Thispaperappeardn the Proceeding®f the EleventhAnnualACM Symposiunon Parallel Algorithmsand Architectues(SFAA), June1999.

Schedulingrhreaddor Low SpaceRequiremenandGoodLocality

Girija J. Narlikar*
CMU Schoolof ComputetScience

Abstract

The runningtime and memoryrequiremenbf a parallel pro-
gramwith dynamic,lightweight threadsdependsheavily on
the underlyingthreadscheduler In this paper we present
a simple,asynchronousspace-dicient schedulingalgorithm
for sharedmemorymachineghat combineshe low schedul-
ing overheadsindgoodlocality of work stealingwith thelow
spacerequirementof depth-firstschedulers. For a nested-
parallelprogramwith work W, depthD> andserial spacere-
quirementS;, we show that the expectedspacerequirement
is S1 + O(K - p- D) onp processors.Here, K is a user
adjustableruntime parameterwhich provides a trade-of be-
tweenrunning time and spacerequirement. Our algorithm
achievesgood locality andlow schedulingoverheadsy au-
tomatically increasingthe granularityof the work scheduled
on eachprocessar

We have implementedhenew schedulinglgorithmin the
context of a native, userlevel implementatiorof Posix stan-
dardthreadsr Pthreadsandevaluatedts performancesinga
setof C-basedenchmarkshathave dynamicor irregular par
allelism. We comparethe performanceof our schedulemwith
that of two previous schedulersthe threadlibrary’s original
schedule(which usesa FIFO queue),anda provably space-
efficient depth-firstschedulerAt afine threadgranularity our
scheduleoutperformshoththeseprevious schedulershut re-
quiresmaginally morememorythanthedepth-firstscheduler

We alsopresensimulationresultsonsynthetidoenchmarks
to compareour schedulewith space-dfcientversionsof both
awork-stealingschedulelanda depth-firstschedulerThe re-
sultsindicatethat unlike theseprevious approachesthe new
algorithmcoversarangeof schedulingyranularitiesandspace
requirementsand allows the userto tradethe spacerequire-
mentof aprogramwith the schedulinggranularity

1 Introduction

Many parallel programminglanguagesllow the expression
of dynamic, lightweight threads. Theseinclude dataparal-

*girija@s. cmu. edu. 5000 ForbesAve, Pittshurgh PA 15213. This
researctwassupportey NSFresearclgrantnumberCCR-9706572.

lel languagedike HPF [23] or Nesl[5] (wherethe sequence
of instructionsexecutedover individual dataelementsarethe
“threads”), dataflav languagedike 1D [17], control-parallel
languagesvith fork-join constructdike Cilk [21], CC++[14],
and Proteus[30], languageswith futureslike Multilisp [41],
andvarioususerlevel threadlibraries[3, 18, 31, 44]. In the
lightweightthreadamodel, the programmeisimply expresses
all the parallelismin the program,while the languagemple-
mentatiorperformsthetaskof schedulinghethreadsontothe
processorat runtime. Thus the advantagesof lightweight,
userlevel threadsncludetheeaseof programmingautomatic
load balancing architecture-independenbdethat canadapt
to a varying numberof processorsand the flexibility to use
kernel-independearnhreadschedulers.

Programswith irregular and dynamicparallelismbenefit
mostfrom the useof lightweightthreads.Compile-timeanal-
ysisof suchcomputationso partitionandmapthethreadonto
processorss generallynot possible.Therefore the programs
dependheavily on the implementatiorof the runtimesystem
for goodperformanceln particular

1. To allow the expressionof a large numberof threadsthe
runtimesystenmustprovide fastthreadoperationsuchas
creationdeletionandsynchronization.

2. Thethreadschedulemustincur low overheadswvhile dy-
namicallybalancingheloadacrossall theprocessors.

3. Theschedulingalgorithmmustbe spaceefficient, thatis, it
mustnot createtoo mary simultaneoushactive threadspr
schedulehemin anorderthat resultsin high memoryal-
location. A smallermemoryfootprintresultsin fewer page
andTLB misses.Thisis particularlyimportantfor parallel
programssincethey aretypically usedto solve large prob-
lems,andareoftenlimited by theamountof memoryavail-
able on a parallel machine. Existing commercialthread
systemshowever, canleadto poor spaceandtime perfor
manceor multithreadegbarallelprogramsif thescheduler
is notdesignedo be spaceefficient [37].

4. Today’shardware-coheresharednemorymultiprocessors
(SMPs)typically have a large off-chip datacachefor each
processamwith alateng significantlylowerthatthelateng
to main memory Therefore,the threadschedulemmust
also schedulethreadsfor good cachelocality. The most
commonheuristicto obtaingoodlocality for fine grained
threadson multiprocessorss to schedulehreadsclosein
the computationgraph(e.g., a parentthreadalongwith its
child threads)on the sameprocessarsincethey typically
sharecommondata[l, 9, 26, 28, 32, 41].

Work stealingis aruntimeschedulingnechanisnthatcan
provide a fair combinationof the above requirements.Each
processomaintainsits own queueof readythreads;a pro-
cessorstealsa threadfrom anotherprocessos readyqueue
only whenit runsout of readythreadsn its own queue Since

threadcreationand schedulingaretypically local operations,
they incurlow overheadandcontention Furtherthreadsclose
togetherin the computatiorgraphare often scheduledn the
sameprocessqrresultingin good locality. Several systems
have usedwork stealingto provide high performancg12, 18,
19, 21, 27,41, 43, 45]. Wheneachprocessotreatsits own
readyqueueasa LIFO stack(thatis, addsor removesthreads
fromthetop of thestack)andstealdrom thebottomof another
processos stack,the schedulessuccessfullythrottlesthe ex-
cessparallelism[8, 41, 11, 45]. For fully strictcomputations,
sucha mechanismwas proved to requirep - S; spaceon p
processorswhere.S; is the serial, depth-firstspacerequire-
ment[9]. A computatiorwith W work (total numberof oper
ations)and D depth(lengthof thecritical path)wasshowvn to
requirel/p+ O(D) timeonp processorf9]. Wewill hence-
forth referto suchschedulersiswork-stealingschedulers.

Recentwork [6, 36 hasresultedin depth-first schedul-
ing algorithmsthatrequireS; + O(p - D) spacefor nested-
parallelcomputationsvith depthD. For programsthat have
a low depth(a high degree of parallelism),suchasall pro-
gramsin the classNC [15], the spaceboundof S1 + O(p -
D) is asymptoticallylower thanthe work stealingbound of
p - S1. Further the depth-firstapproachallows a more gen-
eralmemoryallocationmodelcomparedo the stack-basedl-
locationsassumedn space-dfcient work stealing[6]. The
depth-firstapproachhas beenextendedto handlecomputa-
tionswith futures[41] or I-structure417], resultingin similar
spaceboundg4]. Experimentshavedthatanasynchronous,
depth-firstscheduleoftenresultsin lower spacerequirement
in practice comparedo awork-stealingschedulef36]. How-
ever, sincedepth-firstschedulersiseagloballyorderedjueue,
they do not provide someof the practicaladvantage®njoyed
by work-stealingschedulers Whenthe threadsexpressedy
the userarefine grained,the performancemay suffer dueto
poorlocality and high schedulingcontention(i.e., contention
over shareddatastructuresvhile scheduling)37]. Therefore,
evenif basicthreadoperationsare cheap the threadshave to
becoarsenedbr depth-firsschedulerso provide goodperfor
mancein practice.

In this paper we presenta new schedulingalgorithmfor
implementingnultithreadedanguagesn sharednemoryma-
chines Thealgorithm calledDFDeques!, providesacompro-
mise betweenprevious work-stealingand depth-firstsched-
ulers. Readythreadsn DFDequesareorganizedin multiple
readyqueuesthatareglobally orderedasin depth-firstsched-
ulers. ThereadyqueuesaretreatedasLIFO stackssimilarto
previous work-stealingschedulers. A processoistealsfrom
a ready queuechosenrandomly from a set of high-priority
gueuesFor nested-parallglor fully strict) computationspur
algorithmguaranteeanexpectedspaceboundof Sy + O (K -p-
D). Here,K is auseradjustableuntimeparametecalledthe
memorythreshold which specifieghenetamountof memory
aprocessomayallocatebetweerconsecutie steals.Since K’
is typically fixedto be a small, constantamountof memory
thespaceboundreduceso S, + O(D - p), aswith depth-first
schedulersFor a simplisticcostmodel,we shawv thatthe ex-
pectedrunningtimeis O(W/p + D) onp processors

! DFDequesstandgor “depth-firstdeques”.

2Whentheschedulein DFDequeds parallelizedthecostsof all scheduling
operationscanbe accountedor with a morerealisticmodel[35]. Then,in the
expectedtasethe parallelcomputatiorcanbeexecutedisingS, + O(D - p -
log p) spaceandO(W/p + D -log p) time (includingschedulingoverheads).
However, for brevity, we omit a descriptionandanalysisof sucha parallelized
scheduler

We referto the total numberof instructionsexecutedin a
threadasthe threads granularity. We also (informally) de-
fine schedulinggranularity to be the averagenumberof in-
structionsexecutedconsecuttely on a singleprocessarfrom
threadslosetogetheiin thecomputatiorgraph.Thus,alarger
schedulinggranularity typically implies better locality and
lowerschedulingontentionIn the DFDequeschedulewhen
aprocessofindsits readyqueueempty it stealsathreadfrom
the bottomof anotherreadyqueue. This threadis typically
the coarsesthreadin the queue resultingin alargerschedul-
ing granularitycomparedo depthfirst schedulers Although
we do not analytically prove this claim, we presentexperi-
mentalandsimulationresultsto verify it. Adjustingthemem-
ory thresholdk in the DFDequesalgorithmprovidesa user
controllable trade-of between scheduling granularity and
spacaequirement.

Posix threadsor Pthreadshave recentlybecomea popu-
lar standardfor sharedmemory parallel programming. We
thereforeaddedthe DFDequesschedulingalgorithmto a na-
tive, userlevel Pthreaddibrary [44]. Despitebeing one of
thefastesuserlevelimplementationsf Pthreadsoday theli-
brary’s scheduledoesnotefficiently supportiine-grainedgy-
namicthreadsln previouswork [37], we shovedhow its per
formancecan be improved usinga space-dfcient depth-first
scheduler In this paper we comparethe spaceandtime per
formanceof the new DFDequesschedulemwith the library’s
original schedulefwhichusesa FIFO schedulingqueue) and
with our previous implementationof a depth-firstscheduler
To performthe experimentalcomparisonwe used7 parallel
benchmarksvritten with a large numberof dynamicallycre-
atedPthreads. As shown in Figure 1, the new DFDeques
scheduleresultsin betterlocality andhigherspeedupgsom-
paredto boththedepth-firsischeduleandthe FIFO scheduler

Ideally, we would alsolike to compareour Pthreads-based
implementatiof DFDequesvith aspace-dfcientwork-steal-
ing schedulefe.g., the scheduleusedin Cilk [8]). However,
supportingthe generalPthreadgunctionality with an exist-
ing space-dfcient work-stealingschedulef8] would require
significantmodificationgo boththe schedulingalgorithmand
the Pthread$mplementatioh. Thereforeto compareour new
scheduletto this work-stealingschedulerwe insteadbuilt a
simplesimulatorthatimplementsynthetic fully-strict bench-
marks. Our simulationresultsindicatethat by adjustingthe
memory threshold,our new schedulercovers a wide range
of spacerequirementsand schedulinggranularities. At one
extremeit performssimilar to a depth-firstscheduler with
low spacerequirementand small schedulinggranularity At
the other extreme, it behaves exactly like the work-stealing
schedulerwith higherspacerequiremengndlarger schedul-
ing granularity

2 Background and Previous Work

A parallelcomputatiorcanberepresentetly adirectedagyclic
graph;we will referto sucha computationgraphasa dagin
the remainderof this paper Eachnodein the dagrepresents
asingleactionin athread;anactionis a unit of work thatre-
quiresa singletimestepto be executed.Eachedgein thedag
representadependencbetweertwo actions.Figure2 shovs

3Even fully strict Pthreadsbenchmarkscannotbe executedusing sucha
work-stealingschedulerin the existing Solaris Pthreadsmplementation be-
causethe Pthreadsmplementationitself makesextensve useof blocking syn-
chronizatiorprimitivessuchasPthreadnutexesandconditionvariables.

Benchmark Max threads L2 Cachemissrate 8 processospeedup
FIFO | ADF | DFD || FIFO | ADF | DFD || FIFO | ADF | DFD

Vol. Rend. 436 36 37 4.2 3.0 1.8 5.39 | 599 | 6.96
DenseMM 3752 | 55 77 240 | 13 8.7 0.22 | 3.78 | 5.82
SparseMVM 173 51 49 13.8 | 13.7 | 13.7 || 3.59 | 5.04 | 6.29
FFTW 510 30 33 146 | 16.4 | 144 || 6.02 | 5.96 | 6.38
FMM 2030 | 50 54 140 | 21 1.0 1.64 | 7.03 | 7.47
BarnesHut 3570 | 42 120 19.0 | 3.9 2.9 0.64 | 6.26 | 6.97
DecisionTr. 194 | 138 | 149 5.8 4.9 4.6 483 | 485 | 5.39

Figurel: Summaryof experimentatesultswith theSolarisPthreaddibrary. For eachschedulingechniqueye shonv themaximum
numberof simultaneouslhactive threadgeachof which requiresmin. 8kB stackspace)the L2 cachemissesrates(%), andthe
speedupsn an8-processoEnterprisecs000SMR “FIFO” is theoriginal Pthreadscheduler*ADF” is anasynchronouglepth-first

schedulef37], and“DFD” is ournew DFDequesscheduler

suchan exampledagfor a simple parallelcomputation.The
dashedright-to-leftfork edgedn thefigurerepresenthefork
of achild thread.The dashedleft-to-right synchedgesepre-
sentajoin betweera parentandchild thread while eachsolid
verticalcontinueedgerepresenta sequentiatlependencbe-
tweena pair of consecutie actionswithin a singlethread.For
computationswith dynamicparallelism,the dag is revealed
andscheduledntothe processoratruntime.

2.1 Scheduling for locality

Detectionof dataaccesse®r data sharingpatternsamong
threadsin a dynamicandirregular computationis often be-
yond the scopeof the compiler Further todays hardware-
coherenSMPsdonotallow explicit, software-controlleglace-
mentof datain processorcaches;therefore,ownercompute
optimizationdor locality thatarepopularon distributedmem-
ory machinegypically do not applyto SMPs. However, in
mary parallelprogramswith fine-grainedhreadsthethreads
closetogethelin thecomputations dagoftenaccesghesame
data.For example,in adivide-and-conqueromputatior(such
as quicksort)where a new threadis forked for eachrecur
sive call, a threadsharesdatawith all its descendenthreads.
Therefore, mary parallel implementationsof lightweight
threads use perprocessordata structuresto store ready
threadq18, 21, 25, 26, 41,43, 45]. Threadscreatedn a pro-
cessoarestoredocally andmovedonly whenrequiredo bal-
ancetheload. Thistechniqueeffectively increasescheduling
granularity andthereforeprovidesgoodlocality [7] andlow
schedulingcontention.

Anotherapproachfor obtaininggood locality is to allow
theuserto supplyhintsto the scheduleregardingthe dataac-
cesspatternof thethreadq13, 29, 39, 46]. However, such
hints canbe cumbersomédor the userto provide in comple
programs,and are often specificto a certainlanguageor li-
brary interface. Therefore,our DFDequesalgorithminstead
usegheheuristicof schedulinghreadslosein thedagon the
sameprocessoto obtaingoodlocality.

2.2 Scheduling for space-efficiency

Thethreadscheduleplaysa significantrolein controllingthe
amountof active parallelismin a fine-grainedcomputation.
For example,considera single-processaxecutionof thedag
in Figure?2. If the scheduleusesa LIFO stackto storeready
threads,and a child threadpreemptsts parentas soonasit

is forked,the nodesareexecutedn a (left-to-right) depth-first

root thread—~

Figure 2: An exampledag for a parallel computation;the
threadsare shovn shaded.Eachright-to-left edgerepresents
a fork, and eachleft-to-right edgerepresents synchroniza-
tion of a child threadwith its parent.Verticaledgesepresent
sequentialependenieswithin threads ¢, is theinitial (root)
thread whichforkschild threadg, ¢2, t2, andt, in thatorder
Child threadgnayfork threadghemseles;e.g., ¢, forksts.

order, resultingin at most5 simultaneoushactive threads.In
contrast,if the schedulemusesa FIFO queue the threadsare
executedn abreadth-firsbrder, resultingin all 16 threadde-
ing simultaneoushactive. Systemshat supportfine-grained,
dynamicparallelismcansuffer from sucha creationof excess
parallelism.

Initial attemptgo controltheactive parallelismwerebased
onheuristicq3, 17, 32,42,41], whichincludedwork stealing
techniqueqd32, 41]. Heuristicattemptswork well for some
programsbut do not guaranteean upperboundon the space
requirement®f a program.More recently two differenttech-
nigueshave beenshawn to be provably space-dicient: work-
stealingschedulersanddepth-firstschedulers.

In additionto beingspaceefficient [8, 11], work stealing
canoftenresultin large schedulinggranularitieshy allowing
idle processorso stealthreadshigherup in thedag(e.g., see
Figure3(a)). Several systemausesuchanapproactto obtain
goodparallelperformancg8, 18,27,41,45].

Depth-firstschedulerguaranteean upper bound on the
spacerequirementof a parallel computationby prioritizing
its threadsaccordingto their serial, depth-firstexecutionor-
der [6, 36]. In arecentpaper[37], we shaved that the per
formanceof a commercialPthreadsmplementatiorcould be
improvedfor predominantlynested-parallddenchmarksising
adepth-firsischedulerHowever, depth-firstschedulersanre-

(b)

Figure3: Possiblamappingsof threadsof thedagin Figure2
onto processord, . .., P; by (a) work-stealingschedulers,
and(b) depth-firstschedulers.lf, say the i** thread(going
from left to right) accessethe i*" block or elementof anar
ray, thenschedulingconsecutrethreadonthesameprocessor
providesbettercachdocality andlower schedulingoverheads.

sultin high schedulingcontentionandpoorlocality whenthe
threaddn the programarevery fine grained[36, 37] (seeFig-
ure3).

Thenext sectiondescribes new schedulinglgorithmthat
combinesdeasrom theabovetwo space-dfcientapproaches.

3 The DFDeques Scheduling Algorithm

Wefirstdescribeheprogrammingnodelfor themultithreaded
computationghat are executedby the DFDequesscheduling
algorithm. We thenlist the datastructuresisedby the sched-
uler, followed by a descriptionof the DFDequesscheduling
algorithm.

3.1 Programming model

As with depth-firstschedulerspur schedulingalgorithmap-
pliesto pure,nested-paralletomputationsyhichcanbemod-
eledby series-paralletlags[6]. Nested-paralletomputations
areequialentto the subsetof fully strict computationsup-
ported by Cilk’s space-dfcient work-stealingscheduler|8,
21]. Nestedparallelismcanbeusedto expressalarge variety
of parallelprogramsjncludingrecursve, divide-and-conquer
programsandprogramswith nested-paralldbops.Our model
assumedinary forks andjoins; the exampledagin Figure2
representsucha nested-paralletomputation.

Althoughwe describeandanalyzeouralgorithmfor nested-
parallelcomputationsjn practiceit canbe extendedto exe-

Figure4: The serial,depth-firstexecutionorderfor a nested-
parallelcomputation. The :'" nodeexecutedis labelledi in

this dag. The lower the label of a thread$ currentnode (ac-
tion), the higheris its priority in DFDeques

cuteprogramswith otherstylesof parallelism. For example,
the Pthreadsschedulerescribedn Section5 supportscom-
putationswith arbitrarysynchronizationssuchasmutexesand
conditionvariables However, ouranalyticalspacebounddoes
notapplyto suchgenerakcomputations.

A threadis active if it hasbeencreatecbut hasnotyetter
minated.A parentthreadwaiting to synchronizewith a child
threadis saidto be suspended We say an active threadis
readyto be scheduledf it is not suspendedand is not cur-
rently beingexecutedby a processarEachactionin a thread
mayallocateanarbitraryamountof spaceonthethreadstack,
or onthesharecheap.

Every nested-paralletomputatiorhasa naturalserialexe-
cutionorder whichwe call its depth-firstorder. Whena child
threadis forked, it is executedbeforeits parentin a depth-
first execution(e.g., seeFigure 4). Thus, the depth-firstor-
der is identical to the unique serial executionorder for ary
stack-basethnguage(suchas C), whenthe threadforks are
replacedby simplefunction calls. Algorithm DFDequespri-
oritizesreadythreadsaccordingto their serial,depth-firstex-
ecutionorder; an earlierserialexecutionordertranslatedo a
higherpriority.

3.2 Scheduling data structures

Althoughthe dagfor a computations revealedasthe execu-
tion proceedsdynamicallymaintainingtherelative threadpri-

oritiesfor nested-paralletomputationss straightforward6]

and inexpensve in practice[36]. In algorithm DFDeques
the readythreadsare storedin doubly-endedqueuesor de-
ques[16]. Eachof thesedequessupportspoppingfrom and
pushingontoits top, aswell aspoppingfrom thebottomof the
deque.At ary time duringthe execution,a processopwns at
mostonedeque andexecuteghreaddrom it. A singledeque
hasatmostoneowneratary time. However, unliketraditional
work stealing,the numberof dequeanay exceedthe number
of processorsAll thedequesarearrangedn a globallist R of

dequesThelist supportsaddingof a new dequeto theimme-
diateright of anotherdeque deletionof a deque andfinding

them'" dequeudrom theleft endof R.

3.3 The DFDeques scheduling algorithm

The processorexecutethe codein Figure 5 for algorithm
DFDeque$K); hereK isthememorythreshold auserdefined
runtime parameter Eachprocessortreatsits own dequeas
aregular LIFO stack,andis assigneca memoryquotaof K
bytesfrom which to allocateheapandstackdata. This mem-
ory thresholdK is equivalentto the perthreadmemoryquota
in depth-firstschedulerg36]; however, in algorithm DFDe-

while (3 threads)
if (currS=NuLL) currS:= steal();
if (currT=NuLL) currT:= popfrom_top(currS;
executecurrTuntil it forks, suspendgerminates,
or memoryquotaexhausted:
case (fork):
pushto_top(currT, currS;
currT:= newly forkedchild thread;
case (suspend):
currT:= NULL;
case (memoryquotaexhausted):
pushto_top(currT, curr§;
currT:= NULL;
currS:= NULL;
case (terminate):
if currTwakesup suspendegarentT’
currT:=T;
else currT:= NULL;
if ((is_emptyurrS) and (currT= NULL))
currS:=NULL; / give up anddeletestacks/
endwhile

/x give up stacks/

procedur esteal():
setmemoryguotato K;
while (TRUE)
m :=randomnumberin [1... p];
S:= m'"dequdn R;
T := popfrom_bot(S);
if (T # NuLL)
createnew dequeS’ containingT
andbecomats owner;
placeS’ toimmediateright of Sin R;
return S’;

Figure5: Pseudocodéor the DFDeque$K’) schedulingalgo-
rithm executedby eachof the p processorsk is the memory
threshold. currSis the processos currentdeque. currT is
the currentthreadbeingexecuted;changingits valuedenotes
a context switch. Memory managemenof the dequesds not
shawvn herefor brevity.

gues thememoryquotaof K bytescanbeusedby aprocessor
to executemultiple threadfrom onedeque A threadexecutes
without preemptioron aprocessountil it forksachild thread,
suspendavaiting for a child to terminate,or terminates,or
the processorunsout of its memoryquota. If aterminating
threadwakesupits previouslysuspendeg@arenttheprocessor
startsexecutingthe parentnext; for nestedparallelcomputa-
tions,we canshaw thattheprocessosdequemustbeemptyat
this stag€[35]. Whenanidle processofindsits dequeempty
it deletesthe deque. When a processodeletesits deque,or
whenit givesup ownershipof its dequedueto exhaustionof
its memoryquota, it usesthe st eal () procedurego obtain
a new deque. Every invocationof st eal () resetsthe pro-
cessors memoryquotato KX bytes.We call aniterationof the
loopinthest eal () procedureastealattempt

A processoexecutesa stealattemptby picking arandom
numberm betweenl andp, wherep is thenumberof proces-
sors. It thentries to stealthe bottom threadfrom the m®”
deque(startingfrom the left end)in R. A stealattempt
mayfail (thatis, pop_f rombot () returnsNnuLL) if two or
more processorsarget the samedeque(seeSection4.1), or

owners Po = P = P P
, (AR SRR A
eXeCUtlng ta E] . E
threads i IR
top [1] i i PO
deques gi; ggg
bottomgf%fmg SHEHEN

<— list of deques® —
Figure6: Thelist R of dequesnaintainedn thesystemnby al-
gorithm DFDeques Eachdequemay have one(or no) owner
processarThedottedline traceshedecreasingrderof prior-
ities of thethreaddn the systemgthust,, in this figure hasthe
highestpriority, while ¢, hasthelowestpriority.

if the dequeis emptyor non-&istent. If the stealattemptis
successfu{pop-f rombot () returnsathread).the stealing
processocreates new dequefor itself, placest to theimme-
diateright of the taiget deque andstartsexecutingthe stolen
thread.Otherwiseijt repeatghestealattempt.Whenaproces-
sorstealghelastthreadfrom adequenotcurrentlyassociated
with (ownedby) ary processarit deleteghedeque.

If athreadcontainsanactionthatperformsa memoryal-
locationof m unitssuchthatm > K (whereK is the mem-
ory threshold) then |m /K | dummythreadsmustbe forked
in abinarytree of depth®(log m/ K') beforethe allocatiorf.
We do not shaw this extensionin Figure5 for brevity. Each
dummythreadexecutesa no-op. However, processorsnust
give up their dequesand performa stealevery time they exe-
cutea dummythread.Onceall thedummythreadshave been
executed,a processomay proceedwith the memoryalloca-
tion. This transformatiortakesplaceat runtime. The addition
of dummythreadsffectively delaydargeallocationf space,
so that higherpriority threadsmay be schedulednstead. In
practice K is typically setto afew thousandytes,sothatthe
runtimeoverheadueto thedummythreadss negligible (e.g.,
seeSectionb).

We now statea lemmaregardingthe orderof threadsin
R maintainedby algorithm DFDequeganddepictedin Fig-
ure6).

Lemma 3.1 Algorithm DFDequesmaintains the following
orderingof threadsin thesystem.

1. Threadsin each dequearein decreasingorder of priorities
fromtopto bottom.

2. Athreadcurrentlyexecutingon a processohashigherpri-
ority thanall otherthreadson theprocessorsdeque

3. Thethreadsin anygivendequehavehigherpriorities than
threadsin all thedequego its right in R. n

Theproofusednductiononthetimestepgsee[34] for details).

Thebasecasds thestartof thecomputationWe canshow that

theorderingis maintainedvhena deques deletedor whena

thread(a) forks achild thread(b) terminates(c) is preempted,
or, (d) is stolenby aprocessar

Work stealing as a special case of algorithm DFDeques.
Considerthe casewhenwe setthe memorythresholdK =
oo. Then,for nested-paralletomputationsalgorithm DFD-
equego) producesa schedulddenticalto the one produced

4This transformationdiffers slightly from depth-firstschedulers[6, 36],
whichallow dummythreadso beforkedin amulti-wayfork of constandepth.

by the provably-eficient work-stealingscheduler*WS” [9].

Theprocessortn DFDeque$co) never give up adequedueto

exhaustionof their memoryquota,andtherefore aswith the
work stealer thereare never morethanp dequesn the sys-
tem. Further in both algorithms,when a processos deque
becomesmpty it picks anotherprocessowuniformly at ran-
dom, and stealsthe bottommaosthreadfrom that processos
deque. Similarly, for nestedparallel computationsthe rule

for wakingup asuspendeg@arentn DFDeque$) is equiva-
lentto the correspondingulein WS®. Of coursetheresulting
schedulesreidenticalassuminghesamecostmodelfor both
algorithmsithemodelcouldbeeithertheatomic-accessiodel
usedto analyzeWS [9], or our costmodelfrom Section4.1.

4 Analysis of Time and Space Bounds

We now prove the spaceandtime boundsfor nested-parallel
computationgxecutedby algorithmDFDeques

4.1 Cost model

We definethe total numberof unit actionsin a parallelcom-
putation(or the numberof nodesin its dag)asits work W.
Further let D be the depthof the computationpr the length
of the longestpathin its dag. For example,the computation
representeth Figure4 haswork W = 11 anddepthD = 6.
We assumehatan allocationof m bytesof memory(for ary
m > 0) hasadepthof ©(log m) units.

For this analysiswe assumehattimestepgclock cycles)
aresynchronizedhcrossll the processorslf multiple proces-
sorstaigeta non-emptydequen asingletimestepwe assume
thatoneof themsucceedm the steal,while all the othersfail
in thattimestep.If thedequetagetedby oneor morestealds
empty all of thosestealdail in asingletimestep Whena steal
fails, the processoattemptsanotheistealin thenext timestep.
When a stealsucceedsthe processoinsertsthe newly cre-
ateddequento R andexecuteghefirst actionfrom the stolen
threadin the sametimestep. At the end of a timestep,if a
processos currentthreadterminatesor suspendsandit finds
its dequeto be empty it immediatelydeletests dequein that
timestep. Similarly, when a processosstealsthe last thread
from a dequenot currently associatedvith ary processarit
deletesthe dequein that timestep. Thus, at the startof a
timestepjf adequeis empty it mustbe ownedby a processor
thatis busyexecutingathread.

Our costmodelis someavhatsimplistic,becausét ignores
thecostof maintainingtheorderedsetof dequesR. If we par
allelize the schedulingasksof insertingand deletingdeques
in R (by performingthemlazily), we canaccounfor all their
overheadsn the time bound. We canthenshaw thatin the
expectedcase the computatiorcanbe executedn O(W/p +
D -log p) timeandS; + O(p - log p - D) spaceon p proces-
sors,includingthe schedulingpverhead$35]. In practice the
insertionsanddeletionsof dequedrom R canbeeitherserial-
izedandprotectedby alock (for smallp), or performedazily
in parallel(for largep).

5In WS, the reawakenegbarentis placedaddedto the currentprocessos
deque(whichis empty);for nestedparallelcomputationsthe child musttermi-
nateatthis point,andthereforethe nextthreadexecutedy theprocessors the
parentthread.

5Thisis a reasonabl@assumptiorin systemswith binaryforks thatzeroout
the memoryas soonasit is allocated. The zeroingthenrequiresa minimum
depthof @ (log m); it canbe performedin parallelby forking atreeof height
O(logm).

4.2 Space bound

We now analyzethe spaceboundfor a parallelcomputation
executedby algorithm DFDeques The analysisusesseveral
ideasfrom previouswork [2, 6, 36]. Dueto spacdimitations,
we only presentheoutlineof theproofs;detailedanalysiscan
befoundelsavhere[34].

Let G bethe dagthatrepresentshe parallelcomputation
beingexecuted Dependingon theresultingparallelschedule,
we classifyits nodeqactions)nto oneof two types:heary and
light. Every time a processoperformsa steal,thefirst node
it executedrom the stolenthreadis calleda heavyaction.All
remainingnodesn G arelabelledaslight.

Wefirstassumehatevery nodeallocatesatmosti space;
wewill relaxthis assumptionn theend. Recallthata proces-
sormayallocateat most K~ spacebetweerconsecutie steals;
thus,it mayallocateat most X" spacefor every heary nodeit
executesThereforewe canattribute all thememoryallocated
by light nodego thelastheary nodethatprecedeshem. This
resultsin a consenrative view of thetotal spaceallocation.

Lets, = Vi,...,V; betheparallelscheduleof the dag
generatedy algorithm DFDeque$K’) on p processorswe
call thisa p-schedule HereV; is the setof nodesthatareex-
ecutedattimestep:. Let s; betheserial,depth-firstschedule
or the 1DF-schedile for the samedag;e.g., thenodesin Fig-
ure4 arenumberedaccordingto their orderof executionin a
1DpF-schedle.

Wenow view anintermediatesnapshoof theparallelsched-
ule s,. At ary timestepl < j < 7 duringthe executionof
sp, all thenodesexecutedsofar form a prefix of s,,. This pre-

fix of s, is definedasa, = [J/_, Vi. Let o1 bethelongest
prefix of s, containingonly nodesin o, thatis, o1 C o5.

Thentheprefix o; is calledthecorrespondng serialprefix of

op. Thenodesn thesetos, — o1 arecalledprematurenodes,
sincethey have beenexecutedout of orderwith respecto the
1pF-schedle s;. All othernodesn o, thatis, theseto, are
callednon-premature For example,Figure7 shovsasimple
dagwith a parallelprefix o, for anarbitraryp-schedules,, its

correspondingerialprefix o1, anda possibleclassificatiorof

nodesasheavy or light. Thenumberf heavyprematuenodes
in ary arbitraryprefix o, of s, canbeboundedasfollows.

Lemma4.l Leto, beanyparallel prefixof a p-schedulepro-
ducedby algorithm DFDequeéK) for a computationwith
depth D, in which every action allocatesat most K space
Thenthe expectedhumberof heavyprematue nodesin o, is
O(p - D). Further, for anye > 0, the numberof heavypre-
maturenodess O(p - (D +In(1/¢))) with probability at least
1—e. [|

The proof is basedon selectinga specific path P of non-
prematurenodesin o, startingat theroot. If u; is thenode
along P atdepths, thenfor: = 0, 1, .. ., we boundthe num-
berof stealghattakeplacebetweerthetimesu; andu;y; are
executed.We only needto countthe stealsthat may resultin
the executionof prematurenodegsee[34] for details).

We now prove alemmarelatingthe numberof heavy pre-
maturenodesin o, with thememoryrequiremenbof s,,.

Lemma4.2 LetG beadagwithdepthD,in which everynode
allocatesat most K space,and for which the serial depth-
first executionrequiresS, space Let s, bethe p-scheduleof
lengthT" geneatedfor G by algorithm DFDequegK). If for
any: suhthatl < i < 7, theprefixs, of s, representing
the computationafter the first : timestepscontainsat mostr

e = Non-premature
o = premature

@

e = heavy nodes °

(b)

Figure7: (a) An examplesnapshobf a parallelscheduldor a simpledag. The shadechodes(the setof nodesin o,) have been
executedwhile the blank (white) nodeshave not. Of thenodesin o, the blacknodesform the correspondingparallelprefix o,

while theremaininggrey nodesarepremature (b) A possiblepartitioningof nodesin o, into heary andlight nodes.Eachshaded
region denoteghe setof nodesexecutedconsecutiely in depth-firstorderona singleprocesso(P; , P>, P; or Ps) betweersteals.

Theheary nodein eachregion is showvn shadedlack.

heavyprematuenodesthentheparallel spacerequirememof
sp isatmostS; + r - min(K, Sy). Further, there are at most
D + r - min(K, S1) activethreadsduring the execution.

Proof. We can partition o, into the set of non-premature
nodesand the setof prematurenodes. Since, by definition,
all non-prematurenodes form some serial prefix of the
1bF-scheduletheir netmemoryallocationcannotexceeds; .
We now boundthe net memoryallocatedby the premature
nodes.Consider stealthatresultsin theexecutionof a heary
prematurenodeon a processorP,. The nodesexecutedby
P, until its next steal, cannotallocatemore than K space.
Becausehereareat mostr heavy prematurenodesexecuted,
thetotal spaceallocatedacrossall processorafter: timesteps
cannotexceedS; + r - K. We canobtaina tighter boundof
S1 4+ r-S1 whenk > S; (see[34]).

Themaximumnumbetrof active threadss atmostthenum-
berof threadswith prematurenodes plusthe maximumnum-
ber of active threadsduring a serial execution,which is D.
Assumingthat eachthreadneedsto allocateat leasta unit
of spacewhenit is forked (e.g., to storeits register state),at
mostmin(£, S1) threadswith prematurenodescanbeforked
for eachheary prematurenodeexecuted.Thereforethe total
numberof active threadss atmostD + r - min(X,S1). ®

Note that eachactive threadrequiresat mosta constant
amountof spaceto be storedby the schedule(not including
stackspace) We now extendthe analysigto allocationdarger
than K.

Handling large allocations of space. Individual nodesthat
allocatemorethan K spaceare handledasdescribedn Sec-
tion 3. Beforeevery allocationof m bytes(m > K), dummy
threadsareforkedin a binary tree of depthlog(m/K). Re-
call thatin our costmodel,an allocationof m bytesrequires
adepthof O(log m); thereforethistransformatiorof thedag
increasedts depthby at mosta constanfactor Eachdummy
threadis treatedasif it allocatesk space.Therefore by the
time them /K dummythreadsareexecutedaprocessomay
proceedwith the allocationof m byteswithout exceedingour
spacebound.Thefinal boundon the spacerequirementf the
generatedschedulepsingLemmas4.1 and4.2, is statedbe-
low.

Theorem 4.3 Consider a nested-paallel computationwith
depth D and serial, depth-firstspacerequirement S;. Then,

for any K > 0, the expectedvalue of the spacerequired
to executethe computationon p processos using algorithm
DFDequeéK), including the spacerequiredto store active
threads,is S1 + O(min(K, S1) - p - D). Further, for any
e > 0, the probability that the computationrequires S; +
O(min(K, S1) -p- (D +1n(1/e€))) spacds atleastl —e. B

The above spaceboundfor DFDeque$K’) canbe shown to

be tight for ary given valuesof D, S;, and K [34]. Recall
that DFDeque$~x) behareslike a space-dfcientwork steal-
ing scheduler Blumofe and Leiserson[9] presentedh space
boundof p - S; for suchascheduleNote, however, thattheir

analysisallows only “stack-like” memoryallocatiorl, which

is morerestrictedthanour model. For suchrestricteddags,
their spaceboundappliesdirectly to DFDeque$oc). In con-
trast, the fact that the spaceboundin Theorem4.3 is tight,

implies that the space-dfcient work stealerfrom [9] canre-

quire®(S; - p- D) spacdor acomputatiorthatusesour more
generaimemoryallocationmodel(see[34] for details).

4.3 Time bound

We now prove thetime boundrequiredfor aparallelcomputa-
tion usingalgorithm DFDeques This time bounddoesnotin-
cludethe schedulingcostsof maintainingthe relative orderof
thedequegi.e., insertinganddeletingdequesn R), or finding
them!" deque Elsevhere[35], we describéhow thescheduler
canbe parallelized,andthen prove the time boundincluding
theseschedulingcosts. We first assumehat every actional-
locatesat most K spacefor someconstantk’, andprove the
time bound. We thenrelax this assumptiorand provide the
modifiedtime boundatthe endof this subsection.

Lemma4.4 Considera parallel computationwith work W
anddepthD, in which everyactionallocatesat mostK space
Theexpectedimeto executethis computatioron p processos
usingthe DFDequeéK’) schedulingalgorithmis O(W/p +
D). Further, for anye > 0, thetimerequiredto executethe
computationis O(W/p + D + In(1/e)) with probability at
leastl — e.

"Their modeldoesnot allow allocationof spaceon a global heap. An in-
structionin a threadmay allocatestackspaceonly if thethreadcannotpossibly
have a living child whentheinstructionis executed.The stackspaceallocated
by thethreadmustbefreedwhenthethreadterminates.

Proof. Considerary timestep: of the p-schedulejet n; be
thenumberof dequesn R attimestep. Wefirst classifyeach
timestep: into oneof two types(A andB), dependingon the
valueof n;. We thenboundthe total numberof timestepsl'a

and7'z of typesA andB, respectiely.

Type A: n; > p. At the startof timestepi, let thereber <
p stealattemptsin this timestep. Thenthe remainingp — r
processorare busy executingnodes,thatis, at leastp — r
nodesareexecutedn timestep. Furtheratmostp — r of the
leftmostp dequeanay be empty; the restmusthave at least
onethreadin them.

Let X, betherandomvariablewith value1 if the ;" non-
emptydequein R (from the left end) getsexactly one steal
requestandO otherwise. Then,E[X;] = Pr[X; = 1] =
(r/p) - (1 — 1/p)"~*. Let X betherandomvariablerepre-
sentingthe total numberof non-emptydequeghatgetexactly
onestealrequest.Becausehereareat leastr non-emptyde-
guesthe expectedvalueof X (assuminghatp > 2) is given

by

BIX] > DB = o loa-syT

J=1
r? 1

> —(1--)F

i (p)
r? 1 1 r?

> - 2 g
P p e p-e

Recallthatp — r nodesare executedby the busy processors.

Thereforejf Y is therandomvariabledenotingthetotal num-
berof nodesxecutedduringthistimestepthen

E[Y] > (p—?‘)—|—7“2/26p
> pl2e
Therefore, E[p—-Y] < p-—p/2e
= p(1—1/2€)

Thequantity (p — Y) mustbe non-ngative; thereforeusing
theMarkov's inequality[33, Theoren3.2], we get

Pri(p—Y) > p(1 - 1/10)] < L=Vl
p(1-3)
(1-5) o
S -y T
Therefore, Pr[Y > p/4e] > %

We will call eachtimestepof type A successfuif atleast
p/4e nodeggetexecutedduringthetimestep.Thentheproba-
bility of thetimestepbeingsuccessfuls atleastl/10. Because
thereare W nodesin the entire computationtherecanbe at
mostde - W/p successfulimestepof type A. Therefore the
expectedvaluefor T4 is atmost40e - W/p.

Thehigh probabilityboundcanbe proved usingthe Cher
noff bound[33, Theorem4.2]. In particular we can shav
that the executionwill not completeeven after 80eW/p +
401In(1/¢) typeA timestepsvith probabilityatmoste (se€/34]
for details). Thus,for ary ¢ > 0, Ta = O(W/p + In(1/¢))
with probabilityatleastl — e.

Type B: n; < p. We now considertimestepsn which the
numbermf dequesn R islessthanp. We splittypeB timesteps

into phasesuchthateachphasenasbetweerp and2p—1 steal
attempts.We canthenusea potentialfunctionargumentsim-
ilar to the dedicatednachinecaseby Arora et al. [2]. Com-
posingphasedrom only type B timesteps(ignoring type A
timestepsyetainghevalidity of theiranalysis We briefly out-
line theproofhere.Nodesareassigneexponentiallydecreas-
ing potentialsstartingfrom the root downwards.Thusa node
ata depthof d is assigned potentialof 32(° =% andin the
timestepin which it is aboutto be executedon a processar
aweightof 3>(°~9 -1 They shaw thatin ary phaseduring
which betweenp and2p — 1 stealattemptsoccur, the total
potentialof the nodesin all the dequesdropsby a constant
factorwith at leasta constanfprobability Sincethe potential
at the startof the executionis 322!, the expectedvalue of
the total numberof phaseds O(D). Thedifferencewith our
algorithmis thataprocessomayexecutea node ,andthenput
up to 2 (insteadof 1) childrenof the nodeon the dequeif it
runsout of memory;however, this differencedoesnotviolate
the basisof their aguments.Sinceeachphasehas©(p) steal
attemptsthe expectedhumberof stealattemptsiuringtype B
timestepss O(pD). Further for ary ¢ > 0, we canshaw that
the total numberof stealattemptsduring timestep<of type B
isO(p - (D + In(1/¢))) with probabilityatleastl — e.

Recallthatin every timestep,eachprocessoreither exe-
cutesa stealattempthatfails, or executesanodefrom thedag.
Therefore,if Nea1 is the total the numberof stealattempts
duringtypeB timestepsthen?s is atmost(W + Nsteal)/p.
Thereforetheexpectedvaluefor I's is O(W/p+ D), andfor
ary e > 0, thenumberof timestepss O(W/p+ D +1n(1/¢))
with probabilityatleastl — e.

The total numberof timestepsin the entire executionis
Ta + Tp. Therefore,the expectednumberof timestepsin
the executionis O(W/p + D). Further combiningthe high
probability boundsfor timestep=f type A andB, (andusing
thefactthat P(A U B) < P(A) + P(B)), we canshaw that
for ary e > 0, the total numberof timestepsin the parallel
executionis O(W/p + D + In(1/¢)) with probabilityatleast
1—e. [|

Recallthatwe adddummy|m /K | threadgo handleeach
largeallocationof m units (wherem > K). Thistransforma-
tion of thedagincreaseds depthby at mosta constanfactor.
If S, is the total spaceallocatedin the program(not count-
ing thedeallocations)thenumberof nodesn thetransformed
dagis atmostW + S, /K. ThereforeusingLemma4.4,the
modifiedtime boundis statedasfollows.

Theorem 4.5 Theexpectedimeto executea parallel compu-
tation with W work, D depth,andtotal spaceallocation S,

on p processosusingalgorithm DFDequegK) is O(W/p +

Sa/pK + D). Further, for anye > 0, thetime requiredto

executethecomputatioris O(W/p+ S. /pK + D +1n(1/¢))

with probability at least1 — e.

In a systemwhereevery memorylocationallocatedmustbe
zeroed,S, = O(W). The expectediime boundthereforebe-
comesO(W/p + D). Thistime bound,althoughasymptoti-
cally optimal[10], is notaslow asthetime boundof W/p +

O(D) for work stealing[9].

Trade-off between space, time, and scheduling granular-
ity. Asthememorythresholdk is increasedthe scheduling
granularityincreasessincea processorcan executemorein-
structionsbetweensteals.In addition,the numberof dummy
threadsaaddedbeforelargeallocationsdecreaseddowever, the

spacaequiremenincreasesvith K. Thus,adjustingthevalue
of K providesatrade-of betweerrunningtime (or scheduling
granularity),andspacerequirement.

5 Experiments with Pthreads

We implementedthe scheduleras part of an existing library
for Posix standardthreadsor Pthreadqg24]. The library is
the native, userlevel Pthreaddibrary on Solaris2.5[40, 44].

Pthread®n Solarisaremultiplexed at the userlevel on top of
kernelthreadswhich actlike virtual processorsTheoriginal
scheduleiin the Pthreadibrary usesa FIFO queue. Our ex-
perimentswvere conductedn an 8 processoEnterprise5000
SMP with 2GB mainmemory Eachprocessois a 167 MHz

UltraSFRARC with a512kB L2 cache.

Having to supportthe generalPthreadgunctionality pre-
ventseven a userlevel Pthreaddmplementationfrom being
extremelylightweight. For example,a threadcreationis two
ordersof magnitudemoreexpensve thana null function call
on the UltraSRARC. Therefore the useris requiredto create
Pthreadshatarecoarseenoughto amortizethe costof thread
operations.However, with a depth-firstschedulerthreadsat
thisgranularityhadto becoarseneéurtherto getgoodparallel
performancg37]. We shaw thatusingalgorithm DFDeques
good speedupgan be achiesed using Pthreadswithout this
additionalcoarsening.Thus, the usercannow fix the thread
granularityto amortizethreadoperationcosts,and expectto
getgoodparallelperformancen bothspaceandtime.

ThePthreadsnodelsupportsabinaryfork andjoin mech-
anism.We modifiedmemoryallocationroutinesmal | oc and
f r ee to keeptrack of the memoryquotaof the currentpro-
cessor(or kernelthread)andto fork dummy threadsbefore
an allocationif required. Our schedulerimplementationis
a simple extensionof algorithm DFDequegthat supportsthe
full Pthreadgunctionality (including blocking® mutexes and
conditionvariablespy maintainingadditionalentriesin R for
threadssuspendedn synchronizationsOur benchmarksre
predominantlynestedparallel, and makelimited useof mu-
texesandconditionvariables.For example,the tree-uilding
phasein Barnes-Hutusesmutexesto protectmodificationsto
thetrees cells. However, the SolarisPthreadsmplementation
itself makesextensie useof blocking synchronizatiorprimi-
tivessuchasPthreadnutexesandconditionvariables.

Sinceour execution platform is an SMP with a modest
numberof processorsaccesdo the readythreadsin R was
serialized. R is implementedasa linked list of dequespro-
tectedby a sharedscheduletock. We optimizedthecommon
casef pushingand poppingthreadsonto a processos cur-
rentdequeby minimizing locking time. A stealrequiresthe
lock to beacquirednoreoftenandfor alongerperiodof time.

In the existing Pthreaddmplementationjt is not always
possiblgo placeareavakenedhreadonthesamedequeasthe
threadthatwakest up;thereforepurimplementatiorof DFD-
equesds anapproximatiorof thepseudocode Figure5. Fur
ther, sincewe serializeaccesdo R, andsupportmutexesand
conditionvariables settingthe memorythresholdK to infin-
ity doesnot producethe samescheduleasthe space-dfcient
work-stealing scheduler intended for fully strict
computationg9]. Therefore,we canusethis settingonly as
aroughapproximationof a purework-stealingscheduler

8We usethe term “blocking” for synchronizatiorthat causesthe calling
threadto block andsuspendsatherthanspinwait.

Wefirstlist thebenchmarksisedin ourexperiments Next,
we comparethe spaceandtime performanceof the library’s
original scheduler(labelled“FIFO”) with an asynchronous,
depth-firsschedulef37] (labelled'ADF"), andthenew DFD-
equescheduleflabelled'DFD”) for afixedvalueof themem-
ory threshold%'. We alsouse DFDequegcc) asan approx-
imation for a work-stealingscheduler(labelled“DFD-inf”).
To studyhow the performancef the schedulerss affectedby
threadgranularity we presentesultsof theexperimentsattwo
differentthreadgranularities. Finally, we measurdhe trade-
off betweenrunningtime, schedulinggranularity and space
for algorithm DFDequeddy varyingthe valueof the memory
thresholdK™ for oneof thebenchmarks.

5.1 Parallel benchmarks

The benchmarksvere eitheradaptedrom publicly available
coarsegrainedversiong20, 38, 43, 47], orwrittenfrom scratch
usingthe lightweightthreadsmodel[37]. The parallelismin
bothdivide-and-conquerecursionandparallelloopswasex-
pressedasa binarytreeof forks, with a separatéthreadcre-
atedfor eachrecursve call. Threadgranularitywasadjusted
by serializingthe recursionnearthe leafs. In the comparison
resultsin Section5.2, mediumgranularityrefersto thethread
granularitythat providesgoodparallelperformancaisingthe
depth-firstschedule{37]. Even at mediumgranularity the
numberof threadssignificantlyexceedghe numberof proces-
sors;this allows simplecodingandautomatidoad balancing,
while resultingin performancesquivalentto hand-partitioned,
coarse-grainedodeusingthe depth-firstschedule{37]. Fine
granularityrefersto the finestthreadgranularitythat allows
thecostof threadoperationsn asingle-processaxecutionto
beupto 5% of the serialexecutiontime®. Thebenchmarksre
volumerenderingdensematrix multiply, sparsematrix multi-
ply, FastFourier Transform,FastMultipole Method, Barnes-
Hut, andadecisiontreebuilder'®. Figure8 liststhetotal num-
berof threadsxpressedn eachbenchmarlatboththethread
granularities.

5.2 Comparison results

In all the comparisorresults,we usea memorythresholdof
K = 50,000 bytesfor “ADF” and “DFD” !, Eachactive
threadis allocateda minimum8kB (1 page)stack. Therefore,
thespace-dicientschedulergffectively conserestackmem-
ory by creatingfewer simultaneoushactive threadscompared
totheoriginal FIFOschedulefseeFigure8). TheFIFOsched-
uler spendssignificantportionsof time executingsystemcalls
relatedto memoryallocationfor the threadstacks[37]; this
problemis aggraatedwhenthethreadsaremadefine grained.
The8-processaspeeduptor all thebenchmarkatmedium
andfine threadgranularitiesare shavn in Figure9. To con-
centrateon the effect of the schedulerandto ignorethe ef-
fect of increasedhreadoverheadqup to 5% for all except
densematrix multiply) at the fine granularity speedupdgor
eachthreadgranularityarewith respecto thesingle-processor
multithreadea@xecutionatthatgranularity Thespeedupshav

9The exceptionwasthe densematrix multiply, which we wrotefor n x n
blocks,wheren is apowerof two. Thereforefine granularityinvolvedreducing
theblock sizeby afactorof 4, andincreasinghe numberof threadsby a factor
of 8, resultingin 10% additionaloverhead.

Detailsonthe benchmarksanbefoundelsavhere[35].
n the depth-firstschedulerthe memorythresholdK is thememoryquota
assignedo eachthreadbetweerthreadpreemption$37].

Benchmark Inputsize Mediumgrained Finegrained
total | FIFO | ADF [DFD || total [FIFO | ADF | DFD
Vol. Rend. 2562 vol, 3752 img 1427 | 195 29 29 4499 436 36 37
DenseMM 1024 x 1024 doubles 4687 | 623 33 48 37491 | 3752 | 55 77
SparseMVM | 30K nodes151Kedges || 1263 54 31 31 5103 173 51 49
FFTW N =222 177 64 13 18 1777 510 30 33
FMM N = 10K,5mplterms || 4500 | 1314 | 21 29 36676 | 2030 | 50 54
BarnesHut | N = 100K, PImrmodel || 40893 | 1264 | 33 106 || 124767| 3570 | 42 120
DecisionTree 133,999nstances 3059 82 60 77 6995 194 | 138 | 149

Figure8: Inputsizesfor eachbenchmarktotal numberof threadsxpressedn the programat mediumandfine granularitiesand
max. numberof simultaneoushactive threadscreatedoy eachscheduleiat both granularitiesfor K = 50,000bytes. “DFD-inf”
createsat mosttwice asmary threadsas“DFD” for DenseMM, and at most15% morethreadshan“DFD” for the remaining

benchmarks.

[0 Medium-Grain

o N A O ©

B Fine-Grain FIFO ADF DFD

(a) VolumeRendering

8 8
6 6
4 4
2 2
0 0
FIFO ADF DFD FIFO ADF DFD
(b) DenseMatrix Multiply (c) Sparseviatrix Multiply
8 8
6 6
4 4
2 2
0 0
FIFO ADF DFD FIFO ADF DFD
(d) FastFourier Transform (e) FastMultipole Method
8 8
6 6
4 4
2 2
0 0

FIFO ADF DFD
(f) BarnesHut

FIFO ADF DFD
(g) DecisionTreeBuilder

Figure 9: Speedup®n 8 processorwith respectto single-
processorexecutionsfor the three schedulerg(the original
“FIFO”, the depth-first “ADF”, and the new “DFD” or
DFDeque$ at both medium and fine thread granularities,
with K = 50,000 bytes. Performanceof “DFD-inf” (or
DFDeque$xo)), being very similar to that of “DFD”,

is not shavn here. All benchmarkswere compiled us-
ing cc -fast -xarch=v8plusa -xchip=ultra

-xtarget=native -xO4.

T T T T T .

50 | P i

> 40L& n o g4
5

E 30 1

= 20 Cilk —-— -

DFD —+--
10 - ADF -&- -
Input size -
0 L 1 Il 1

1 2 3 45 6 7 8
PROCESSORS

Figurel10: Variationof thememoryrequirementvith thenum-
berof processorfor densematrix multiply usingthreesched-
ulers: depth-first (“ADF”"), DFDeques(“DFD”), and Cilk

(“Cilk™).

thatboththedepth-firsscheduleandthenew DFDequesched-
uler outperformthe library’s original FIFO scheduler How-
ever, atthefine threadgranularity the new scheduleprovides
betterperformancehanthe depth-firstscheduler This differ-
encecanbeexplainedby thebetterocality andlower schedul-
ing contentionexperiencedy algorithm DFDeques

We measuredhe external (L2) cachemissratesfor each
benchmarlusingon-chipUltraSRARC performanceounters.
Figure 1, which lists the resultsat the fine threadgranularity
shaws that our schedulerachievesrelatively low cachemiss
rates(i.e., resultsin betterlocality).

Threeout of the seven benchmarksnakesignificantuse
of heapmemory For thesebenchmarkswe measuredhe
high watermark for heapmemoryallocationusingthe three
schedulersFigure11 shavsthatalgorithm DFDequegesults
in slightly higherheapmemoryrequirementomparedo the
depth-firstschedulerbut still outperformsthe original FIFO
scheduler

TheCilk runtimesystenf21] usesaprovably space-dfcient
work stealingalgorithmto schedulehread$® Figure10com-
paresthe spaceperformanceof Cilk with the depth-firstand
DFDequesschedulerdor the densematrix multiply bench-
mark (atthefine threadgranularity). Thefigureindicatesthat
DFDequesequiresmorememorythanthe depth-firstsched-
uler, but lessmemorythan Cilk. In particular similar to the
depth-firstschedulerthe memoryrequiremenbf DFDeques
increaseslowly with thenumberof processors.

2BecauseCilk requiresgcc to compile the benchmarkgwhich resultsin
slower codefor floating point operationscomparedo the native cc compiler
on UltraSFARCSs), we do not shav a direct comparisonof running times or
speedupsf Cilk benchmarksvith our Pthreads-basesystemhere.

] Medium-Grain I Fine-Grain

240 3 60
200 2.5 50
160 2 40
120 15 30
80 1 20
40 05 10
0 0 0

FIFO ADF DFD DFD-inf FIFO ADF DFD DFD-inf FIFO ADF DFD DFD-inf

(a) DenseMatrix Multiply (b) FastMultipole Method (c) DecisionTreeBuilder

Figure 11: High watermark of heapmemoryallocation(in MB) on 8 processorgor benchmarksnvolving dynamicmemory
allocation (X = 50,000bytesfor “ADF” and“DFD”), at both threadgranularities. “DFD-inf” is our approximationof work

stealingusingDFDeque$co).

6 T T T 80 F T T 3 T T T
%4 -
5F 1 —~ 2000%” £ 20 QQW@W
—~ om - 5 . (] ;
S 4l | s 60 @9@%%&; 3 15 | .
o = / g e
@ 3F 1 g 40 + B > 10 } : .
£ N | £ 5 !
E 2 o} 3 ;
2 20t . Y .
1F — S
n
o L I I I I I I I I

le+02 1e+04 1e+06

K (bytes)
(a) Runningtime

0
le+02 1e+04 1e+06

K (bytes)
(b) MemoryAllocation

0
le+02 1e+04 1e+06

K (bytes)
(c) Schedulinggranularity

Figure 12: Trade-of betweenrunningtime, memoryallocationand schedulinggranularity using algorithm DFDequesas the
memorythresholdK is varied,for thedensematrix multiply benchmarlat fine threadgranularity

5.3 Measuring the tradeoff between space, time, and
scheduling granularity

We studiedthe effect of the size of memorythresholdk on
therunningtime, memoryrequirementandschedulinggranu-
larity using DFDeque$K’). Eachprocessokeepstrackof the
numberof timesathreadfrom its own deques scheduledand
thenumberof timesit hasto performasteal. Theratio of these
two counts,averagedover all the processorsis our approx-
imation of the schedulinggranularity The trade-of is best
illustratedin the densematrix multiply benchmarkwhich al-
locatessignificantamountsof heapmemory Figure12 shows
the resultingtrade-of for this benchmarkat the fine thread
granularity As expected bothmemoryandschedulinggran-
ularity increasewith K, while runningtime reducesas K is
increased.

6 Simulating the scheduler s

To comparealgorithmDFDequesvith awork-stealingsched-
uler, we built asimplesystenthatsimulategheparallelexecu-
tion of synthetic,nested-paralleldivide-and-conquebench-
marks®. Ourimplementatiorsimulatesthe executionof the
space-dicientwork-stealingschedulef9] (labeled'Ws”), the
space-dicient,asynchronoudepth-firsischedulef36] (“ADF"),
andour new DFDequesschedule(labeled'DFD").

Due to limited spacewe presentresultsfor only one of

370 modelirregularapplicationsthe spaceandtime requirementsf athread
ateachlevel of therecursiorareselectediniformly atrandomwith the specified
mean.

the syntheticbhenchmarkseré, in which both the memory
requiremenandthethreadgranularitydecreasgeometrically
down the recursiontree. A numberof divide-and-conquer
programsexhibit suchproperties.Schedulinggranularitywas
measure@sthe averagenumberof actionsexecutedby a pro-
cessobetweertwo steals. Figurel3showvsthatwork stealing
resultsin high schedulinggranularityandhigh spacerequire-
ment,the depthfirst scheduleresultsin low schedulinggran-
ularity andlow spacerequirement, while DFDequesallows
schedulinggranularityto betradedwith spaceequiremenby
varyingthememorythresholdk .

7 Summary and Discussion

Depth-first schedulersare space-dfcient, but unlike work-
stealingschedulersthey requirethe userto explicitly increase
the thread granularity beyond what is requiredto amortize
basicthreadcosts. In contrast,algorithm DFDequesauto-
matically increaseghe schedulinggranularity by executing
neighboring,fine-grainedthreadson the sameprocessorto
yield good locality and low schedulingcontention. In the-
ory, for nested-parallgbrogramswith a large amountof par
allelism, algorithm DFDequeshasa lower spaceboundthan
work-stealingschedulers.We shoved that in practice,it re-
quiresmorememorythanadepth-firsischedulerandlessmem-
ory thanwork stealing.DFDequeslsoallows theuserto con-
trol thetrade-of betweerspaceequiremenandrunningtime
(or schedulinggranularity).Becauselgorithm DFDequesal-

MResultsor otherbenchmarkandadetaileddescriptiorof thesimulatorcan
befoundelsevhere[35].

0.12 T T T T
2 =
£ o1f LARE
3 o8
@ 0.08 - Po-0-¢ 1
9 o006} o .
£ & WS —
S ooaf)/ DFD & -
g # ADF -+--
& 0021 bt

_ 1 1 1 1

0
0 40 80 120 160
Memory Threshold K (KB)

(a) Schedulinggranularity

2000 L T T T I_
/ 0/
o 1600 | oo \ws g
X o DFD -&--
> / ADF -+--
§ 1200 Fg et
£ / *
/ & ¢ i
= 800 o S
400 L 1 1 1 =

0 40 80 120 160
Memory Threshold (KB)

(b) Memory

Figure13: Simulationresultsfor a divide-and-conqudsenchmarkwvith 15 levels of recursiorrunningon 64 processorsThemem-
ory requiremenandthreadgranularitydecreasgeometrically(by afactorof 2) down therecursiortree. Schedulinggranularityis
shavnasa percentagef thetotalwork in thedag.“WS” is thespace-dicientwork-stealingscheduler*ADF” is thespace-dicient

depth-firstschedulerand“DFD” is ournew DFDequesscheduler

[] Medium-Grain I Fine-Grain 8

A

FIFO ADF DFD Cilk

I

N

Figure 14: Speedupdor the tree-liilding phaseof Barnes
Hut (for 1M particles). The phaseinvolves extensie use of
locks on cells of the tree to ensuremutual exclusion. The
Pthreads-basesthedulergall except Cilk) supportblocking
locks. “DFD” doesnot resultin a large schedulinggranular
ity dueto frequentsuspensiomf the threadson locks; there-
fore, its performancds similar to that of “ADF”. Cilk [21]
usesa purework stealerandsupportsspinwaiting locks. For
thisbenchmarkthe single-processaxecutiontime on Cilk is
comparablevith thatonthe Pthreads-basezystem.

lows more dequeghanprocessorsit canbe easily extended
to supportblocking synchronizations For example, prelimi-
nary resultson a benchmarkvhich makesa significantuseof
locks, indicatethat DFDequeswith blocking locksresultsin
betterperformancehana work stealerthat usesspin-waiting
locks(seeFigurel4).

Eachprocessoin DFDequedreatsits dequeasa regular
stack. Therefore,in a systemthat supportsvery lightweight
threads the algorithm shouldbenefitfrom stack-baseapti-
mizationssuchas lazy threadcreation[22, 32]; thesemeth-
odsavoid allocatingresourcedor a threadunlessit is stolen,
therebymakingmostthreadcreationsnearlyascheapasfunc-
tion calls.

Increasingschedulinggranularity typically senesto en-
hancedata locality on SMPs with limited-size, hardware-
coherenttaches.However, on distributed memorymachines
(or software-coherentlusters),executing threadswhere the
datapermanentlyresidesbecomedmportant. A multi-level
schedulingstratgy may allow the threadimplementatiorto
scaleto clustersof SMPs. For example,the DFDequesal-
gorithm could be deployedwithin a single SMP, while some
schemébasedn dataaffinity is usedacrossSMPs.

An openquestionis how to automaticallyfind the appro-
priatevalueof thememorythresholdk’, whichmaydependn
the benchmarkandon the threadimplementation.One pos-

sible solutionis for the user(or the runtime systemjto set &’

to anappropriatevalue afterrunningthe programfor a range
of valuesof K onsmallerinputsizes.Alternatively, it maybe
possiblefor the systemto keepstatisticsto dynamicallyset &

to anappropriatezalueduringthe execution.

Acknowledgements

Guy Blelloch, RobertBlumofe,BwolenYang,andthe anory-
mous refereesprovided valuablefeedbackon previous ver
sionsof this paper We alsothank Guy Blelloch and Avrim
Blum for usefuldiscussions.

References

[1] T. E. Anderson,E. D. Lazowska,andH. M. Levy. The per
formanceimplications of thread managemenalternatves for
shared-memorynultiprocessors.PerformanceEvaluationRe-
view, 17:49-60May 1989.

[2] N.S.Arora,R.D. Blumofe,andC. G. Plaxton.Threadschedul-
ing for multiprogrammednultiprocessorsin ACM symp.Par-
allel AlgorithmsandArchitectues 1998.

[3] F. BellosaandM. Steckermeier The performancemplications
of locality informationusagen shared-memomnultiprocessors.
J. Parallel and Distributed Computing 37(1):113-121August
1996.

[4] G. Blelloch, P. Gibbons,Y. Matias, and G. Narlikar. Space-
efficient schedulingof parallelismwith synchronizatiorvari-
ables. In Proc. ACM Symp.on Parallel Algorithmsand Archi-
tectures pagesl2—-23,1997.

[5] G.E.Blelloch, S.Chatterjee)). C. Hardwick, J. Sipelsteinand
M. Zagha.Implementatiorof a portablenestediata-parallelan-
guageJ. Parallel andDistributedComputing21(1):4—14 April
1994.

[6] G.E.Blelloch,P. B. GibbonsandY. Matias. Prowably efficient
schedulindor languagesvith fine-grainedparallelism.In Proc.
ACM symp.Parallel Algorithmsand Architectues pagesl-12,
SantaBarbaraCalifornia,July 17-19,1995.

[7] R. D. Blumofe, M. Frigo, C. F. Joen, C. E. Leiserson,and
K. H. Randall.An analysisof dag-consisterdistributedshared-
memoryalgorithms. In Proc. ACM Symposiunon Parallel Al-
gorithmsandArchitectues page297-308,Junel996.

[8] R.D. Blumofe, C. F. Joeg, B. C. Kuszmaul,C. E. Leiserson,
K. H. Randall,andY. Zhou. Cilk: An efficient multithreaded
runtimesystem.J. Par. andDistr. Computing 37(1):55-69Au-
gust1996.

9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

R. D. BlumofeandC. E. Leiserson. Schedulingmultithreaded
computationdy work stealing. In Proc. Symp.Foundationsof
ComputerSciencepages356-368,1994.

R. P. Brent. Theparallelevaluationof generakrithmeticexpres-
sions.J. ACM, 21(2):201-206April 1974.

F. W. BurtonandD. J. Simpson. Spaceefficient executionof
deterministigparallelprograms Manuscript Decembefl 994.

F. W. Burton and M. R. Sleep. Executingfunctional pro-
gramson a virtual tree of processors.In Proc. ACM Conf.on
Functional ProgrammingLanguagesand ComputerArchitec-
ture, pagesl87-194,1981.

R.ChandraA. Gupta,andJ.L. HennessyDatalocality andload
balancingn COOL. In Proc. ACM symp Principles& Practice
of Parallel Programmingpages239-259,1993.

K. M. Chandyand C. Kesselman. Compositionalc++: com-
positionalparallelprogramming.In Proc. Intl. Wkshp.on Lan-
guagesand Compilersfor Parallel Computing pagesl24-144,
New Haven,CT, August1992.

S. A. Cook. A taxonomyof problemswith fast parallelalgo-
rithms. Informationand Control, 64:2—22,1985.

T. H. Cormen,C. E. LeisersonandR. L. Rivest. Introduction
to algorithms MIT PressandMcGraw-Hill Book Company6th
edition,1992.

D. E. CullerandG. Arvind. Resourceequirementsf dataflav
programs.In Proc. Intl. Symp.on ComputerArchitectue, pages
141-151,1988.

D. R. Engler G. R. Andrews, andD. K. Lowenthal. Filaments:
Efficientsupportfor fine-grainparallelism.TechnicalReport93-
13, Universityof Arizona.Dept.of ComputerScience1993.

R. Feldmann,P. Mysliwietz, and B. Monien. Studyingover
headsin massvely parallel min/max-treeevaluation (extended
abstract).In ACM Symp Parallel AlgorithmsandArchitectues
pageL4-103,1994.

M. Frigo and S. G. Johnson. The fastestfourier transformin
the west. TechnicalReportMIT-LCS-TR-728,Massachusetts
Instituteof Technology Septembet997.

M. Frigo, C. E. LeisersonandK. H. Randall. Theimplementa-
tion of the Cilk-5 multithreadedanguage.Iln Proc. ACM Conf.
on ProgrammingLanguageDesignand Implementationpages
212-2231998.

S.C.GoldsteinK. E. SchauseandD. E. Culler. Enablingprim-
itives for compiling parallellanguages.In Workshopon Lan-
guages,Compilers,and Run-Tme Systemdor ScalableCom-
puters May 1995.

High Performancd-ortran Forum. High performancefortran
languagespecificatiorvertion1.0,1993.

IEEE. InformationTechnology—Portabl®peratingSystemin-
terface(POSIX)—PartL: SystemApplication: Programinterface
(API) [C Language] [EEE/ANSI Std1003.1,1996 Edition.

V. Karamcheti,J. Plevyak, andA. A. Chien. Runtimemecha-
nismsfor efficientdynamicmultithreading.J. Parallel and Dis-
tributedComputing37(1):21-40August1996.

R.KarpandY. Zhang.A randomizedarallelbranch-and-bond
procedureln Proc. SympTheoryof Computingpages290-300,
1988.

D. A. Kranz,R. H. HalsteadJr, andE. Mohr. Mul-T: A High-
Performanc®arallelLisp. In Proc. Programming-anguageéde-
signandImplementationPortland Oregon June21-23,1989.

E. P MarkatosandT. J. LeBlanc. Locality-basedschedulingn
shared-memorynultiprocessors.TechnicalReport94, Inst for
ICS-FOR'H, Heraklio,Crete,Greec,1993.

Evangelos Markatos and ThomasLeBlanc. Locality-based
schedulingn shared-memorgnultiprocessorsTechnicalReport
TR93-0094|CS-FORH, Heraklio,Crete Greece 1993.

(30]

(31]

(32

(33]

[34]

[35]

(36]

(37

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

P H. Mills, L. S.Nyland,J.F. Prins,J. H. Reif, andR. A. Wag-
ner Prototypingparallel and distributed programsin Proteus.
TechnicalReportUNC-CH TR90-041,ComputerScienceDe-
partmentUniversity of North Carolina,1990.

T. Miyazaki, C. Sakamoto,M. Kuwayama,L. Saisho,and
A. Fukuda. Parallelpthreadibrary (PPL): userlevel threadli-
brary with parallelismand portability. In Proc. Intl. Computer
Softwae and ApplicationsConf. (COMPSA), pages301-306,
November1994.

E. Mohr, D. Kranz,andR. Halstead Lazy taskcreation:A tech-
niguefor increasinghe granularityof parallelprograms.|EEE
Trans.on Parallel andDistributed Systems1990.

R. Motwani andP. Raghaan. Randomizedlgorithms Cam-
bridgeUniversityPressCambridgeEngland June1995.

G. J. Narlikar. Schedulingthreadsfor low spacerequirement
and good locality. TechnicalReport CMU-CS-99-121,Com-
puterScienceDepartmentCarnegieMellon University, 1999.

G. J. Narlikar. Space-Hicient Schedulingor Parallel, Multi-
threadedComputations PhD thesis,CarnegieMellon Univer
sity, 1999. AvailableasCMU-CS-99-119.

G. J. Narlikar andG. E. Blelloch. Space-dfcientimplementa-
tion of nestecparallelism.In Proc. ACM SIGPLANSymp Prin-
ciplesandPracticeof Parallel Programmingpages5-36,June
1997.

G. J. Narlikar and G. E. Blelloch. Pthreadgor dynamicand
irregularparallelism.n Proc.of Supecomputing98, November
1998.

D. O’Hallaron. Spark98:Sparsematrix kernelsfor sharednem-
ory andmessag@assingsystems.TechnicalReportCMU-CS-
97-178,Schoolof ComputerScienceCarnegieMellon Univer-
sity, 1997.

J. Philbin, J. E., O. J. Anshus,and C. C. Douglas. Thread
schedulingfor cachelocality. In Intl. Conf. Architectural Sup-
port for Programming_anguagesind OperatingSystemgages
60-71,1996.

M. L. Powell, S.R. Kleiman, S. Barton,D. Shah,D. Stein,and
M. Weeks. SunOSmulti-threadarchitecture. In Proc. Winter
1991 USENIXTechnicalConfeenceand Exhibition, pages65—
80, Dallas,TX, USA, Januaryl991.

Jr. R. H. Halstead. Multilisp: A languagefor concurrentsym-
bolic computationACM Trans.onProgrammind-anguagesnd
Systems7(4):501-5381985.

C. A. RuggieroandJ. Sageant. Control of parallelismin the
manchestedataflav machine. In G. Kahn, editor, Functional
ProgrammingLanguagesnd ComputerArchitectue, pagesl—
16. SpringefVerlag,Berlin, DE, 1987.

J.P. Singh,A. Gupta,andM. Levoy. Parallelvisualizationalgo-
rithms: Performancandarchitecturaimplications.|[EEE Com-
puter, 27(7):45-55)uly 1994.

D. Steinand D. Shah. Implementinglightweight threads. In
Proc. Summen992 USENIXTechnicalConfeenceand Exhibi-
tion, pagesl-10,SanAntonio, TX, 1992.USENIX.

M. T. VandevoordeandE. S. Roberts.WorkCrews: anabstrac-
tion for controlling parallelism. Intl. J. Parallel Programming
17(4):347-366August1988.

B. Weissman. Performanceountersand statesharingannota-
tions: aunifiedapproactto threadlocality. In Intl. Conf.on Ar-

chitecturalSupportfor Programming_anguagesnd Operating
Systemgpage62-2730ctober1998.

S.C. Woo, M. Ohara,E. Torrie, J.P. Singh,andA. Gupta. The
SPLASH-2programs:Characteriatiomndmethodologicaton-
siderations.In Proc. Intl. Symp.ComputerArchitectue, pages
24-37,Junel995.

