Computational Learning Theory

[read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension
- Mistake bounds
Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented
Training Examples for EnjoySport

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>

What is the general concept?
Representing Hypotheses

Many possible representations

Here, h is conjunction of constraints on attributes

Each constraint can be

• a specific value (e.g., $Water = Warm$)
• don’t care (e.g., “$Water =$?”)
• no value allowed (e.g., “$Water=\emptyset$”)

For example,

\[
\begin{array}{ccccccc}
\text{Sky} & \text{AirTemp} & \text{Humid} & \text{Wind} & \text{Water} & \text{Forecast} \\
\langle \text{Sunny} & ? & ? & \text{Strong} & ? & \text{Same} \rangle
\end{array}
\]
Prototypical Concept Learning Task

• Given:

 – Instances X: Possible days, each described by the attributes Sky, $AirTemp$, $Humidity$, $Wind$, $Water$, $Forecast$

 – Target function c: $EnjoySport : X \rightarrow \{0, 1\}$

 – Hypotheses H: Conjunctions of literals. E.g.

 $\langle ?, \text{Cold}, \text{High}, ?, ?, ? \rangle$.

 – Training examples D: Positive and negative examples of the target function

 $\langle x_1, c(x_1) \rangle, \ldots, \langle x_m, c(x_m) \rangle$

• Determine:

 – A hypothesis h in H such that $h(x) = c(x)$ for all x in D?

 – A hypothesis h in H such that $h(x) = c(x)$ for all x in X?
Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if $h(x) = c(x)$ for each training example $\langle x, c(x) \rangle$ in D.

$\text{Consistent}(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \; h(x) = c(x)$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$VS_{H,D} \equiv \{ h \in H | \text{Consistent}(h, D) \}$
Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher
 • Learner proposes instance x, teacher provides $c(x)$

2. If teacher (who knows c) provides training examples
 • teacher provides sequence of examples of form $\langle x, c(x) \rangle$

3. If some random process (e.g., nature) proposes instances
 • instance x generated randomly, teacher provides $c(x)$
Sample Complexity: 1

Learner proposes instance x, teacher provides $c(x)$ (assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

- pick instance x such that half of hypotheses in VS classify x positive, half classify x negative
- When this is possible, need $\lceil \log_2 |H| \rceil$ queries to learn c
- when not possible, need even more
Sample Complexity: 2

Teacher (who knows c) provides training examples (assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by learner

Consider the case $H =$ conjunctions of up to n boolean literals and their negations

 e.g., $(\text{AirTemp} = \text{Warm}) \land (\text{Wind} = \text{Strong})$, where $\text{AirTemp, Wind, ...}$ each have 2 possible values.

- if n possible boolean attributes in H, $n + 1$ examples suffice
- why?
Sample Complexity: 3

Given:

- set of instances X
- set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value $c(x)$ for each

Learner must output a hypothesis h estimating c

- h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications
True Error of a Hypothesis

Definition: The true error (denoted $\text{error}_D(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$\text{error}_D(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$
Two Notions of Error

Training error of hypothesis h with respect to target concept c
- How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c
- How often $h(x) \neq c(x)$ over future random instances

Our concern:
- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero (i.e., $h \in VS_{H,D}$)
Exhausting the Version Space

Definition: The version space $VS_{H,D}$ is said to be ε-exhausted with respect to c and \mathcal{D}, if every hypothesis h in $VS_{H,D}$ has true error less than ε with respect to c and \mathcal{D}.

$$(\forall h \in VS_{H,D}) \ error_D(h) < \varepsilon$$
How many examples will ε-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \varepsilon \leq 1$, the probability that the version space with respect to H and D is not ε-exhausted (with respect to c) is less than

$$|H|e^{-\varepsilon m}$$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $\text{error}(h) \geq \varepsilon$

If we want to this probability to be below δ

$$|H|e^{-\varepsilon m} \leq \delta$$

then

$$m \geq \frac{1}{\varepsilon}(\ln |H| + \ln(1/\delta))$$
Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least \((1 - \delta)\) that

\[
every \ h \ in \ V S_{H,D} \ satisfies \ error_D(h) \leq \epsilon
\]

Use our theorem:

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]

Suppose \(H\) contains conjunctions of constraints on up to \(n\) boolean attributes (i.e., \(n\) boolean literals). Then \(|H| = 3^n\), and

\[
m \geq \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))
\]

or

\[
m \geq \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))
\]
How About *EnjoySport*?

\[m \geq \frac{1}{\varepsilon} (\ln |H| + \ln(1/\delta)) \]

If \(H \) is as given in *EnjoySport* then \(|H| = 973 \), and

\[m \geq \frac{1}{\varepsilon} (\ln 973 + \ln(1/\delta)) \]

... if want to assure that with probability 95%, \(VS \) contains only hypotheses with \(\text{error}_D(h) \leq .1 \), then it is sufficient to have \(m \) examples, where

\[m \geq \frac{1}{.1} (\ln 973 + \ln(1/.05)) \]

\[m \geq 10(\ln 973 + \ln 20) \]

\[m \geq 10(6.88 + 3.00) \]

\[m \geq 98.8 \]
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_D(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $size(c)$.
Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don’t assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data

- What is sample complexity in this case?

\[
m \geq \frac{1}{2\epsilon^2} (\ln |H| + \ln(1/\delta))
\]

derived from Hoeffding bounds:

\[
Pr[error_D(h) > error_D(h) + \epsilon] \leq e^{-2m\epsilon^2}
\]
What if H is not finite?

• Can’t use our result for finite H

• Need some other measure of complexity for H
 – Vapnik-Chervonenkis dimension!
Shattering a Set of Instances

Definition: a *dichotomy* of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is *shattered* by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
Three Instances Shattered

Instance space \(X \)
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.
VC Dim. of Linear Decision Surfaces

(a)

(b)
Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ϵ-exhaust $V S_{H,D}$ with probability at least $1 - \delta$?

$$m \geq \frac{1}{\epsilon} \left(4 \log_2(2/\delta) + 8 VC(H) \log_2(13/\epsilon) \right)$$
Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find-S

Consider Find-S when $H = \text{conjunction of boolean literals}$

\begin{center}
\begin{tabular}{|p{\textwidth}|}
\hline
\textbf{FIND-S:} \\
\begin{itemize}
\item Initialize h to the most specific hypothesis \\
\quad $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots l_n \land \neg l_n$
\item For each positive training instance x
\quad Remove from h any literal that is not satisfied by x
\item Output hypothesis h.
\end{itemize}
\hline
\end{tabular}
\end{center}

How many mistakes before converging to correct h?
Mistake Bounds: Halving Algorithm

1. Initialize VS to all hypotheses in H
2. For each training example,
 • remove from VS all hyps. that misclassify this example

Consider the Halving Algorithm:

• Learn concept using version space
 CANDIDATE-ELIMINATION algorithm

• Classify new instances by majority vote of
 version space members

How many mistakes before converging to correct h?

• ... in worst case?

• ... in best case?
Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The **optimal mistake bound** for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in \text{learning algorithms}} M_A(C)$$

$$VC(C) \leq Opt(C) \leq M_{Halving}(C) \leq \log_2(|C|).$$
Weighted Majority Algorithm

a_i denotes the i^{th} prediction algorithm in the pool A of algorithms. w_i denotes the weight associated with a_i.

- For all i initialize $w_i \leftarrow 1$
- For each training example $\langle x, c(x) \rangle$
 * Initialize q_0 and q_1 to 0
 * For each prediction algorithm a_i
 - If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$
 - If $a_i(x) = 1$ then $q_1 \leftarrow q_1 + w_i$
 * If $q_1 > q_0$ then predict $c(x) = 1$
 * If $q_0 > q_1$ then predict $c(x) = 0$
 * If $q_1 = q_0$ then predict 0 or 1 at random for $c(x)$
 * For each prediction algorithm a_i in A do
 - If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

when $\beta=0$, equivalent to the Halving algorithm...
Weighted Majority

[Relative mistake bound for \textsc{Weighted-Majority}] Let D be any sequence of training examples, let A be any set of n prediction algorithms, and let k be the minimum number of mistakes made by any algorithm in A for the training sequence D. Then the number of mistakes over D made by the \textsc{Weighted-Majority} algorithm using $\beta = \frac{1}{2}$ is at most

$$2.4(k + \log_2 n)$$