




Object Method invocation (dynamically

bound procedure call)

Filter Data flow

Process Message passing, remote procedure
call, other communication proto-
cols, synchronization

Data file Read, write

Database Schema, query language

Document Shared representation assumptions

Distinctions of this kind are now made informally,
often implicitly. If the distinctions were more
precise and more explicit, it would be easier to detect
and eventually correct incompatibilities by analyzing
the system configuration description. Such checking
must address not only local compatibility (e.g., do
two components expect the same kinds of interac-
tions) but also global properties (e.g., are there loops
in a data flow system?).

2.2 Extra-functional properties

In addition to functionality and structure, architec-
tural specifications must be capable of expressing ex-
tra-functional properties related to performance, ca-
pacity, environmental assumptions, and global prop-
erties such as reliability and security [MCN92,
Shaw85, CBKA95]. Many of these additional proper-
ties are qualitative, so they may require different
kinds of support from more formal specifications.
These other properties include:

time requirements

precision and accuracy

timing variability

reliability

real-time response

robustness

latency

security

bandwidth and throughput

service capacity (e.g. # of clients/server)
space requirements

dependence on specific libraries, services
space variability

conformance to an interface standard
possession of main thread of control
conformance to implementation standard

minimum hardware configuration
intended profile of operation usage

Some of these properties require periodic updates,
especially those that assert conformance to external
standards (e.g., Windows 95) that may themselves
change.

The formal specifications familiar to the IWSSD com-
munity are not the most common kind. More preva-
lent are product descriptions such as the following,
which specifies the interface between a software
product and the environment required to run it
[DeL95]. This specification deals with space and
conformance to established standards. The func-
tionality of the product is described (imprecisely) in
associated prose and pictures.

IBM or 100% IBM-compatible microcomputer with
Intel 80386 microprocessor or higher or 100%-
compatible processor.

Minimum 4 MB RAM., 3 MB of available space on
a hard disk.

ISO 9660-compatible CD-ROM drive with 640+ MB
read capacity and Microsoft® CD-ROM
extensions.

Microsoft®Windows -compatible printer (not plot-
ter) recommended, with 1.5 MB printer mem-
ory for 300 dpi laser printing, 6 MB for 600 dpi.

Microsoft®Windows -compatible mouse
(recommended).

Microsoft®Windows -compatible VGA card and
monitor.

Microsoft®eWindows™ version 3.1 and MS-DOS®
version 4.01 or later.

2.3 Family properties

Components are often designed in families, sharing
assumptions about such things as division of respon-
sibilities, data encoding and protocols. A large fam-
ily of systems may have constraints on collections of
components that must be used together. It may also
be important for a specification to express not only
the properties of the instance at hand, but also a
larger envelope of capability that could be achieved
by, for example, modifying setup parameters of
changing inheritance relations.

3. Requirements for Practical
Architectural Specifications

Component specifications play two roles:



= Implementation: giving information about “as-
built” capabilities of individual existing
components (“How do | use this component?”)

= Requirement: setting out the requirements that
a component that has not yet been selected or
constructed must satisfy (“What component
is needed to fill this hole?”)

These roles are roughly analogous to the formal and
actual parameters of procedures--they serve both to
define the capability envelope of a required compo-
nent and the actual capability of an instance. Just as
actual and formal parameters of procedures differ in
detail, so do the requirement and implementation
specifications of components.

Given the setting described in Section 1, specifica-
tions require more support than they get at present
(static text files in a given formal syntax). Let us
consider, then, the requirements for models, meth-
ods, and associated tools that support specifications
of the sorts of architectural components that appear
in Real Life(d. That is, what happens if you force the
models to adapt to real-world elements rather than
vice-versa? Some of the capabilities that must be
supported for practical specifications are

= Tolerate incompleteness. Analysis tools must be
able to indicate which properties they depend
on; if information is missing, they must either
explain why analysis can’t proceed or warn
about the limitations of the results. It should
be possible to prohibit dependence on a
property -- to be “actively silent”

= Collect specifications incrementally. Not only
developers, but also users, must be able to
add information to specifications. The source,
and hence the credibility/validity of the
information must be preserved.

= Support specifications of many properties in
different notations. Add new properties as
they turn out to be interesting.

= Propagate new information. When new infor-
mation is supplied, it must be propagated to
places where it might improve prior analy ses.
Further, some properties may be derived ana-
lytically rather than declared by the designer.
These can often be improved with new
information.

= Invalidate specifications when appropriate.
Modifications to a system definition or to the
sources of derived information may render
individual parts of a specification invalid.

= Search for components that partially match a
partial specification, with an indication of the
goodness of fit. [ZarWing95]

= Support checking, both that a component
specification and its associated implementa-
tion are consistent and that a configuration of
components is well-formed. Support tools to
make minor adaptations when minor mis-
matches are detected. Support incremental
checking for incremental specification.

= Support flexibility. Define limits on actual
values of properties; describe the envelope of
allowable behavior (retaining information
about both the envelope and the current
instance); separate policy from mechanism.

= Yield partial value for partial information, incre-
mental value for incremental information.

4. Credentials for What We Know Is True

To address this problem, we propose the notion of
credentials: incremental, evolving specifications.
Credentials may be viewed as property lists, or lists
of <attribute, value> pairs. Credentials must include

= registered attribute names and provisions for
adding new names (including private ones); a
means of indicating which ones are required
or optional under certain circumstances

< multiple notations for values of attributes

= credibility, or sources for the values of at-
tributes. They might, for example, include

asserted: given by designer, taken on faith

verified: proposed by designer, verified
by tool

derived: derived (preferably automati-
cally) from other specifications

default: provided as part of component
definition

forced: determined by nature of defini-

tion (for example as part of sub-
typing definition)
Credentials must be an integral part of the software
definition, so that they are supported by the CASE
environment and updated in tandem with the code.
The associated tools must support operations
including

= compatibility checks similar to type checking
but involving a richer set of properties

= access to externally-defined tools, including
extraction of relevant attributes for use by the



tool and incorporation of results from the
tools as new attribute values

= rules for resolving values for a given attribute
that are proffered by multiple sources

= invocation of analysis for checking creden-
tials after code is modified, including invali-
dation of properties whose values can no
longer be confirmed

The UniCon architecture description language
[SDKRYZ95] supports the bare bones of this pro-
posal. UniCon specifications are given in the form of
property lists; the set of attributes is open-ended;
and particular attributes are required for certain
checks and tools. Current development will add
credibility values for attributes and make explicit the
set of notations (including “uninterpreted”) for
values of attributes.

Research Support

The work reported here has been heavily influenced by an
ongoing collaboration with the Composable Systems
Group at Carnegie Mellon University, particularly on dis-
cussions with David Garlan, Greg Zelesnik, and Rob
DeLine. It draws on material presented at the 1995
Dagstuhl in Software Architecture and in a special volume
of Lecture Notes in Computer Science. It was improved
during discussions in the Software Architecture Reading
Group at CMU. It was sponsored by the Wright
Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research
Projects Agency, under grant F33615-93-1-1330 and by a
grant from Siemens Corporation. It represents the views
of the author and not of Carnegie Mellon University or any
of the sponsoring institutions.

References

[BarWing90] Mario R. Barbacci and Jeannette M. Wing.
A language for distributed applications.
Proc 1990 Int’l Conf on Computer Languages,
pp. 59-68.

Douglas W. Bennett. The promise of reuse.
Object Magazine, vol 4, no 8, January 1995,
pp. 32-40.

Paul Clements, Len Bass, Rick Kazman, and
Gregory Abowd. Predicting software Qual-
ity by architecture-level evaluation. In Proc
Fifth International Conf on Software Quality,
October 1995

[Ben95]

[CBKA95]

[DelL95] DeLorme Mapping Company. WWW page
describing MapExpert product. URL:
http://www.delorme.com/catalog/mex.htm,

1995.

David Garlan, Robert Allen, and John
Ockerbloom. Architectural Mismatch, or
Why it’s hard to build systems out existing

[GAOYS5]

parts. Proc 17th International Conf on Soft-
ware Engineering (ICSE-17), April 1995.

David Garlan. Report of ICSE-17 Software
Architecture Workshop, to appear ACM
SIGSOFT Software Engineering Notes, 1995.

[ICSE95]

[Jac94] Daniel Jackson. Structuring Z Specifications
with Views. Carnegie Mellon University
Technical Report CMU-CS-94-126.

[MCN92] John Mylopoulos, Lawrence Chung, and
Brian Nixon. “Representing and Using
Nonfunctional Requirements: A Process-
Oriented Approach. IEEE Transactions on

Software Engineering, vol 18, no 6, June 1992.

[Per95] Dewayne E. Perry. System Compositions
and Shared Dependencies. Unpublished

manuscript, January 1995.

[PerWolf92] Dewayne E. Perry and Alexander L. Wolf,
Foundations for the study of software archi-
tecture. ACM SIGSOFT Software Engineering

Notes, vol 17, no 4, pp. 40-52, October 1992.

Mary Shaw. When Is '‘Good' Enough?:
Evaluating and Selecting Software Metrics.
In Software Metrics: An Analysis and Eval-
uation, A. Perlis, F. Sayward, and M. Shaw
(eds), MIT Press, 1981, pp. 251-262.

Mary Shaw. What Can We Specify? Ques-
tions in the domains of software specifica-
tions. In Proc Third International Workshop on
Software Specification and Design, pp. 214-215,
August 1985.

[ShawGar96] Mary Shaw and David Garlan. Software
Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[SDKRYZ95] Mary Shaw, Robert DeLine, Daniel V. Klein,
Theodore L. Ross, David M. Young, Gre-
gory Zelesnik. Abstractions for Software
Architecture and Tools to Support Them.
IEEE Tr on Software Engineering, May 1995.

[ZarWing95] A.M. Zaremski and J.M. Wing, “Specifi-
cation Matching of Software Components.”
Proc. of SIGSOFT Foundations of Software
Engineering, October 1995.

[Shaw81]

[Shaw 85]

Keywords: software architecture, specification, soft-
ware analysis, extra-functional proper-
ties, incremental specification, cre-
dentials



