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Abstract – The VIMS workshop encompasses both virtual instru-
ments and “virtual sensors”, but historically the latter are hardly 
represented in the program.  This paper is not so much a research 
report as a friendly challenge to the VIMS community to begin 
thinking actively and creatively about this complementary aspect 
of our theme.  In particular, it raises the question of what and how 
much we need to build into a virtual sensor agent for it to pass 
something analogous to the Turing Test, i.e., for a virtual sensor, 
as a “black-box”, to be indistinguishable from a real sensor. 

Keywords – sensor modeling, sensor simulation, virtual sensor, 
wished-for sensor, Turing Test 

I. INTRODUCTION 

The basic premise of this paper is that – in contrast to artifi-
cial intelligence, which cannot yet create systems that pass 
the Turing Test [1] – artificial sensing, i.e., sensor agents 
built to "stand in" for missing or unavailable real sensors, 
probably can already be built with sufficient realism that they 
could pass an analogous test.  Its goal is to challenge the 
VIMS community to flesh out this hypothesis and define an 
agenda that will lead eventually to agreement on how we will 
know when we have succeeded. 

VIMS workshop papers typically address issues relating to 
real sensors that are monitored, processed, interpreted, and 
displayed by virtual instruments, i.e., by software systems 
and tabula rasa displays that simulate in software and graph-
ics all but the lowest-level portions of the hardware that is 
normally found in traditional signal conditioning, processing, 
fusing, and reporting instruments.  The complementary set of 
topics relating to “virtual sensors” is also within the scope of 
the VIMS workshop theme, but with only a few exceptions it 
has been absent from past programs [2][3][4].  Yet with in-
creasing capability of virtual instruments, it becomes increas-
ingly important to be able to do a convincing job of sensor 
simulation, e.g., to satisfy the need, temporarily or during 
some interim period, to substitute software agents for tempo-
rarily unavailable or not yet developed (“wished-for”) sensor 
hardware.  This will be especially necessary during periods 
when large systems and the new sensors their functionality 
demands are developed in parallel.  Such large systems are 
now under intense discussion and in some cases prototype 
development for diverse applications such as wide area envi-
ronmental monitoring, detection of clandestine attack with 

biological agents, monitoring remote areas for illegal or hos-
tile activity, etc. 

This speculative paper reports no experimental research re-
sults.  It is rather the author’s attempt to define the problem 
and to invite and challenge the VIMS workshop community 
to start thinking about, arguing about, and working inten-
sively on this heretofore neglected component of the Virtual 
and Intelligent Measurement Systems theme.  In particular, 
we work toward answering the question of whether a sort of 
“Turing Test” is appropriate for evaluating the effectiveness 
of sensor simulation agents, i.e., “virtual sensors”. 

Section II elaborates briefly on the background issues.  Sec-
tion III summarizes briefly previous work on virtual sensor 
topics.  Section IV raises the question “is there a Turing Test 
for virtual sensors?”.  Section V discusses generalized classes 
of data sources and data sinks, e.g., sensors, databases, and 
reporters.  Section VI discusses the practical issues involved 
in synthesizing an interim working model.  Finally, Section 
VII briefly recites some conclusions and opportunities. 

II. BACKGROUND 

Sensor modeling and simulation is required to support devel-
opment and verification of, for example, large automated 
systems for numerous continuous monitoring tasks, e.g., 
those already mentioned above, and other such as small-scale 
weather extremes, environmental resource monitoring and 
protection, large-scale fundamental research such as meas-
urement of continental drift, detection of gravitational radia-
tion, and many others.  These systems typically involve three 
main components: 

• One or more real-time databases; 

• One or more live sensor systems; and 

• A system controller with appropriate human interface. 

Sensor modeling and simulation is required in this context 
because large developmental systems must be validated, and 
cutting-edge deployed systems must be challenged, by some 
or all of: 

• A number of sensors substantially larger than is currently 
actually available; 



• Sensor readings that are outside the range that is cur-
rently available; 

• Sensors that are too valuable to divert, e.g., large diag-
nostic or imaging instruments; and 

• Sensors that are still “wished for”, i.e., they are plausible 
but not yet actually available, thus they should be pro-
vided for in advance in the overall system plan. 

We anticipate work toward simulating these “virtual sensors” 
with software agents that implement physically correct mod-
els of: 

• The transduction elements per se; 

• Low level signal conditioning; 

• Analog-to-digital conversion; 

• Linearization, calibration, and digital signal processing; 

• Sensor fusion and signal-to-symbol abstraction; and 

• Network communication management. 

While there are a few extant examples, summarized in Sec-
tion Error! Reference source not found., in which “virtual 
sensors” are discussed [2]-[10], the virtual sensors described 
in these references are either agents that reformat (perhaps 
taking into account some noise and error issues) data from 
real sensors, or they are ad hoc efforts that were handcrafted 
to meet the momentary needs of a specific narrow applica-
tion. 

In contrast, I would like to challenge the VIMS community to 
articulate a higher-level framework that encompasses all of 
these, and that provides machinery for systematically ad-
dressing more-or-less arbitrary applications.  This leads me to 
ask and examine exactly what must be the characteristics of a 
virtual sensor agent for it to be able to pass something analo-
gous to the Turing Test, i.e., for it as a “black-box” to be in-
distinguishable from the real sensor that the agent emulates. 

III. PREVIOUS WORK 

In work reported around 1990, Muir [5] at Sandia (previously 
and later at Carnegie Mellon University) used the term “vir-
tual sensor” in a way that is quite different from the sort of 
sensor-simulating agent that is suggested herein.  Muir used 
the term to describe an intermediate stage of data fusion and 
analysis that could usefully be regarded as a stand-in for a 
hypothetical sensor.  In [5] Muir productively applied this 
approach, theoretically and experimentally, to the problem of 
robot kinematic identification.  In this article he describes an 
approach that combines and processes, with appropriate con-
sideration of measurement errors and noise, the output of 
several real but indirect sensors (or multiple separate meas-
urements reported by a single indirect sensor when the robot 
is in different kinematic configurations) to synthesize the 

would-be outputs, errors, and noise characteristics of another 
set of unavailable but conceptually desirable direct sensors. 

In previous editions of the VIMS workshop series (including 
its predecessors with different names in the same evolution-
ary lineage) and in some proceedings of the parent IMTC 
conferences we find a few examples of the term “virtual sen-
sor” used in more-or-less the same way intended herein, al-
though still more oriented toward abstraction of real sensor 
outputs into the hypothetical output of an imagined sensor 
than toward complete bottom-up simulation of an unavailable 
sensor.  In particular, this approach is seen in several reports 
by Groen et al of the Universiteit van Amsterdam Instituut 
voor Informatica [2], wherein they addressed several quite 
different application areas, for example, an automatic debit-
ing system [3], and a model-based robot vision [4].  It is es-
pecially useful to quote from [3], where (at the beginning of 
Section II, The Virtual Sensor Model) the virtual sensor is 
carefully defined by the following paragraph: 

In any goal-directed sensory system, a virtual sensor is a 
(conceptual) device whose output can be modeled in terms 
of the relevant characterizing parameters, and the outputs 
of other virtual sensors.  The virtual sensor modules 
should be chosen at the highest level of abstraction that 
enables a sufficiently accurate characterization of the total 
system behavior, but at which the interactions between 
various virtual sensor modules are (relatively) simple, 
both in their statistical (in)dependence and in their causal 
relationships.  In a simulated system, we have the addi-
tional demand that the virtual sensor models should be 
amenable to being validated. 

Atkinson et al at the University of West Virginia report a 
real-time automobile emission monitoring system employing 
a neural-network based virtual sensor [6], and Oosterom et al 
[7] at the Technical University of Delft report a virtual sensor 
for aircraft acceleration used in a fault detection and identifi-
cation system using fuzzy logic methods.  The latter is par-
ticularly interesting in that it the virtual sensor can be 
switched into the monitoring system in place of one of sev-
eral redundant sensors in a voting arrangement.  The ap-
proach aids identification of faulty real sensors. 

Dixon et al at Carnegie Mellon University report a virtual 
environment for modeling multiple mobile robot systems that 
includes the capability to combine real and virtual sensors 
[8].  The term "virtual sensors" is actually used in two ways, 
first, to include in the system model an agent that faithfully 
represents a real sensor in order to perform a cost-benefit 
analysis before actually purchasing and installing it, and sec-
ond, to include in the system model an agent that represents a 
"wished-for" sensor.  This inclusive definition is quite consis-
tent with the one applied herein. 

Haley et al at Purdue University report a "virtual sensor" for 
the organism Listeria monocytogenes that contaminates proc-



essed meat products [9].  Based on a model that describes the 
thermal death rate kinetics for the organism on specific type 
of processed meat surfaces and a numerical heat transfer 
model for pasteurizing the surfaces, the model returns a pre-
diction of the amount of residual organism as if a specific 
Listeria monocytogenes were available. 

Kestell et al, University of Adelaide (Australia) describe ac-
tive noise control under that employs virtual sensors [10].  
Summarizing the pros and cons of the approach, authors re-
port "in general the 'virtual energy density sensor' outper-
forms the actual energy density sensor, the actual microphone 
and the virtual microphone in terms of centering a practically 
sized zone of local control around an observer who is re-
motely located from any physical sensors; the virtual sensor 
algorithms however, are shown to be sensitive (by varying 
degrees) to short wavelength spatial pressure variations of the 
primary and secondary sound fields". 

The previous paragraphs are far from a comprehensive re-
view of the field to date, but they do provide a fair sampling 
of the range of approaches and applications that have been 
considered. 

In ending this section, it may provide us with some perspec-
tive to note, only slightly tongue-in-cheek, that if the VIMS 
community had as much chutzpah as many of our academic 
brethren, we could at this point lay claim to the field of com-
puter graphics as a subset of our general sensor modeling and 
simulation endeavor.  After all, what is computer graphics but 
the calculation of the expected signal given a geometrical 
world model probed by a given illumination model and ob-
served by one or more virtual cameras with specified world 
coordinates?  Much of the prior work mentioned above is 
quite analogous to recently highly publicized achievements in 
"virtualized reality": real sensors (cameras) capture data (im-
ages from multiple real perspectives), the data are compiled 
and compressed via construction of a world model, and arbi-
trary new perspective views are then rendered according to 
the above defining prescription for doing computer graphics. 

IV. A TURING TEST FOR VIRTUAL SENSORS? 

By now all modern real and virtual sensors can, of course, be 
presumed to be digital, networked with a system controller 
and one or more databases, and capable of two-way commu-
nication, i.e., all modern sensors can be assumed to be both 
“talkers” and “listeners”.  Simulation success can thus be 
measured – presumably by a kind of Turing Test – by exam-
ining the data emanating from a sensor node, analyzing the 
node’s responses to queries, and deciding from the character 
of this communication whether the sensor is real or virtual.  
The procedure is analogous to the famous Turing Test in arti-
ficial intelligence, wherein it is generally agreed that a com-
puter can reasonably be called intelligent if a human interact-

ing with it, e.g., via a terminal, cannot decide whether he or 
she is communicating with a computer or a human [1]. 

A valid virtual sensor is thus an agent that we cannot distin-
guish by communication alone from a real sensor.  It is im-
portant to say “by communication alone” because we can 
easily imagine circumstances under which we might surrepti-
tiously change some actual environmental parameter, e.g., the 
temperature, in a region from which a virtual sensor purports 
to be transmitting, and the virtual sensor would, of course, 
fail to respond appropriately.  This sort of physical test will of 
course always unmask a pretending agent, both in the classi-
cal artificial intelligence context and in the present virtual 
sensor context. 

Where do we imagine a virtual sensor trying to conceal its 
unrealness might be less than convincing?  It seems most 
likely that it will be at the lowest levels of the transduction - 
conditioning - conversion - processing - fusion - communica-
tion pipeline, i.e., at the level where there is real hard-to-
simulate physics at work; at the higher levels there is only 
software that processes simulator-generated data no differ-
ently from the way it processes transducer-generated data. 

How do we imagine a virtual sensor trying to conceal its un-
realness might fail?  It seems most likely that the giveaway 
will be that the simulator-generated data will be too good, 
i.e., the noise model will be recognizable as overly predict-
able.  It is again useful to reason by analogy with the well 
know computer graphics field.  How do we discern that a 
"photo realistic" image rendered by a modern high quality 
computer graphics engine is in fact a fake?  Only a few years 
ago the answer would have been that it is too simple: poly-
gon-approximating surfaces too big and too few, lighting too 
simple, shadow-colors wrong, inter-reflection ignored, back-
ground and foreground in unrealistically good focus, etc.  But 
today the answer is quite the opposite: we recognize the fake 
because it is too good!  There is no dirt, there are no 
scratches, no nicks, no scuffmarks, no fingerprints; in the 
time domain, realistic frame-to-frame fluctuation due to the 
thermal and quantum noise characteristics of real image re-
cording sensors is missing or unconvincing. 

Analogously, a plausible starting point for discussion, setting 
priorities, and designing future system-building experiments 
holds that inadequate models of noise originating in the vir-
tual transducer per se, in the virtual environment as detected 
by the virtual transducer, and in the model of the low-level 
signal processing simulation will be the key weakness that 
enables recognizing virtual vs. real sensors. 

V. SENSORS, DATABASES, AND REPORTERS 

Perhaps the simplest definition of a sensor is “a source of 
new data”.  In contrast, a database is a source of historical 



data and also a sink for both historical and new data, i.e., data 
received in the first instance from other databases and in the 
second instance from sensors.  These broad definitions of 
database and sensor keep open the potentially useful future 
possibility that we might want to regard, within the general 
model, a person (a “reporter”) as either a sensor or as a data-
base in an integrated automated observation, analytical think-
ing, and action-taking monitoring and control system.  Note 
that here "automated" doesn't mean "no people", but rather 
that in the cooperative functioning of man-machine systems 
with people continuing to make the most critical high level 
decisions, but perhaps serving interim roles, filling in for 
missing sensors and actuators at lower levels until such time 
as suitable electromechanical replacements become available. 

However, to avoid at this early stage the possibility of getting 
bogged down in long, pedantic, and probably useless discus-
sions, we limit the present discussion to digitally communi-
cating electronic sensors and to digital databases. 

Thus, as intimated previously, we presume that all sensors 
transmit data to a network as packets that are encapsulated 
according to an agreed protocol, that each packet is suitably 
labeled with a legitimate recipient-database’s address, and 
that every database correctly receives suitably encapsulated 
and addressed packets.  In other words, we presume that 
transparent software utility layers check and enforce the le-
gitimacy of sensor-to-database communications.  And, as we 
also intimated, we also presume that sensors listen as well as 
talk, e.g., they listen to and obey suitably validated messages 
from the system controller that configure their operating 
mode and parameters, initiate autocalibration, request data 
transmissions, etc. 

VI. SYNTHESIZING AN INTERIM WORKING MODEL 

A sensible interim working model for initial experiments 
toward the virtual sensor goal might be the NIST IEEE 1451 
standard [12], which provides a uniform bi-directional inter-
face between transducers (sensors and actuators) and net-
works.  The standard specifies a STIM (standard transducer 
interface module) that provides the sensor support elements 
bulleted above, and a TEDS (transducer electronic data 
sheet), a small onboard database that characterizes the indi-
vidual sensor’s pedigree and personality.  With the emer-
gence of sensor communication standards like NIST IEEE 
1451 implemented on top of standard network communica-
tion protocols like TCP/IP, we can focus our attention on the 
content of the data packets without being sidetracked by the 
details of their transport. 

The content of sensor data packets spans a potentially enor-
mous dynamic range.  To take an example from the domain 
of a population being monitored at a low level for exposure to 
clandestine low level biological attack, the lower end of the 
range might be just the simple output of a wirelessly net-

worked pocket thermometer that sends a monitored individ-
ual’s temperature, her ID number (accurately read from her 
smart wristband), and a timestamp, all the way to the com-
plex multidimensional output of some “wished for” future 
three-dimensional imaging instrument that instantaneously 
reports pathogen, drug, and blood constituent identity and 
concentration voxel-by-voxel, as well as the instrument’s 
mode and operating parameters, detailed case background 
information about the patient, and the patient ID and data 
timestamp. 

In the heterogeneous environment in which an effective bio-
surveillance system like this would have to operate, it would 
be essential for sensors to report not just data, but also realis-
tic dynamic estimates of the current validity of the data.  This 
requirement becomes increasingly important as the sensors 
and the data become more sophisticated, i.e., as the reports 
being to provide information at increasingly higher levels in 
the signal-to-symbol pipeline. 

Let us enumerate and discuss in a preliminary sort of way the 
levels of this pipeline via a concrete example.  Consider an 
analytical instrument that delivers a spectrum-like signature 
of the sample.  It makes hardly any difference whether the 
sample is environmental, e.g., air, water, soil, etc., or clinical, 
e.g., saliva, urine, blood, etc., nor does it make any funda-
mental difference whether the dispersion is by optical wave-
length, molecular mass, ion mobility, column retention time, 
etc: at the lowest level, every such instrument delivers simply 
an electrical signal as a function of a dispersion parameter. 

Viewed at the elementary raw signal level, the uncertainty in 
the signal, for example, expressed in terms of an electrical 
signal current measurement in an appropriate location, is 
modeled by the shot noise (proportional to the square root of 
the product of the signal and its amplifier’s integrating time) 
plus an estimate of the technical noise due to imperfect engi-
neering in the signal collecting environment.  At the level of 
the elementary spectrum, the signal is typically digitized and 
binned by an algorithm whose output is a sequence of (peak 
area, dispersion parameter) pairs.  The digitization adds quan-
tization noise, and depending on the nature of the analyte and 
how well the algorithm anticipates the possibilities, the actual 
binning may or may not be sensible. 

If this algorithm happens to successfully model what the ana-
lytical measurement instrument is really doing, then each of 
the (peak area, dispersion parameter) pairs represents the sum 
of signature contributions from each constituent of the sample 
mixture in the integrating window around the reported value 
of the dispersion parameter.  So after low level signal ampli-
fication and digitization, a matrix inversion algorithm is typi-
cally applied to extract the concentration of each constituent.  
A good implementation, e.g., singular value decomposition, 
delivers both the individual concentrations and confidence 
estimates.  The confidence estimates have components related 



to the observed fluctuations in the output when the input re-
mains nominally constant and other components relating to 
best estimates from other sources regarding systematic errors 
that can, with some uncertainty, be compensated. 

This is where, e.g., medical lab reports typically end: the phy-
sician is told how many micrograms of molecule X were pur-
portedly found per deciliter of sample of body fluid Y, and 
she folds this report into her diagnosis and treatment plan.  It 
now seems universally accepted that one more layer of algo-
rithms implementing artificial intelligence technology, e.g., 
expert systems (or their less dated descendents) will in the 
not-too-distant future do a better job than the run-of-the-mill 
physician at this last step.  Some practical implementations, 
notably fuzzy logic, also provide quantitative estimates of 
their confidence in themselves.  These measures of self-
confidence at each level of abstraction are all straightforward 
to incorporate in the corresponding sensor modeling and 
simulation agents.  Of course, as is usual, the result will be 
meaningful only to the extent that pitfalls are knowledgeably 
and comprehensively incorporated in the models. 

In concluding this section it seems appropriate to point out 
explicitly that if we succeed in creating virtual sensors that 
can pass a “Turing Test”, then we must require of ourselves 
that we will build them and the systems into which they fit in 
such a way that they will tell us, perhaps via a dedicated bit in 
every message packet, whether they are real or virtual sen-
sors.  This is essential because, if they do pass the test, then 
we have no alternative but to trust their veracity. 

VII. CONCLUSIONS AND OPPORTUNITIES 

We have presented not a conventional experimental or theo-
retical research paper but rather an airing among friends and 
colleagues in the VIMS workshop community of the initial 
results of some general thinking, along with an invitation and 
a challenge to the community to participate in the anticipated 
ongoing process as individuals and as a group.  The challenge 
is to recognize, and the invitation is to begin paying increased 
attention, to the topics of sensor modeling and simulation.  In 
particular, we need to address the growing demand by emerg-
ing large-scale applications for the incorporation of sensor 
models and simulations in real-time monitoring and control 
systems.  The practical need is for model-based simulations 
to function embedded in these systems as "virtual sensors". 

The paper introduces the topic and its background, and sum-
marizes previous work, including the chaotic evolution of 
what people mean by the term "virtual sensor".  It then asks, 
in essence, "how will we know when we are there?".  It tenta-
tively answers this question with the suggestion that there is 
probably a sensing equivalent of the "Turing Test" for artifi-
cial intelligence: if a purported virtual sensor can successfully 
masquerade as a real sensor, then it is a real virtual sensor.  In 

the transduction - conditioning - conversion - processing - 
fusion - communication pipeline it seems natural to surmise 
that the test's most difficult challenge will be in the first one 
or two steps, where insufficiently realistic simulation of fun-
damental and technical noise would serve to unmask an im-
poster.  The similarity is noted to the current situation at the 
cutting edge of computer graphics technology, where a 
graphic is now best recognized as not a photograph because it 
looks "too clean".  Finally, some perhaps useful generaliza-
tions are drawn regarding sensors, databases, and "reporters" 
(people) as network data sources and sinks, and some of the 
general issues are illustrated via an example drawn from the 
perceived need to do large-scale population monitoring to 
detect a clandestine attack with biological agents. 
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