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Abstract. We present a new generalization bound where the use of unlabeled
examples results in a better ratio between training-set size and the resulting clas-
sifier’s quality and thus reduce the number of labeled examples necessary for
achieving it. This is achieved by demanding from the algorithms generating the
classifiers to agree on the unlabeled examples. The extent of this improvement
depends on the diversity of the learners—a more diverse group of learners will
result in a larger improvement whereas using two copies of a single algorithm
gives no advantage at all. As a proof of concept, we apply the algorithm, named
AgreementBoost, to a web classification problem where an up to 40% reduction
in the number of labeled examples is obtained.

1 Introduction

One of the simplest but popular models in machine learning is the so called supervised
learning model. This model represents a scenario where a ‘learner’ is required to solve
a classification problem. The model assumes the existence of a set of possible exam-
ples X which are divided in some way into a set of classes 9" C [—1,+1] (often called
labels). Furthermore, it is assumed that there exists a distribution P over X x 9, which
represents the ‘chance’ to see a specific example and its label in real life. The learning
algorithm’s task is then to construct a mapping f : X — 9/, which predicts the dis-
tribution P well, i.e., minimizes P ({f(x) #y: (x,y) € X x 9}). The only information
available to the learner to assist it in its task is a finite training set S = {(x;,y;)}'" .
generated by repeatedly and independently sampling the distribution P .

Despite of the high abstraction level, many real life applications fall nicely within
this model. Problems like OCR, web pages classification (as done in Internet directo-
ries) and detection of spam e-mail are only a few of many problems that fit into this
scheme. In all the examples above and in many others, it is relatively hard to obtain a
large sample of labeled examples. The sample has to be carefully analyzed and labeled
by humans—a costly and time consuming task. However in many situations it is fairly
easy to obtain unlabeled examples: examples from the example space X without the
class that they belong to. This process can be easily mechanized and preformed by a
machine, much faster then any human-plausible rate. This difference between labeled
and unlabeled examples has encouraged researchers in the recent years to study the
benefits that unlabeled examples may have in various learning scenarios.
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At first glance it might seem that nothing is to be gained from unlabeled examples.
After all, unlabeled examples lack the most important piece of information—the class
to which they belong. However, this is not necessarily the case. In some theoretical
settings, it is beneficial to gain knowledge over the examples’ marginal distribution P(x)
(for example in [7]). In these cases, having extra examples, with or without their label,
provides this extra information. On the other hand, there exist situations (for example in
[9]) where knowing P(x) is not helpful and unlabeled examples do not help at all. The
main goal of this sort of research is to determine the amount of information that can be
extracted from unlabeled examples. However, unlabeled examples have also been used
by algorithms in a more practical way: as a sort of a communication platform between
two different learning algorithms. One such usage is the so called Co-Training model
or strategy.

A typical example of Co-Training can be found in [5], a paper often cited with
respect to unlabeled examples. In their paper, Blum and Mitchell provide both an algo-
rithm and a theoretical framework where unlabeled examples are used to communicate
an ‘opinion’ about an unlabeled example from one algorithm to another. As a case study,
the algorithm is then applied to a web-page classification problem involving identifying
courses’ homepages out of a collection of web-pages.

In this Co-Training model, it is assumed that the example space can be split into two
‘views’ X! and X2 (i.e., X = X' x X?) and that both views are sufficient for learning the
problem. Furthermore, the theoretical framework in [5] uses a very severe assumption:
for every fixed example (£!,%%) € X of non-zero probability it must hold that:

P(Xl :),C\l |X2:xf\2) :P<X1 :),C\l |f2 (XZ) :fz (xf\2)) (1)
P(Xz :)22 |X1 :xf\l) :P<X2 :xf\2 |f1 (Xl) :fl (xf\l)) .

In other words, that X'and X? are conditionally independent given the label. As the
authors themselves state, only four hypotheses comply with this assumption (assuming
that P allows for it).

The Co-Training algorithm has been shown to produce better classifiers in the web-
pages problem and in other experiments (for example, [1021], for more detailed anal-
ysis and limitations see [[11,/14]]). However, the theory presented can only be used as a
motivation or a general intuition for the algorithm’s success. Instead of using the train-
ing set to train only one of the learners and produce abundant newly-labeled examples
for the second one, both learners are trained and subsequently label some unlabeled ex-
amples. These newly-labeled examples are then added to the pool of labeled examples,
which is used to train the learners anew. Therefore, after being labeled, an unlabeled
example assumes the same role as a labeled example: a true representation of the tar-
get function. As the authors themselves remark, this process encourages the learners to
slowly agree on the labels of the unlabeled examples. This type of agreement is a side
effect, if not a goal, of many variants of the co-training model [13}[12].

In this paper, we elaborate on this intuition and make it more precise. We show that
agreement is useful and can assist in the task of learning. In other words, we present a
theoretical framework where agreement between different learners has a clear advan-
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tage. Drawing upon these results, we propose a new boostin algorithm—a field where
our theoretical settings are especially applicable.

A similar attempt can be found in [15]] where a boosting algorithm is presented,
based on the above intuition. However, no proof is provided that the algorithm does
result in agreeing classifiers nor for the advantage of such an agreement. A proof for the
latter (in a more general settings) was provided by Dasgupta et al. in [[L6]. Nevertheless,
for the proof to hold one still has to use the strong assumption of view-independence
(Equation [I). Another example for the use of unlabeled examples in boosting can be
found in [[19]).

2 The Value of Agreement

A typical approach in the supervised learning model is to design an algorithm that
chooses a hypothesis that in some way best fits the training sample. We will show that
an advantage can be gained by taking several such learning algorithms and demanding
that they not only best learn the training set but also ‘agree’ with each other on a set of
extra unlabelled examples.

The discussion below involves several learning algorithms and their accompanying
hypothesis spaces. To avoid confusion, any enumeration or index that relates to different
learners or hypotheses is enumerated using superscripts (typically /). All other indices,
such as algorithm iterations and different examples, are denoted using a subscript.

2.1 Preliminaries

Since the learning algorithm is only given a finite sample of examples, it can only se-
lect a hypothesis based on limited information. However, the task of the algorithm is
a global one. The resulting classifier f must perform well with respect to all examples
in X. The probability of error P ({(x,y) : f(x) # y}) must be small. In order to transfer
the success of a classifier on the training set to the global case, there exist numerous
generalization bounds (two such theorems will be given below). Typically these theo-
rems involve some measure of the complexity or richness of the available hypothesis
space. If the hypothesis space is not too rich, any hypothesis able to correctly classify
the given examples cannot be to far from the target distribution. However, if H is very
rich and can classify correctly any finite sample using different functions, success on a
finite sample does not necessarily imply good global behavior.

As a complexity measure, we use the Rademacher Complexity (see [2]), which is
particularly useful in the boosting scenario.

Definition 1. Ler Xi,...,X, be independent samples drawn according to some distri-
bution P on a set X. For a class of functions F, mapping X to R, define the random
variable

R, (F)=

ZGz

sup | —
feF |

! For an excellent introduction to boosting, the reader is referred to [[1]].
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where the expectation is taken with respect to G1,...,0, , independent uniform {£1}-
valued random variables. Then the Rademacher complexity of F is R, (F) = ER, (F)
where the expectation is now taken over X1, ..., X,.

As an example, we present the following generalization bound(adapted from Theorem 3
in [1] and proved in [3]]).

Theorem 1. Let F be a class of real-valued functions from X to [—1,+1] and let
0 € [0,1]. Let P be a probability distribution on X x {—1,+1} and suppose that a
sample of N examples S = {(x1.y1),...,(%n,,Yn,)} is generated independently at ran-
dom according to P. Then for any integer N, with probability at least 1 — & over samples
of length ny, every f € F satisfies

2Ry (F) . [10g(2/9)

P(y # sign(f(x))) < L2(f) + = 2,

where L9(f) = L nﬁ I(yif(x;) <0)and I(yif(x;) <0) =1ifyif(x;) <0 and O other-
*i=1

wise.

Theorem [l introduces a new concept named margin.

Definition 2. The margin of a function h: X — [—1,1] on an example x € X with a
label y € {£1} is yh(x).

Margins have been used to give a new explanation to the success of boosting algorithms,
such as AdaBoost [[17], in decreasing the global error long after a perfect classification
of the training examples has been achieved [4]. Typically, one would expect a learning
algorithm to eventually over-fit the training sample, resulting in an increase in global
erro

Theorem [Tl represents a rather general type of generalization bounds. Instead of as-
suming that the labels are generated by one of the hypotheses in H, it gives a connection
between the empirical error on samples drawn from any distribution and the global ex-
pected error. As can be seen, the complexity of H plays a crucial role in this relation.
Hence, if one was able to reduce the hypothesis space H without harming its ability to
fit the sampled data, the resulting classifier is expected to have a smaller global error.

2.2 Formal Settings

Let H',... H" be a set of hypothesis spaces, each with a fitting learning algorithm, A’.
Further suppose that all learning algorithms are forced to agree and output hypotheses
that agree with probability 1. If it is further assumed that the hypothesis that best fits the
training set belongs to every H' (thus available to all algorithms), this scheme produces
a set of hypotheses from a potentially much smaller hypothesis spaces which are just as

2 AdaBoost does eventually over-fit the data, if run long enough. However this happens at a
much later stage then originally expected.
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good on the training sample. Hence, the generalization capability of such hypotheses, as
drawn from theorems such as Theorem/[I] is potentially much better than the hypotheses
outputted from any algorithm operating alone.

While the above discussion would yield the expected theoretical gain, it is very hard
to implement. First, demanding that the algorithms output hypothesis that agree with
probability 1 entails an ability that is unlikely to be easily available. Typically the dif-
ferent hypothesis spaces would consist of classifiers as different as neural networks and
Bayes classifiers. It is unrealistic to demand that the hypothesis spaces will have an
intersection which is rich enough to be useful to correctly classify different target dis-
tributions. While this might be feasible for L = 2 (such as the assumption in [3]) it is
highly unlikely for a bigger number of learners. We will therefore present a more re-
laxed agreement demand, along with a simple way of checking it: unlabeled examples.

Definition 3.

1. Define the variance of avectorin REby V(y!,... .yb) =1 35 | (yl)2 —(+35, yl)2 .
2. Furthermore, define the variance of a set of classifiers f', ..., f* to be the expected
variance on examples from X, i.e., V (f1 b ,fL) =EV (f1 (x),... ,fL(x)).

We will use the variance of a set of classifiers in the following relaxed definition of
intersection as a measures of their disagreement.

Definition 4. For any v > 0, define the v-intersection of a set of hypothesis spaces,
H', ... H" to be:

=

v— H’:{fl,...,fL v, fl e H, andV(fl,...,fL)gv}.

=1

In effect, the v-intersection of H', ..., H contains all the hypotheses whose difference
with some of the members of other hypothesis spaces is hard to discover. We use this
relaxed definition of intersection as the space from which the algorithms can draw their
hypotheses. Note that for v = 0, the 0-intersection is precisely the set of hypotheses that
might be outputted when the algorithms are required to agree with probability 1.

As mentioned before, unlabeled examples will be used to measure the level of agree-
ment between the various learners. Therefore, let U = {u /};il be a set of unlabeled ex-
amples, drawn independently from the same distribution P but without the label being
available. We first show that if enough unlabeled examples are drawn, the disagreement
measured on them is a good representative of the global disagreement. To this end we
define a new hypothesis space V(H', ..., H") and a target distribution P to be used in a
generalization bound resembling Theorem 1

Definition 5.

1 LetV (H',....HY) ={Vo(f',....fF) : fLeH',..., f* € H } where

Vo(fl,...,f"): X —[0,1]isdefined by: Vo (f',....f£) (x) =V (f' (x),..., fL(x))
2. Let P be a probability distribution over X x [0,0] which is defined by:

VA C X x [0,00] P(A) =P ({(x,y) € X x Y : (x,0) €A}).



100 B. Leskes

In essence, P labels all examples in X with 0, while giving them same marginal
probability as before.

Before we can use the generalizing bound, we need to establish the Rademacher com-
plexity of the new hypothesis space V(H',... HE).

Lemma 1. R, (V (Hl,...,HL)) < 8max; R, (Hl).

Proof. Using Theorem 12 from [2], which gives some structural properties of the
Rademacher complexity, the result follows from the following fact: V (H '...H L) C
£ 210 (H)+[~0 (7 T H')] where F'+F2= {f1+f*: f'€F', f> € F?}. 0 (F)=
{0of: f€F}andd(z) =z Note that ¢ is Lipschitz on 9 C [—1,+1] with Ly = 2.

Before proving the main theorems of the section, we present the following generaliza-
tion bound (adapted from [2l]). This theorem allows the use of an arbitrary loss function
and does not use the concepts of margins.

Theorem 2. Consider a loss function L : Y x R — [0,1] and let F be a class of func-
tions mapping X to Y. Let { (x;,y;) }i_, be a sample independently selected according to
some probability measure P. Then, for any integer n and any 0 < 8 < 1, with probability
of at least 1 — & over samples of length n, every f € F satisfies

8log (2/9)

EL(Y,f(X)) <E,L(Y, f(X))+Ry (LoF) + "

where B, is the expectation measured on the samples and

LoF ={(x,y) — L(y,f(x))— L(y,0) : f€F}.

The scene is now set to give the first of the two main theorems of this section—a con-
nection between function’s agreement on a finite sample set and their true disagreement:
Theorem 3. Let H',... ,H" be sets of functions from X to Y and let U = {uj}j“:] be
a set of unlabeled examples drawn independently according to a distribution P over
X X . Then for any integer n and 0 < 8 < 1, with probability of at least 1 — & every set
of functions f' € H', 1 = 1...L satisfies:

WﬂrnjﬂsVU%UW#H%mWRAHU+w§@%%9

where \7( £, L) is the sampled expected variance, as measured on U = {u j}"“

j=1
Proof. The theorem follows directly from Theorem 2] when applied to the function set
V(H',...,H") with P as target distribution. The loss function is defined by £ (y,z) =
min{|y—z[,1}.

Theorem 3l allows us to use a finite set of unlabeled examples to make sure (with high
probability) that the classifiers selected by the learning algorithms are indeed in the
desired v-intersection of the hypothesis spaces. This allows us to adapt generalization
bounds to use smaller hypothesis spaces. As an example, we present an adapted version
of Theorem/[I
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Theorem 4. Let H',... H" be a class of real-valued functions from X to [—1,+1] and
let © € [0,1]. Let P be a probability distribution on X x {—1,4+1} and suppose that
a sample of ng labeled examples S = {(x I ])}';;1 and ny unlabeled examples U =
{u j}';.i] is generated independently at random according to P. Then for any integer n,

v>0,0<0<1andn, such that 8max; R, (Hl) + 8In(4/5) < %, with a probability

ny
at least 1 — 8, every f' € H',..., f&' € H- whose disagreement V on U is at most 3
satisfies

2R, (v—NH'
RN ey
0 2ng

VIP(y # sign(f'(x))) < L°(f) +

where LO(f!) = % 'nill (yif'(xi) <8).
=

Proof. By using Theorem [3] to reduce the hypothesis space, Theorem [I] can be applied

to v —(H!. By the union bound, the probability that the procedure fails is at most
1]

S .8 _

8,85

To conclude this section, we note that the proposed settings has the following de-
sired property: it doesn’t help to have duplicate copies of the same hypothesis space.
To have any advantage, v — () H' must be considerably smaller then any of the base

i
hypothesis spaces. Therefore, using only duplicate copies of the same hypothesis space

H=H",...H' gives v—(H' = H and hence no improvement. Furthermore, any du-

i
plicates within the set of different hypothesis spaces can be removed without changing
the results.

2.3  Reduction of Labeled Examples

The previous section presented a formal setting where agreement was used to reduce
the complexity of the set of possible hypotheses. The immediate implication is that
training error serves as a better approximation for global true error. Therefore, for a
given number of labeled examples, if the learning algorithm has produced a classifier
with a low training error one can expect a lower global error. However this reduction in
complexity can be also viewed from a different, though very related, point of view.
Since when given the right hypothesis space most algorithms can reduce the training
error to a very low level, increasing the number of labeled examples gives a mean to
decrease the two other terms in generalization bounds: the complexity of the hypothesis
space and the certainty in the success of the whole procedure (8). Using more labeled
examples allows using a lower & value without hindering the expected error of the re-

sulting classifier (for example, Theorem[Tlinvolves a 4 / % term). The second result
of increasing the number of labeled examples is reduction in the Rademacher complex-
ity (or similar complexity terms). Therefore, decreasing the term relating to hypothesis

space complexity, enables to use less labeled examples while achieving the same bound.
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Algorithm 1. Agreement Boost
Denote F (g!,...,g5) =Xk 121 ver (= ngl(Xj))—i—nLZ;’“ler( (u;)) where

L 2
Vi) =1 3 &'w)? - {% ) gl(u)} ,M € RT is some positive real number and er : R — R is
=1 =1

some convex, strictly increasing function with continuous second derivative.

1. Setg! =0fori=1...L.
2. Iterate until done (counter t)'

(a) Iterate over/=1.
i. Setw(x;) =er ( Vi !(xj))y;/Z for all (x,y;) € S and
wi(uj) —Zn‘LZZ .8 (uj) g (uj)|er’ (V(uj)) /Z foralluj € U where Z is a

renormalization factor s.t. ¥ w(x;) —Q—Zw(uj) =1
x/ uj

Use y(u;j) = sign <Z 214:1 g (uj) —gl(uj)> as pseudo-labels for u;.
ii. Receive hypothesis ftl from learner / using the above weights and labels.
iii. Find a, > 0 that minimizes F (g!,...,¢' + ol f!,...,gb).
iv. Setgl =g —Q—(x,f,
3. Output classifier sign(g') whose error on the samples is minimal out of the L classifiers.

To illustrate this consider Blumer et al. (Theorem 2.1.ii in [6]]) concerning the simple
case of consistent learners. With high probability, a sample of size
max{4 log g, logI—S} is sufficient to disqualify any function in H that is too ‘far’
from the target f . If H is made smaller, the number of functions which need to be ex-
cluded is reduced. Therefore, less labeled examples are needed in order to exclude high
error functions.

Generalization bounds such as those presented before typically deal with over-fitting
using the following idea: if the algorithm is given enough labeled examples it will not
over-fit. Since the training sample is representative enough of target function, specializ-
ing in it does no harm. In the extreme, this leads to theorems such as the one of Blumer
et al. concerning consistent learning algorithms. In the setting proposed here, the learn-
ing algorithm needs not only fit its training data but also agree with a couple of other
algorithms. If the algorithms are sufficiently different, forcing them to agree inhibits
their specialization on the training data, allowing to use a less representative training
sample, or less labeled examples.

3  The Algorithm

In this section, we propose a new boosting algorithm named AgreementBoost (Algo-
rithm [I)), which exploits the benefits suggested by the theory presented in the previ-
ous section. Like AdaBoost, the algorithm is designed to operate in Boolean scenarios
where each example can belong to one of two possible classes denoted by £1.

As in many boosting algorithms, AgreementBoost creates combined classifiers or
ensembles. However, instead of just one such classifier, AgreementBoost creates L en-
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sembles, one for each hypothesis space. The ensembles are constructed using L under-

lying learning algorithms, one for each of the L hypothesis spaces {H’ }1L= |- At each
iteration, one of the learning algorithms is presented with a weighing of both labeled
and unlabeled examples in the form of a weight vector w(x) and pseudo-labels for the
unlabeled examples (y(u)). The underlying learner is then expected to return a hypoth-
esis f! with a near-optimall edge: y= ¥ w(x)yiff(x) + 3 wiug)y(u;) f(u)).
xj,yj)€S ujet

The proposed AgreementBoost car(l be described as a particular instance of Any-
Boost [18], a boosting algorithm allowing for arbitrary cost functions. Agreement-
Boost’s cost function F' has been chosen to incorporate the ensembles’ disagreement
into the normal margin terms. This is achieved using a weighted sum of two terms:
an error or margin-related term (2{‘21 2’};1 er (—y jgl (x j))) and a disagreement term
Z;f”:l er (V (u;)). Despite of the fact that the these terms capture different notions, they
are very similar. Both terms use the same underlying function, er(x), to assign a cost
to some example-related measure: The first penalizes low (negative) margins while the
second condemns high variance (and hence disagreement). AgreementBoost allows for
choosing any function as er(x), as long as it is convex and strictly increasing. This free-
dom allows for using different cost schemes and thus for future cost function analysis
(as done, for example, in [[18]). In the degenerate case where no unlabeled examples are
used (n, = 0) and €* is used as er(x), AgreementBoost is equivalent to L independent
runs of AdaBoost (using the L underlying learners).

4  Proof of Convergence

In this section, we give a convergence proof for Algorithm[Il The proof considers two
scenarios. The first assumes that the intersection of all conv (H ! ) is able to correctly
classify all labeled examples using classifiers which agree on all unlabeled examples.
Under this assumption, we show that the algorithm will produce classifiers, which in
the limit are fully correct and agree on all unlabeled examples. In other cases, where
this assumption is not valid, the algorithm will produce ensembles which minimize a
function representing a compromise between correctness and agreement.

Both Mason et al. [18]] and Rétsch et al. [20]] provide similar convergence proofs for
AnyBoost-like algorithms. While both proofs can be used (with minor modifications) in
our settings, they do not fully cover both scenarios. The proof in [20] demands that the
sum of the o coefficients will be bounded and thus cannot be used in cases where the
theoretical assumptions hold. This can be seen easily in the case of AdaBoost, where
a fully correct hypothesis will be assigned an infinite weight. While AgreementBoost
will never assign an infinite weight to a hypotheses (due to the disagreement term), it
is easy to come up with a similar scenario where the coefficient sum grows to infinity.
In [18], Mason et al. present a theorem very similar to Theorem [5] below. However,
they assume that the underlying learner performs perfectly and always returns the best
hypothesis from the hypothesis space. Such a severe assumption is not needed in the

3 For the exact definition of ‘near-optimal’, see Section[]
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proof presented here. Furthermore, due to the generality of AnyBoost, the result in [[18]
apply to the cost function alone and is not translated back to training error terms.

The proofs below are based on two assumptions concerning the learning algorithms
and the hypothesis spaces. It is assumed that when presented with an example set S and
a weighing w(x), the underlying learning algorithms return a hypothesis f ! whose edge

is at least Smax | Y, w(x;)y;f(x;) |, for some & > 0. The second assumption concerns
feH! \ x;es

the hypothesis spaces: it is assumed that for every / and every f' € H' the negation of

f'is also in H i.e.: f € H' = —f € H'. This allows us to use absolute value in the

previous assumption:

for some 6 > 0.

Z w(x; yjf (xj) > dmax

X;€S feH!

Z w x] y]f('xl)

x;€S

In the Lemmas and Theorems to follow, we will sometimes assume that the hy-
pothesis spaces are finite. Due to the fact that there is only finite amount of ways to
classify a finite set of examples with a £1 label, if some of the hypothesis spaces are
infinite it will be indistinguishable when restricted to S and U. Therefore, without loss
of generality, one can assume that the number of hypotheses is finite.

The convergence of the algorithm is proven taking a different point of view to the
ensembles built by the algorithm. The ensembles can be seen as a mix of all possible
functions in the hypothesis spaces rather then as an accumulation of hypotheses:

Definition 6.

1. Let H' = { fl }l o be an enumeration of functions in H'. I, One can rewrite the en-

sembles g' built by AgreementBoost as functions from X x R 10 R: g (x,p) =
ZBffil(x)forBl:( II,BIZ,...)E]R|H[|andl=1...L. Further denote = (B!,...,BL).
1

Note that Bl is the sum of all o/l such that f! = f.

2. Let the variance of ', ..., g on an example ube V(u, )=V (g" (u,p"),. .., g"(u,p")).
3. Whenever it is clear from context what are the B parameters, V (u) and g' (u) will
be used for brevity.
4. Let er : R — R™ be a convex monotonically increasing function. Denoting E(B) =
lexﬁ;ler(—ngl(xj)) and D(B) = LZ?“ ver(V (uj)), the function F becomes
F(B) = E(B) +nD(B) for somen > 0.

F(PB) represents a weighing between correctness and disagreement. E (), being a sum
of loss functions penalizing negative margins, relates to the current error of the ensem-
ble classifiers. D(P) captures the ensembles’ disagreement over the unlabeled examples.

Using the above notations and the new point of view, the edge of hypotheses be-
comes proportional to the partial derivative of F (3) with respect to the corresponding
coefficient. Replacing the examples’ weight and labels according to the definition of

AgreementBoost, we have that Y, w(x;)y;f (x;)+ X w(u)y(u;)f!(u;) = éggl (B).
X;€S u; el
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Therefore the underlying learners return hypotheses whose corresponding partial deriva-

tives are bounded by — BB’ F(B) > dmax — a—B, F(B)= 6max

that the partial derivative with respect to the returned functlon coefficient is non-positive
and hence the choice of o/ in step 2.a.ii of Algorithm [[lis in fact the global optimunﬂ
over all R. Since in every iteration only one coefficient is changed to a value which min-
imizes F(B), Algorithm[Tlis equivalent to a coordinate descent minimization algorithm
(for more information about minimization algorithms see, for example, [8]]).

As a last preparation before the convergence proof, we show that F(B) is convex.
Apart from having other technical advantages, this guarantees that the algorithm will
not get stuck in a local minimum.

o8 ' (B)|. Note that this ensures

Lemma 2. The function F (B) is convex with respect to P.

Lemma 3. Let {B,} be a sequence of points generated by an iterative linear search
algorithm A, i.e., Buy1 = A(B,) minimizing a non-negative convex function F € C2. De-
note the direction in which the algorithm minimizes F in every step by v, = ﬁ
and F,(a) =F (B, + owy,) (i.e., A minimizes F, (o) in every iteration by a linear search).
Then, if 3M,m > 0 € R such that (Vn) {m < % (o) < M] for every ‘feasible’ o (i.e.,

when Fy(0t) < F(By)) then lim 4 (0) = 0 and Tim [[Bys1 —Ball.. =0

Proof. The results is obtained by using a first order Tailor expansion of F, (ct) and
bounding the remainder with m and M.

Theorem 5. For some non-empty sets of labeled examples S and unlabeled examples
U, suppose that the underlying learners are guaranteed to return a hypothesis f such

that ¥ w(x)y.f(x) > 8 (m]gx
ing vg(x) of their examples. Further let er : R — R be a non constant convex mono-
tonically increasing function such that:
1. er € C* and er' (0) > 0.
2. IM € R™ for which er(x) < max{L(|S| —|—T]|U\)er(0),%(\5| +n |U|)er(0)} im-
plies that er” (x) < M.
Then it holds that hm IVF(B,)

S w(x)ycf(x) D for some constant & > 0 and every weigh-
X

=0.

Hoo

Proof. We first transform the assumption with respect to er(x) into the bounds nec-

oF

essary for Lemma 3 obtaining that nlgrolo T = 0 where [/, and i, are the indices of

the hypothesis returned by the underlying learner at iteration n. Using the assumptions

0]

The proof is concluded using an induction on the distance of the hypothesis spaces from
L, ie., Hin {n=1) modL  pr(ly—L+1) modL

with respect to the underlying learner, it follows that (Vi € Il”) [lim 'aaﬁ—fn Bn)| =
n—oo ;

4 This involves the convexity of F () that will be discussed below.
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Theorem 6. Under the assumptions of Theorem[dwith the additional assumption that
er(x) is strictly monotonic and that all underlying hypothesis spaces are able to cor-
rectly classify the data using finite ensemble classifiers from the intersection of the hy-
pothesis spaces, both the error and the disagreement of the ensemble classifiers con-
structed by Algorithm[Il converge to 0.

Proof. Denote the correct classifiers as & 2[3’ f’ and by B the corresponding coeffi-

cient vector (Bl . The correctness of the constructed classifiers is established

Bl

by looking at the directional derivative 2 5 g1, L =0

B " B
and therefore %€ BB BB The convergence of the disagreement term D (B) is shown by
deriving a contradiction. This is done by bounding the distance of B, from the agree-

ment group B = {B:Vu € U, V(u,B) = 0}. Suppose that a subsequence D(B,,) > € for
some € > (. Since the tangent to a convex function is always an under estimator, the
tangent to D(f3,,,) in the direction of B has to drop at least € between f3,,, and the near-
est point in B. This implies that it must have a negative slope that is bounded away
from 0. However, Theorem [3implies that the slope must converge to 0, which gives the
contradiction.

Note that by the agreement of &

S Experiments

In this section we present a few experiments, testing the algorithm (and theory) pre-
sented in the previous sections. In these experiments, ¢* was used as the loss function
er(x). This gives an algorithm which is very similar to AdaBoost, with the additional
agreement requirement. In order to have a reference point, we compare the proposed
AgreementBoost algorithm to AdaBoost, which is run separately on each of the un-
derlying learning algorithms. In all experiments done, the 1 parameter is set using the
following formula: n = ;‘—;c, where ¢ is some constant. This keeps the relative influence
of the disagreement and training error terms in F roughly constant within a single series
of experiments. This compensates for the fact that the number of labeled and unlabeled
examples changes.

As a test case, we return to the problem of classifying web pages from the WebKb
database presented in [S]. The WebKb database contains 1051 web pages, collected
from the websites of computer science faculties of four different universities. For each
web page, the database contains both the words contained in the page itself (referred
to as View 1 in [5]]) and words appearing in links referring to that web pages (View 2).
The web pages are split into two classes: homepages of courses (230) and non-course
pages (821). The goal of the learning algorithms presented in this section is to correctly
classify web pages into these two classes.

In order to determine the quality of the resulting classifiers, 25% of the examples in
the database were randomly selected in each experiment and held out as a test group.
The experiments were repeated 20 times for each parameter set. All figures show the
average result and its standard error of the mean.
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Fig. 1. WebKb database, Naive Bayes applied to content and links
n=l* 5, n, =525

5.1  Agreeing with the Village Fool...

The first set of experiments on the WebKb database mimics the experiments performed
in [3]. The Naive Bayes algorithm is used as a single underlying learning algorithm,
applied to each of the so called views: Page content and words on incoming links. This
is done in a similar fashion to the toy problem, where AgreementBoost is run using the
same learning algorithm on two different aspects of an example. AgreementBoost was
allowed to run for 1000 iterations, using 525 unlabeled examples and setting N = 5¢.

As can be seen in Figure [I] the classifiers built by AgreementBoost are roughly as
good as the better of the two AdaBoost classifiers. Both AgreementBoost classifiers
perform roughly the same as the AdaBoost classifier that uses the web pages’ content.

One of the main assumptions used in Section 2l was that the underlying learners
are all capable to produce a good classifier. However, as Figure [L(b) show, this is not
the case in this experiment. While learning the links pointing to the pages produces a
classifier with very low training error, it highly over-fits the data and has a very large
test error. It is therefore not surprising that such a classifier has nothing to contribute.
Nevertheless, AgreementBoost does seem to be able to ‘choose’ the better classifier.
Despite of the fact that the two classifiers are forced to agree, the resulting consensus is
as good as the better independent classifier.

5.2  Using a Better Learner

In light of the performance of the underlying links-based algorithm, it was replaced by
a another learning algorithm which learns the web pages’ content. This new underly-
ing learner is based on a degenerate version of decision trees called tree stumps. Tree
stumps consist of only one decision node, classifying an example only according to a
single test. In these experiments, the web pages are classified by testing the number of
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instances of a single word within them. If the word has more instances then a given
threshold, the web page is classified to one class and otherwise to the other.

The results of the experiments per-
formed with the Tree Stumps algorithm 025

Agr. Béust - Naive ‘Bayes —

are presented in Figure 2l In these ex- AdaBoost - Naive Bayes ------

. Agr. Boost - Tree Stumps ---3---
periments, 526 examples were used as 0.2 AdaBoost - Tree Stumps ---o---
unlabeled examples, allowing for up to \

264 labeled examples. To perform a fair
competition and to avoid over-fitting, the

Test Error
o
o

AdaBoost was run for only 300 iterations. © o A
As can be seen, AgreementBoost iy
produces substantially better classifiers. 005 e
On average, using the full 264 labeled

example set, the tree stumps ensemble ° " 100 5 200 250
produced by AgreementBoost had 0.04 Labeled Examples

error on the test set. The naive Bayes clas-  Fig, 2. Using Naive Bayes and Tree Stumps
sifier performed even better with a 0.038 n=1x % , Ny =525

test error. In comparison, the tree stumps
ensemble constructed by AdaBoost, which was better than the corresponding naive
Bayes classifier, had a test error of 0.049.

In terms of labeled examples reduction, AgreementBoost has also produced good
results. The final test error achieved by AdaBoost using the full labeled exampled set
(264 examples), was already achieved by AgreementBoost’s classifiers using 158 la-
beled examples—a reduction of 40%.

6 Conclusions and Discussion

In the first section of this paper, we have proven a new generalization bound where
unlabelled examples are used to reduce the penalty corresponding to hypothesis space
complexity. Demanding from the underlying learners to agree limits the amount of hy-
potheses at their disposal and thus reduces the complexity of their effective hypothesis
spaces. However, the theorems do not allow to foresee nor to estimate the magnitude of
the improvement. In the set of experiments which we have performed, a reduction of up
to 40% was observed in the number of labeled examples necessary in order to achieve a
desired classification error. More theoretical and experimental work is needed to better
quantify this advantage.

While agreement successfully reduces the number of labeled examples, it is not
without a price. Increasing the importance assigned to the learners’ agreement causes
a reduction in the algorithm’s convergence speed. Since AgreementBoost constructs its
ensembles iteratively, this results in larger and computationally more expensive classi-
fiers. The exact trade-off between agreement weight and convergence speed is yet to be
established.

When designing AgreementBoost, we have opted for simplicity and thus avoided
using many of the possible improvements and modifications, many of which are non-
trivial and justify new research projects. We name a few:
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Many of the improvements of AdaBoost suggested in the literature can adapted
for AgreementBoost. Modifications like regularization terms for the hypotheses
weights and soft margins will probability improve that algorithm’s performance.
For simplicity, we have kept the agreement weight (1) constant along the run. How-
ever, we suspect that changing it during the algorithm’s run might lead to superior
results.

Following previous work, we have performed all experiments using only two under-
lying learners. However, the theoretical framework is quite more general, allowing
for an arbitrary number of underlying learners. Further experimental study involv-
ing more learners is required.
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