Outline

- Two formulations for learning: Inductive and Analytical
- Perfect domain theories and Prolog-EBG
A Positive Example
The Inductive Generalization Problem

Given:
- Instances
- Hypotheses
- Target Concept
- Training examples of target concept

Determine:
- Hypotheses consistent with the training examples
The Analytical Generalization Problem

Given:
- Instances
- Hypotheses
- Target Concept
- Training examples of target concept
- Domain theory for explaining examples

Determine:
- Hypotheses consistent with the training examples and the domain theory
An Analytical Generalization Problem

Given:

- **Instances**: pairs of objects
- **Hypotheses**: sets of horn clause rules
- **Target Concept**: Safe-to-stack(x,y)
- **Training Example**: Safe-to-stack(OBJ1,OBJ2)

 - On(OBJ1,OBJ2)
 - Isa(OBJ1,BOX)
 - Isa(OBJ2,ENDTABLE)
 - Color(OBJ1,RED)
 - Color(OBJ2,BLUE)
 - Volume(OBJ1,.1)
 - Density(OBJ1,.1)
 ...

- **Domain Theory**:

 Safe-To-Stack(x,y) :- Not(Fragile(y))
 Safe-To-Stack(x,y) :- Lighter(x,y)
 Lighter(x,y) :- Weight(x,wx), Weight(y,wy), Less(wx,wy)
 Weight(x,w) :- Volume(x,v), Density(x,d), Equal(w, v*d)
 Weight(x,5) :- Isa(x, ENDTABLE)
 ...

Determine:

- Hypotheses consistent with training examples and domain theory
Assumes domain theory is *correct* (error-free)

- Prolog-EBG is algorithm that works under this assumption
- This assumption holds in chess and other search problems
- Allows us to assume explanation = proof
- Later we’ll discuss methods that assume *approximate* domain theories
Initialize hypothesis = {}

For each positive training example not covered by hypothesis:

1. **Explain** how training example satisfies target concept, in terms of domain theory

2. **Analyze** the explanation to determine the most general conditions under which this explanation (proof) holds

3. **Refine** the hypothesis by adding a new rule, whose preconditions are the above conditions, and whose consequent asserts the target concept
Explanation:

Safe-to-Stack(OBJ1,OBJ2)

Lighter(OBJ1,OBJ2)

Weight(OBJ1, 0.6)

Weight(OBJ2,5)

Volume(OBJ1,2) Density(OBJ1,0.3) Equal(0.6, 2*0.3) Less-Than(0.6, 5) Type(OBJ2,ENDTABLE)

Training Example:
Computing the Weakest Preimage of Explanation

Safe-to-Stack(OBJ1,OBJ2)

Safe-to-Stack(x,y)

Lighter(OBJ1,OBJ2)

Lighter(x,y)

Weight(OBJ1, 0.6)

Weight(x,wx)

Less-Than(0.6,5)

Weight(OBJ2,5)

Weight(y,wy)

Volume(OBJ1,2)

Volume(x,vx)

Density(OBJ1,0.3)

Density(x,dx)

Equal(0.6,2*0.3)

Equal(wx, vx*dx)

Less-Than(wx,wy)

Less-Than(wx,wy)

Weight(y,wy)

Type(OBJ2,ENDTABLE)

Type(y,ENDTABLE)
Regression Algorithm

Regress($Frontier, Rule, Expression, U_{I,R}$)

$Frontier$: the set of expressions to be regressed through $Rule$

$Rule$: a horn clause.

$Expression$: the member of $Frontier$ that is inferred by $Rule$ in the explanation.

$U_{I,R}$: the substitution that unifies $Rule$ to the training example in the explanation

Returns the list of expressions forming the weakest preimage of $Frontier$ with respect to $Rule$

1. $U_{E,R} \leftarrow$ most general unifier of $Expression$ with Consequent such that there exists a substitution S for which

 $S(U_{E,R}(Consequent)) = U_{I,R}(Consequent)$

2. Return $U_{E,R}((Frontier \cdot Consequent + Antecedent))$

Example:

Regress($\{Volume(x,vs), \; Density(x,dx), \; Equal(wx,vx*dx), \; Less-Than(wx,wy), \; Weight(y,wy), \; Weight(z,5) :- Type(z,ENDTABLE), \; Weight(y,wy), \; \{OBJ2/z\}\}$)

Consequent \leftarrow Weight(z,5)

Antecedents \leftarrow Type(z,ENDTABLE)

$U_{E,R} \leftarrow \{y/z, \; 5/wy\}; \; (S = \{OBJ2/y\})$

Result $\leftarrow \{Volume(x,vs), \; Density(x,dx), \; Equal(wx,vx*dx), \; Less-Than(wx,5), \; Type(y,ENDTABLE)\}$
Lessons from Safe-to-Stack Example

- Justified generalization from single example
- Explanation determines feature relevance
- Regression determines needed feature constraints
- Generality of result depends on domain theory
- Still require multiple examples
Perspectives on Prolog-EBG

- Theory-guided generalization from examples
- Example-guided operationalization of theories
- "Just" restating what learner already "knows"

Is it learning?
- Are you learning when you get better over time at chess?
 - Even though you already know everything in principle, once you know rules of the game...
- Are you learning when you sit in a mathematics class?
 - Even though those theorems follow deductively from the axioms you've already learned...