
Thispaperappearsin theProceedingsof theEleventhAnnualACM Symposiumon Parallel AlgorithmsandArchitectures(SPAA),June1999.

SchedulingThreadsfor Low SpaceRequirementandGoodLocality

Girija J.Narlikar
�

CMU Schoolof ComputerScience

Abstract

The runningtime andmemoryrequirementof a parallelpro-
gramwith dynamic,lightweight threadsdependsheavily on
the underlying threadscheduler. In this paper, we present
a simple,asynchronous, space-efficient schedulingalgorithm
for sharedmemorymachinesthatcombinesthe low schedul-
ing overheadsandgoodlocality of work stealingwith thelow
spacerequirementsof depth-firstschedulers.For a nested-
parallelprogramwith work

�
, depth � andserialspacere-

quirement��� , we show that the expectedspacerequirement
is �����	��

����������� on � processors.Here, � is a user-
adjustableruntimeparameter, which providesa trade-off be-
tweenrunning time and spacerequirement. Our algorithm
achievesgood locality and low schedulingoverheadsby au-
tomatically increasingthe granularityof the work scheduled
on eachprocessor.

Wehaveimplementedthenew schedulingalgorithmin the
context of a native, user-level implementationof Posixstan-
dardthreadsorPthreads,andevaluatedits performanceusinga
setof C-basedbenchmarksthathavedynamicor irregularpar-
allelism. We comparetheperformanceof our schedulerwith
that of two previous schedulers:the threadlibrary’s original
scheduler(which usesa FIFO queue),anda provably space-
efficientdepth-firstscheduler. At afinethreadgranularity, our
scheduleroutperformsboththesepreviousschedulers,but re-
quiresmarginally morememorythanthedepth-firstscheduler.

Wealsopresentsimulationresultsonsyntheticbenchmarks
to compareourschedulerwith space-efficientversionsof both
a work-stealingscheduleranda depth-firstscheduler. There-
sults indicatethat unlike theseprevious approaches,the new
algorithmcoversarangeof schedulinggranularitiesandspace
requirements,andallows the userto tradethe spacerequire-
mentof aprogramwith theschedulinggranularity.

1 Intr oduction

Many parallel programminglanguagesallow the expression
of dynamic, lightweight threads. Theseinclude dataparal-�

girija@cs.cmu.edu. 5000 ForbesAve, Pittsburgh PA 15213. This
researchwassupportedby NSFresearchgrantnumberCCR-9706572.

lel languageslike HPF [23] or Nesl [5] (wherethe sequence
of instructionsexecutedover individual dataelementsarethe
“threads”), dataflow languageslike ID [17], control-parallel
languageswith fork-join constructslike Cilk [21], CC++[14],
andProteus[30], languageswith futureslike Multilisp [41],
andvarioususer-level threadlibraries[3, 18, 31, 44]. In the
lightweight threadsmodel,theprogrammersimply expresses
all theparallelismin theprogram,while the languageimple-
mentationperformsthetaskof schedulingthethreadsontothe
processorsat runtime. Thus the advantagesof lightweight,
user-level threadsincludetheeaseof programming,automatic
load balancing,architecture-independentcodethat canadapt
to a varying numberof processors,andthe flexibility to use
kernel-independent threadschedulers.

Programswith irregular and dynamicparallelismbenefit
mostfrom theuseof lightweightthreads.Compile-timeanal-
ysisof suchcomputationstopartitionandmapthethreadsonto
processorsis generallynot possible.Therefore,theprograms
dependheavily on the implementationof the runtimesystem
for goodperformance.In particular,

1. To allow the expressionof a large numberof threads,the
runtimesystemmustprovidefastthreadoperationssuchas
creation,deletionandsynchronization.

2. The threadschedulermustincur low overheadswhile dy-
namicallybalancingtheloadacrossall theprocessors.

3. Theschedulingalgorithmmustbespaceefficient, thatis, it
mustnotcreatetoomany simultaneouslyactive threads,or
schedulethemin an orderthat resultsin high memoryal-
location.A smallermemoryfootprint resultsin fewerpage
andTLB misses.This is particularlyimportantfor parallel
programs,sincethey aretypically usedto solve largeprob-
lems,andareoftenlimited by theamountof memoryavail-
able on a parallel machine. Existing commercialthread
systems,however, canleadto poorspaceandtime perfor-
mancefor multithreadedparallelprograms,if thescheduler
is notdesignedto bespaceefficient [37].

4. Today’shardware-coherentsharedmemorymultiprocessors
(SMPs)typically have a large off-chip datacachefor each
processor,with alatency significantlylowerthatthelatency
to main memory. Therefore,the threadschedulermust
also schedulethreadsfor good cachelocality. The most
commonheuristicto obtaingoodlocality for fine grained
threadson multiprocessorsis to schedulethreadsclosein
thecomputationgraph(e.g., a parentthreadalongwith its
child threads)on the sameprocessor, sincethey typically
sharecommondata[1, 9, 26,28, 32, 41].

Work stealingis aruntimeschedulingmechanismthatcan
provide a fair combinationof the above requirements.Each
processormaintainsits own queueof readythreads;a pro-
cessorstealsa threadfrom anotherprocessor’s readyqueue
only whenit runsoutof readythreadsin its own queue.Since

threadcreationandschedulingaretypically local operations,
they incur low overheadandcontention.Further, threadsclose
togetherin thecomputationgraphareoftenscheduledon the
sameprocessor, resultingin good locality. Several systems
haveusedwork stealingto provide highperformance[12, 18,
19, 21, 27, 41, 43, 45]. Wheneachprocessortreatsits own
readyqueueasa LIFO stack(that is, addsor removesthreads
fromthetopof thestack)andstealsfromthebottomof another
processor’s stack,theschedulersuccessfullythrottlesthe ex-
cessparallelism[8, 41, 11, 45]. For fully strict computations,
sucha mechanismwas proved to require ����� � spaceon �
processors,where ��� is the serial, depth-firstspacerequire-
ment[9]. A computationwith

�
work (totalnumberof oper-

ations)and � depth(lengthof thecritical path)wasshown to
require

��� ������

��� timeon � processors[9]. Wewill hence-
forth referto suchschedulersaswork-stealingschedulers.

Recentwork [6, 36] hasresultedin depth-first schedul-
ing algorithmsthat require � � ����
�������� spacefor nested-
parallelcomputationswith depth � . For programsthat have
a low depth(a high degreeof parallelism),suchas all pro-
gramsin the class �! [15], the spaceboundof � � �"��
������� is asymptoticallylower thanthe work stealingboundof������� . Further, the depth-firstapproachallows a moregen-
eralmemoryallocationmodelcomparedto thestack-basedal-
locationsassumedin space-efficient work stealing[6]. The
depth-firstapproachhas beenextendedto handlecomputa-
tionswith futures[41] or I-structures[17], resultingin similar
spacebounds[4]. Experimentsshowedthatanasynchronous,
depth-firstscheduleroftenresultsin lower spacerequirement
in practice,comparedto awork-stealingscheduler[36]. How-
ever, sincedepth-firstschedulersuseagloballyorderedqueue,
they do not provide someof thepracticaladvantagesenjoyed
by work-stealingschedulers.Whenthe threadsexpressedby
the userarefine grained,the performancemay suffer dueto
poor locality andhigh schedulingcontention(i.e., contention
over shareddatastructureswhile scheduling)[37]. Therefore,
even if basicthreadoperationsarecheap,the threadshave to
becoarsenedfor depth-firstschedulersto providegoodperfor-
mancein practice.

In this paper, we presenta new schedulingalgorithmfor
implementingmultithreadedlanguagesonsharedmemoryma-
chines.Thealgorithm,calledDFDeques 1, providesacompro-
mise betweenprevious work-stealingand depth-firstsched-
ulers. Readythreadsin DFDequesareorganizedin multiple
readyqueues,thataregloballyorderedasin depth-firstsched-
ulers. ThereadyqueuesaretreatedasLIFO stackssimilar to
previous work-stealingschedulers.A processorstealsfrom
a readyqueuechosenrandomly from a set of high-priority
queues.For nested-parallel(or fully strict) computations,our
algorithmguaranteesanexpectedspaceboundof ���#�$��

�%� �&���� . Here, � is auser-adjustableruntimeparametercalledthe
memorythreshold, whichspecifiesthenetamountof memory
aprocessormayallocatebetweenconsecutivesteals.Since�
is typically fixed to be a small, constantamountof memory,
thespaceboundreducesto �����'��

�(�
�)� , aswith depth-first
schedulers.For a simplisticcostmodel,we show that theex-
pectedrunningtime is ��
 �*� ���'��� on � processors2.

1DFDequesstandsfor “depth-firstdeques”.
2Whentheschedulerin DFDequesis parallelized,thecostsof all scheduling

operationscanbeaccountedfor with a morerealisticmodel[35]. Then,in the
expectedcase,theparallelcomputationcanbeexecutedusing +-,�.�/�021*354637 8#9 4;: spaceand /<0>=@?A4�.B1�3 7 8#9 4C: time(includingschedulingoverheads).
However, for brevity, we omit a descriptionandanalysisof sucha parallelized
scheduler.

We refer to the total numberof instructionsexecutedin a
threadasthe thread’s granularity. We also (informally) de-
fine schedulinggranularity to be the averagenumberof in-
structionsexecutedconsecutively on a singleprocessor, from
threadsclosetogetherin thecomputationgraph.Thus,a larger
schedulinggranularity typically implies better locality and
lowerschedulingcontention.In theDFDequesscheduler,when
aprocessorfindsits readyqueueempty, it stealsathreadfrom
the bottomof anotherreadyqueue. This threadis typically
thecoarsestthreadin thequeue,resultingin a largerschedul-
ing granularitycomparedto depthfirst schedulers.Although
we do not analytically prove this claim, we presentexperi-
mentalandsimulationresultsto verify it. Adjustingthemem-
ory threshold� in theDFDequesalgorithmprovidesa user-
controllable trade-off between scheduling granularity and
spacerequirement.

Posix threadsor Pthreadshave recentlybecomea popu-
lar standardfor sharedmemoryparallel programming. We
thereforeaddedtheDFDequesschedulingalgorithmto a na-
tive, user-level Pthreadslibrary [44]. Despitebeing one of
thefastestuser-level implementationsof Pthreadstoday, theli-
brary’sschedulerdoesnotefficiently supportfine-grained,dy-
namicthreads.In previouswork [37], weshowedhow its per-
formancecanbe improved usinga space-efficient depth-first
scheduler. In this paper, we comparethespaceandtime per-
formanceof the new DFDequesschedulerwith the library’s
originalscheduler(whichusesaFIFOschedulingqueue),and
with our previous implementationof a depth-firstscheduler.
To performthe experimentalcomparison,we used D parallel
benchmarkswritten with a large numberof dynamicallycre-
atedPthreads. As shown in Figure 1, the new DFDeques
schedulerresultsin betterlocality andhigherspeedupscom-
paredto boththedepth-firstschedulerandtheFIFOscheduler.

Ideally, wewouldalsolike to compareourPthreads-based
implementationof DFDequeswith aspace-efficientwork-steal-
ing scheduler(e.g., theschedulerusedin Cilk [8]). However,
supportingthe generalPthreadsfunctionality with an exist-
ing space-efficient work-stealingscheduler[8] would require
significantmodificationsto boththeschedulingalgorithmand
thePthreadsimplementation3. Therefore,to compareournew
schedulerto this work-stealingscheduler, we insteadbuilt a
simplesimulatorthatimplementssynthetic,fully-strict bench-
marks. Our simulationresultsindicatethat by adjustingthe
memory threshold,our new schedulercovers a wide range
of spacerequirementsand schedulinggranularities. At one
extreme it performssimilar to a depth-firstscheduler, with
low spacerequirementandsmall schedulinggranularity. At
the other extreme, it behaves exactly like the work-stealing
scheduler, with higherspacerequirementandlarger schedul-
ing granularity.

2 Backgr ound and Previous Work

A parallelcomputationcanberepresentedbyadirectedacyclic
graph;we will refer to sucha computationgraphasa dag in
the remainderof this paper. Eachnodein the dagrepresents
a singleaction in a thread;anactionis a unit of work that re-
quiresa singletimestepto beexecuted.Eachedgein thedag
representsadependencebetweentwo actions.Figure2 shows

3Even fully strict Pthreadsbenchmarkscannotbe executedusing such a
work-stealingschedulerin the existing SolarisPthreadsimplementation,be-
causethePthreadsimplementationitself makesextensive useof blockingsyn-
chronizationprimitivessuchasPthreadmutexesandconditionvariables.

Benchmark Max threads L2 Cachemissrate 8 processorspeedup
FIFO ADF DFD FIFO ADF DFD FIFO ADF DFD

Vol. Rend. 436 36 37 4.2 3.0 1.8 5.39 5.99 6.96

DenseMM 3752 55 77 24.0 13 8.7 0.22 3.78 5.82
SparseMVM 173 51 49 13.8 13.7 13.7 3.59 5.04 6.29

FFTW 510 30 33 14.6 16.4 14.4 6.02 5.96 6.38
FMM 2030 50 54 14.0 2.1 1.0 1.64 7.03 7.47

BarnesHut 3570 42 120 19.0 3.9 2.9 0.64 6.26 6.97
DecisionTr. 194 138 149 5.8 4.9 4.6 4.83 4.85 5.39

Figure1: Summaryof experimentalresultswith theSolarisPthreadslibrary. For eachschedulingtechnique,weshow themaximum
numberof simultaneouslyactive threads(eachof which requiresmin. 8kB stackspace),theL2 cachemissesrates(%), andthe
speedupsonan8-processorEnterprise5000SMP. “FIFO” is theoriginalPthreadsscheduler, “ADF” is anasynchronous,depth-first
scheduler[37], and“DFD” is ournew DFDequesscheduler.

suchan exampledagfor a simpleparallelcomputation.The
dashed,right-to-left fork edgesin thefigurerepresentthefork
of achild thread.Thedashed,left-to-rightsynchedgesrepre-
senta join betweenaparentandchild thread,while eachsolid
verticalcontinueedgerepresentsasequentialdependencebe-
tweenapairof consecutiveactionswithin asinglethread.For
computationswith dynamicparallelism,the dag is revealed
andscheduledontotheprocessorsat runtime.

2.1 Scheduling for locality

Detectionof data accessesor data sharingpatternsamong
threadsin a dynamicand irregular computationis often be-
yond the scopeof the compiler. Further, today’s hardware-
coherentSMPsdonotallow explicit, software-controlledplace-
mentof datain processorcaches;therefore,owner-compute
optimizationsfor locality thatarepopularondistributedmem-
ory machinestypically do not apply to SMPs. However, in
many parallelprogramswith fine-grainedthreads,thethreads
closetogetherin thecomputation’s dagoftenaccessthesame
data.For example,in adivide-and-conquercomputation(such
as quicksort)wherea new threadis forked for eachrecur-
sive call, a threadsharesdatawith all its descendentthreads.
Therefore, many parallel implementationsof lightweight
threads use per-processordata structures to store ready
threads[18, 21, 25,26, 41,43, 45]. Threadscreatedon apro-
cessorarestoredlocally andmovedonly whenrequiredto bal-
ancetheload.This techniqueeffectively increasesscheduling
granularity, andthereforeprovidesgoodlocality [7] andlow
schedulingcontention.

Anotherapproachfor obtaininggood locality is to allow
theuserto supplyhintsto theschedulerregardingthedataac-
cesspatternsof the threads[13, 29, 39, 46]. However, such
hints canbe cumbersomefor the userto provide in complex
programs,and areoften specificto a certainlanguageor li-
brary interface. Therefore,our DFDequesalgorithminstead
usestheheuristicof schedulingthreadsclosein thedagon the
sameprocessorto obtaingoodlocality.

2.2 Scheduling for space-efficiency

Thethreadschedulerplaysasignificantrole in controllingthe
amountof active parallelismin a fine-grainedcomputation.
For example,considerasingle-processorexecutionof thedag
in Figure2. If theschedulerusesa LIFO stackto storeready
threads,anda child threadpreemptsits parentas soonas it
is forked,thenodesareexecutedin a (left-to-right)depth-first

t0

t2

t4

t1

t5

root thread

t3

Figure 2: An exampledag for a parallel computation;the
threadsareshown shaded.Eachright-to-left edgerepresents
a fork, andeachleft-to-right edgerepresentsa synchroniza-
tion of a child threadwith its parent.Verticaledgesrepresent
sequentialdependencieswithin threads.EGF is theinitial (root)
thread,whichforkschild threadsE � , EGH , EJI , and EJK in thatorder.
Child threadsmayfork threadsthemselves;e.g., E H forks EGL .
order, resultingin at most5 simultaneouslyactive threads.In
contrast,if the schedulerusesa FIFO queue,the threadsare
executedin abreadth-firstorder, resultingin all 16 threadsbe-
ing simultaneouslyactive. Systemsthatsupportfine-grained,
dynamicparallelismcansuffer from suchacreationof excess
parallelism.

Initial attemptsto controltheactiveparallelismwerebased
onheuristics[3, 17, 32,42,41], which includedwork stealing
techniques[32, 41]. Heuristicattemptswork well for some
programs,but do not guaranteean upperboundon thespace
requirementsof a program.More recently, two differenttech-
niqueshavebeenshown to beprovablyspace-efficient: work-
stealingschedulers,anddepth-firstschedulers.

In additionto beingspaceefficient [8, 11], work stealing
canoftenresultin large schedulinggranularities,by allowing
idle processorsto stealthreadshigherup in thedag(e.g., see
Figure3(a)). Severalsystemsusesuchanapproachto obtain
goodparallelperformance[8, 18,27,41,45].

Depth-firstschedulersguaranteean upperboundon the
spacerequirementof a parallel computationby prioritizing
its threadsaccordingto their serial,depth-firstexecutionor-
der [6, 36]. In a recentpaper[37], we showed that the per-
formanceof a commercialPthreadsimplementationcould be
improvedfor predominantlynested-parallelbenchmarksusing
adepth-firstscheduler. However, depth-firstschedulerscanre-

(a)

P3 P2 P1 P0

(b)

P1P2 P0P3

Figure3: Possiblemappingsof threadsof thedagin Figure2
onto processorsM�FON�P�P�P#NQM�I by (a) work-stealingschedulers,
and(b) depth-firstschedulers.If, say, the RJS>T thread(going
from left to right) accessesthe RJS>T block or elementof anar-
ray, thenschedulingconsecutivethreadsonthesameprocessor
providesbettercachelocality andlowerschedulingoverheads.

sult in high schedulingcontentionandpoor locality whenthe
threadsin theprogramareveryfine grained[36, 37] (seeFig-
ure3).

Thenext sectiondescribesanew schedulingalgorithmthat
combinesideasfromtheabovetwospace-efficientapproaches.

3 The DFDeques Scheduling Algorithm

Wefirstdescribetheprogrammingmodelfor themultithreaded
computationsthat areexecutedby the DFDequesscheduling
algorithm. We thenlist thedatastructuresusedby thesched-
uler, followed by a descriptionof the DFDequesscheduling
algorithm.

3.1 Programming model

As with depth-firstschedulers,our schedulingalgorithmap-
pliestopure,nested-parallelcomputations,whichcanbemod-
eledby series-paralleldags[6]. Nested-parallelcomputations
areequivalentto the subsetof fully strict computationssup-
ported by Cilk’s space-efficient work-stealingscheduler[8,
21]. Nestedparallelismcanbeusedto expressa largevariety
of parallelprograms,includingrecursive, divide-and-conquer
programsandprogramswith nested-parallelloops.Ourmodel
assumesbinary forks andjoins; theexampledagin Figure2
representssuchanested-parallelcomputation.

Althoughwedescribeandanalyzeouralgorithmfor nested-
parallelcomputations,in practiceit canbe extendedto exe-

8
5

11

7
9

10

1

3

2
6

4

Figure4: Theserial,depth-firstexecutionorderfor a nested-
parallelcomputation.The RJS>T nodeexecutedis labelled R in
this dag. The lower the label of a thread’s currentnode(ac-
tion), thehigheris its priority in DFDeques.

cuteprogramswith otherstylesof parallelism.For example,
the Pthreadsschedulerdescribedin Section5 supportscom-
putationswith arbitrarysynchronizations,suchasmutexesand
conditionvariables.However, ouranalyticalspacebounddoes
notapplyto suchgeneralcomputations.

A threadis active if it hasbeencreatedbut hasnotyet ter-
minated.A parentthreadwaiting to synchronizewith a child
threadis said to be suspended. We say an active threadis
ready to be scheduledif it is not suspended,and is not cur-
rently beingexecutedby a processor. Eachactionin a thread
mayallocateanarbitraryamountof spaceonthethreadstack,
or on thesharedheap.

Everynested-parallelcomputationhasanaturalserialexe-
cutionorder, whichwecall its depth-firstorder. Whenachild
threadis forked, it is executedbeforeits parentin a depth-
first execution(e.g., seeFigure 4). Thus, the depth-firstor-
der is identical to the uniqueserial executionorder for any
stack-basedlanguage(suchasC), whenthe threadforks are
replacedby simplefunctioncalls. Algorithm DFDequespri-
oritizesreadythreadsaccordingto their serial,depth-firstex-
ecutionorder;an earlierserialexecutionordertranslatesto a
higherpriority.

3.2 Scheduling data structures

Althoughthedagfor a computationis revealedastheexecu-
tion proceeds,dynamicallymaintainingtherelativethreadpri-
orities for nested-parallelcomputationsis straightforward[6]
and inexpensive in practice[36]. In algorithm DFDeques,
the readythreadsare storedin doubly-endedqueuesor de-
ques[16]. Eachof thesedequessupportspoppingfrom and
pushingontoits top,aswell aspoppingfrom thebottomof the
deque.At any time duringtheexecution,a processorownsat
mostonedeque,andexecutesthreadsfrom it. A singledeque
hasatmostoneowneratany time. However, unliketraditional
work stealing,thenumberof dequesmayexceedthenumber
of processors.All thedequesarearrangedin agloballist U of
deques.Thelist supportsaddingof anew dequeto theimme-
diateright of anotherdeque,deletionof a deque,andfinding
the V S5T dequeuefrom theleft endof U .

3.3 The DFDeques scheduling algorithm

The processorsexecutethe code in Figure 5 for algorithm
DFDeques(�); here� is thememorythreshold,auser-defined
runtime parameter. Eachprocessortreatsits own dequeas
a regular LIFO stack,andis assigneda memoryquotaof �
bytesfrom which to allocateheapandstackdata.This mem-
ory threshold� is equivalentto theper-threadmemoryquota
in depth-firstschedulers[36]; however, in algorithmDFDe-

while (W threads)
if (currS= NULL) currS:= steal();
if (currT = NULL) currT := pop from top(currS);
executecurrT until it forks,suspends,terminates,

or memoryquotaexhausted:
case (fork):

pushto top(currT, currS);
currT := newly forkedchild thread;

case (suspend):
currT := NULL;

case (memoryquotaexhausted):
pushto top(currT, currS);
currT := NULL;
currS:= NULL; / X giveup stack X /

case (terminate):
if currTwakesup suspendedparentT Y

currT := T Y ;
else currT := NULL;

if ((is empty(currS)) and (currT= NULL))
currS:= NULL; / X giveup anddeletestack X /

endwhile

procedure steal():
setmemoryquotato K;
while (TRUE)V := randomnumberin [Z�P�P�PJ�];

S := V S>T dequein U ;
T := pop from bot(S);
if (T [\ NULL)

createnew dequeS Y containingT
andbecomeits owner;

placeS Y to immediateright of S in U ;
return S Y ;

Figure5: Pseudocodefor theDFDeques(�) schedulingalgo-
rithm executedby eachof the � processors;� is thememory
threshold. currS is the processor’s currentdeque. currT is
thecurrentthreadbeingexecuted;changingits valuedenotes
a context switch. Memory managementof the dequesis not
shown herefor brevity.

ques, thememoryquotaof � bytescanbeusedby aprocessor
to executemultiplethreadsfrom onedeque.A threadexecutes
withoutpreemptiononaprocessoruntil it forksachild thread,
suspendswaiting for a child to terminate,or terminates,or
the processorrunsout of its memoryquota. If a terminating
threadwakesupits previouslysuspendedparent,theprocessor
startsexecutingtheparentnext; for nestedparallelcomputa-
tions,wecanshow thattheprocessor’sdequemustbeemptyat
this stage[35]. Whenanidle processorfindsits dequeempty,
it deletesthe deque. Whena processordeletesits deque,or
whenit givesup ownershipof its dequedueto exhaustionof
its memoryquota,it usesthesteal() procedureto obtain
a new deque. Every invocationof steal() resetsthe pro-
cessor’smemoryquotato � bytes.We call aniterationof the
loop in thesteal() procedureastealattempt.

A processorexecutesa stealattemptby picking a random
numberV between1 and� , where� is thenumberof proces-
sors. It then tries to steal the bottom threadfrom the V S>T
deque(starting from the left end) in U . A stealattempt
mayfail (that is, pop from bot() returnsNULL) if two or
moreprocessorstarget the samedeque(seeSection4.1), or

list of deques]

top

bottom

executing
 threads

owners P0 P3 P2 P1

ta

tb

deques

-- --

Figure6: Thelist U of dequesmaintainedin thesystemby al-
gorithmDFDeques. Eachdequemayhaveone(or no) owner
processor. Thedottedline tracesthedecreasingorderof prior-
ities of thethreadsin thesystem;thus E
^ in this figurehasthe
highestpriority, while EA_ hasthelowestpriority.

if the dequeis emptyor non-existent. If the stealattemptis
successful(pop from bot() returnsa thread),thestealing
processorcreatesanew dequefor itself, placesit to theimme-
diateright of the targetdeque,andstartsexecutingthestolen
thread.Otherwise,it repeatsthestealattempt.Whenaproces-
sorstealsthelastthreadfrom adequenotcurrentlyassociated
with (ownedby) any processor, it deletesthedeque.

If a threadcontainsanactionthatperformsa memoryal-
locationof V unitssuchthat V�`a� (where � is themem-
ory threshold),then bJV � �dc dummythreadsmustbe forked
in a binarytreeof depth e�
>f2gOhBV � ��� beforetheallocation4.
We do not show this extensionin Figure5 for brevity. Each
dummythreadexecutesa no-op. However, processorsmust
give up their dequesandperforma stealevery time they exe-
cutea dummythread.Onceall thedummythreadshavebeen
executed,a processormay proceedwith the memoryalloca-
tion. This transformationtakesplaceat runtime.Theaddition
of dummythreadseffectively delayslargeallocationsof space,
so that higherpriority threadsmay be scheduledinstead. In
practice,� is typically setto a few thousandbytes,sothatthe
runtimeoverheaddueto thedummythreadsis negligible (e.g.,
seeSection5).

We now statea lemmaregardingthe orderof threadsinU maintainedby algorithmDFDeques(anddepictedin Fig-
ure6).

Lemma 3.1 Algorithm DFDequesmaintains the following
orderingof threadsin thesystem.

1. Threadsin each dequearein decreasingorderof priorities
fromtop to bottom.

2. A threadcurrentlyexecutingona processorhashigherpri-
ority thanall otherthreadson theprocessor’sdeque.

3. Thethreadsin anygivendequehavehigherpriorities than
threadsin all thedequesto its right in U .

Theproofusesinductiononthetimesteps(see[34] for details).
Thebasecaseis thestartof thecomputation.Wecanshow that
theorderingis maintainedwhenadequeis deleted,or whena
thread(a)forksachild thread,(b) terminates,(c) is preempted,
or, (d) is stolenby aprocessor.

Work stealing as a special case of algorithm DFDeques .
Considerthe casewhen we set the memorythreshold� \i . Then, for nested-parallelcomputations,algorithmDFD-
eques(i) producesa scheduleidenticalto theoneproduced

4This transformationdiffers slightly from depth-firstschedulers[6, 36],
whichallow dummythreadsto beforkedin amulti-wayfork of constantdepth.

by the provably-efficient work-stealingscheduler“WS” [9].
Theprocessorsin DFDeques(i) nevergiveupadequedueto
exhaustionof their memoryquota,andtherefore,aswith the
work stealer, therearenever more than � dequesin the sys-
tem. Further, in both algorithms,when a processor’s deque
becomesempty, it picks anotherprocessoruniformly at ran-
dom, andstealsthe bottommostthreadfrom that processor’s
deque. Similarly, for nestedparallel computations,the rule
for wakingupasuspendedparentin DFDeques(i) is equiva-
lent to thecorrespondingrule in WS5. Of course,theresulting
schedulesareidenticalassumingthesamecostmodelfor both
algorithms;themodelcouldbeeithertheatomic-accessmodel
usedto analyzeWS[9], or ourcostmodelfrom Section4.1.

4 Anal ysis of Time and Space Bounds

We now prove the spaceandtime boundsfor nested-parallel
computationsexecutedby algorithmDFDeques.

4.1 Cost model

We definethe total numberof unit actionsin a parallelcom-
putation(or the numberof nodesin its dag)as its work

�
.

Further, let � be thedepthof the computation,or the length
of the longestpathin its dag. For example,thecomputation
representedin Figure4 haswork

� \ ZjZ anddepth � \	k .
We assumethatanallocationof V bytesof memory(for anyVl`nm) hasadepthof e�
>f2gjhBVo� units6.

For this analysis,we assumethattimesteps(clock cycles)
aresynchronizedacrossall theprocessors.If multipleproces-
sorstargetanon-emptydequein asingletimestep,weassume
thatoneof themsucceedsin thesteal,while all theothersfail
in thattimestep.If thedequetargetedby oneor morestealsis
empty, all of thosestealsfail in asingletimestep.Whenasteal
fails, theprocessorattemptsanotherstealin thenext timestep.
Whena stealsucceeds, the processorinsertsthe newly cre-
ateddequeinto U andexecutesthefirst actionfrom thestolen
threadin the sametimestep. At the end of a timestep,if a
processor’scurrentthreadterminatesor suspends,andit finds
its dequeto beempty, it immediatelydeletesits dequein that
timestep. Similarly, when a processorstealsthe last thread
from a dequenot currentlyassociatedwith any processor, it
deletesthe dequein that timestep. Thus, at the start of a
timestep,if adequeis empty, it mustbeownedby aprocessor
thatis busyexecutinga thread.

Our costmodelis somewhatsimplistic,becauseit ignores
thecostof maintainingtheorderedsetof dequesU . If wepar-
allelize theschedulingtasksof insertinganddeletingdeques
in U (by performingthemlazily), we canaccountfor all their
overheadsin the time bound. We canthenshow that in the
expectedcase,thecomputationcanbeexecutedin ��
 �*� ����p�Qf2gOh��q� timeand �����n��
�����f2gjh����j��� spaceon � proces-
sors,includingtheschedulingoverheads[35]. In practice,the
insertionsanddeletionsof dequesfrom U canbeeitherserial-
izedandprotectedby a lock (for small �), or performedlazily
in parallel(for large �).

5In WS, the reawakenedparentis placedaddedto the currentprocessor’s
deque(which is empty);for nestedparallelcomputations,thechild musttermi-
nateat thispoint,andtherefore,thenextthreadexecutedby theprocessoris the
parentthread.

6This is a reasonableassumptionin systemswith binaryforks thatzeroout
the memoryas soonas it is allocated. The zeroingthenrequiresa minimum
depthof rs0 7 8�9)t : ; it canbeperformedin parallelby forking a treeof heightrs0 7 8�9)t : .

4.2 Space bound

We now analyzethe spaceboundfor a parallelcomputation
executedby algorithmDFDeques. The analysisusesseveral
ideasfrom previouswork [2, 6, 36]. Dueto spacelimitations,
weonly presenttheoutlineof theproofs;detailedanalysiscan
befoundelsewhere[34].

Let u be thedagthat representstheparallelcomputation
beingexecuted.Dependingon theresultingparallelschedule,
weclassifyits nodes(actions)into oneof two types:heavy and
light. Every time a processorperformsa steal,thefirst node
it executesfrom thestolenthreadis calledaheavyaction.All
remainingnodesin u arelabelledaslight.

Wefirst assumethateverynodeallocatesatmost � space;
wewill relaxthis assumptionin theend.Recallthataproces-
sormayallocateat most � spacebetweenconsecutivesteals;
thus,it mayallocateat most � spacefor every heavy nodeit
executes.Therefore,wecanattributeall thememoryallocated
by light nodesto thelastheavy nodethatprecedesthem.This
resultsin aconservativeview of thetotal spaceallocation.

Let vxw \zy �{N�P#P�P�N y}| be the parallelscheduleof the dag
generatedby algorithm DFDeques(�) on � processors;we
call this a � -schedule. Here y}~ is thesetof nodesthatareex-
ecutedat timestepR . Let v;� betheserial,depth-firstschedule
or the 1DF-schedule for thesamedag;e.g., thenodesin Fig-
ure4 arenumberedaccordingto their orderof executionin a
1DF-schedule.

Wenow view anintermediatesnapshotof theparallelsched-
ule vxw . At any timestepZ��	����� during the executionofv w , all thenodesexecutedsofar form aprefix of v w . Thispre-
fix of v w is definedas � w \���� ~�� � y ~ . Let � � be the longest
prefix of vO� containingonly nodesin ��w , that is, ��������w .
Thentheprefix � � is calledthecorresponding serialprefix of��w . Thenodesin theset ��w��'��� arecalledprematurenodes,
sincethey havebeenexecutedout of orderwith respectto the
1DF-schedule vO� . All othernodesin ��w , thatis, theset ��� , are
callednon-premature. For example,Figure7 showsasimple
dagwith aparallelprefix � w for anarbitrary� -schedulev w , its
correspondingserialprefix ��� , andapossibleclassificationof
nodesasheavy or light. Thenumberof heavyprematurenodes
in any arbitraryprefix � w of v w canbeboundedasfollows.

Lemma 4.1 Let � w beanyparallel prefixof a � -schedulepro-
ducedby algorithm DFDeques(�) for a computationwith
depth � , in which every action allocatesat most � space.
Thentheexpectednumberof heavyprematurenodesin �Cw is��
����;��� . Further, for any ��`am , thenumberof heavypre-
maturenodesis ��
�����

����f��&
�Z � �#����� with probabilityat leastZB��� .
The proof is basedon selectinga specific path M of non-
prematurenodesin � w , startingat the root. If � ~ is thenode
along M at depth R , thenfor R \ m-N#ZON�P�P{P , we boundthenum-
berof stealsthattakeplacebetweenthetimes � ~ and � ~2� � are
executed.We only needto countthestealsthatmayresultin
theexecutionof prematurenodes(see[34] for details).

We now prove a lemmarelatingthenumberof heavy pre-
maturenodesin ��w with thememoryrequirementof vxw .
Lemma 4.2 Let u beadagwithdepth� , in whicheverynode
allocatesat most � space,and for which the serial depth-
first executionrequires ��� space. Let vxw bethe � -scheduleof
length � generatedfor u by algorithmDFDeques(�). If for
any R such that Zo��R��a� , theprefix ��w of v#w representing
the computationafter the first R timestepscontainsat most �

= non-premature
= premature

σp

= heavy nodes

P1

P2

P3

P4

(a) (b)

Figure7: (a) An examplesnapshotof a parallelschedulefor a simpledag. Theshadednodes(thesetof nodesin � w) have been
executed,while theblank(white) nodeshave not. Of thenodesin � w , theblacknodesform thecorrespondingparallelprefix � � ,
while theremaininggrey nodesarepremature.(b) A possiblepartitioningof nodesin �Cw into heavy andlight nodes.Eachshaded
regiondenotesthesetof nodesexecutedconsecutively in depth-firstorderonasingleprocessor(M � NQM�H{N�M�I or M�K) betweensteals.
Theheavy nodein eachregion is shown shadedblack.

heavyprematurenodes,thentheparallel spacerequirement ofv w is at most � � �n�6���$���&

�dN�� � � . Further, thereareat most�"���6�#�����&

�dN����#� activethreadsduring theexecution.

Proof: We can partition ��w into the set of non-premature
nodesand the setof prematurenodes. Since,by definition,
all non-prematurenodes form some serial prefix of the
1DF-schedule, their netmemoryallocationcannotexceed� � .
We now boundthe net memoryallocatedby the premature
nodes.Considerastealthatresultsin theexecutionof aheavy
prematurenodeon a processorM ^ . The nodesexecutedbyM&^ until its next steal, cannotallocatemore than � space.
Becausethereareat most � heavy prematurenodesexecuted,
thetotal spaceallocatedacrossall processorsafter R timesteps
cannotexceed���������j� . We canobtaina tighterboundof� � �n�6�{� � when � `¡� � (see[34]).

Themaximumnumberof activethreadsisatmostthenum-
berof threadswith prematurenodes,plusthemaximumnum-
ber of active threadsduring a serial execution,which is � .
Assumingthat eachthreadneedsto allocateat leasta unit
of spacewhenit is forked (e.g., to storeits registerstate),at
most �����&

�dN¢���¢� threadswith prematurenodescanbeforked
for eachheavy prematurenodeexecuted.Therefore,the total
numberof active threadsis at most �£�'�6�{������

�dN����¢� .

Note that eachactive threadrequiresat most a constant
amountof spaceto bestoredby the scheduler(not including
stackspace).We now extendtheanalysisto allocationslarger
than � .

Handling large allocations of space. Individual nodesthat
allocatemorethan � spacearehandledasdescribedin Sec-
tion 3. Beforeevery allocationof V bytes(V�`"�), dummy
threadsareforked in a binary treeof depth f2gOh)

V � ��� . Re-
call that in our costmodel,an allocationof V bytesrequires
adepthof ��
>f2gjhBVo� ; therefore,this transformationof thedag
increasesits depthby at mosta constantfactor. Eachdummy
threadis treatedasif it allocates� space.Therefore,by the
time the V � � dummythreadsareexecuted,aprocessormay
proceedwith theallocationof V byteswithoutexceedingour
spacebound.Thefinal boundon thespacerequirementof the
generatedschedule,usingLemmas4.1 and4.2, is statedbe-
low.

Theorem 4.3 Consider a nested-parallel computationwith
depth � and serial, depth-firstspacerequirement ��� . Then,

for any �¤`¥m , the expectedvalue of the spacerequired
to executethe computationon � processors using algorithm
DFDeques(�), including the spacerequired to store active
threads,is � � �a��
J�����&

�dN�� � �6�{�*����� . Further, for any�'`¦m , the probability that the computationrequires � � ���
J�����&

��N����#���J���O

����f��&
�Z � �#����� spaceis at least Z<��� .
The above spaceboundfor DFDeques(�) can be shown to
be tight for any given valuesof � , � � , and � [34]. Recall
thatDFDeques(i) behaveslike a space-efficientwork steal-
ing scheduler. Blumofe andLeiserson[9] presenteda space
boundof ���j��� for suchaschedule.Note,however, thattheir
analysisallows only “stack-like” memoryallocation7, which
is morerestrictedthanour model. For suchrestricteddags,
their spaceboundappliesdirectly to DFDeques(i). In con-
trast, the fact that the spaceboundin Theorem4.3 is tight,
implies that the space-efficient work stealerfrom [9] canre-
quire e�

���)��������� spacefor acomputationthatusesourmore
generalmemoryallocationmodel(see[34] for details).

4.3 Time bound

Wenow prove thetimeboundrequiredfor aparallelcomputa-
tion usingalgorithmDFDeques. This timebounddoesnot in-
cludetheschedulingcostsof maintainingtherelative orderof
thedeques(i.e., insertinganddeletingdequesin U), or finding
the VoS>T deque.Elsewhere[35], wedescribehow thescheduler
canbe parallelized,andthenprove the time boundincluding
theseschedulingcosts. We first assumethat every actional-
locatesat most � space,for someconstant� , andprove the
time bound. We then relax this assumptionandprovide the
modifiedtimeboundat theendof thissubsection.

Lemma 4.4 Considera parallel computationwith work
�

anddepth� , in whicheveryactionallocatesat most� space.
Theexpectedtimeto executethiscomputationon � processors
usingthe DFDeques(�) schedulingalgorithm is ��
 �*� ������ . Further, for any ��`am , the time requiredto executethe
computationis ��
 �*� ���	�§�¡f��&
�Z � �#��� with probability at
least Z<��� .

7Their modeldoesnot allow allocationof spaceon a global heap. An in-
structionin a threadmayallocatestackspaceonly if thethreadcannotpossibly
have a living child whenthe instructionis executed.Thestackspaceallocated
by thethreadmustbefreedwhenthethreadterminates.

Proof: Considerany timestepR of the � -schedule;let ¨ ~ be
thenumberof dequesin U attimestepR . Wefirst classifyeach
timestepR into oneof two types(A andB), dependingon the
valueof ¨ ~ . We thenboundthetotal numberof timesteps�)©
and �)ª of typesA andB, respectively.

Type A: ¨ ~¬« � . At thestartof timestepR , let therebe �o�� stealattemptsin this timestep. Thenthe remaining�����
processorsare busy executingnodes,that is, at least ���­�
nodesareexecutedin timestepR . Further, atmost����� of the
leftmost � dequesmay be empty; the restmusthave at least
onethreadin them.

Let ® � betherandomvariablewith value1 if the �;S>T non-
emptydequein U (from the left end)getsexactly onesteal
request,and0 otherwise. Then, ¯�° ® ��± \ ²´³ ° ® � \ Z ± \

� � �q�6�-
�Z���Z � �q��µx¶ � . Let ® be the randomvariablerepre-
sentingthetotalnumberof non-emptydequesthatgetexactly
onestealrequest.Becausethereareat least � non-emptyde-
ques,theexpectedvalueof ® (assumingthat � «"·) is given
by

¯d° ® ± « µ¸
� � �

¯o° ® � ± \ �B� �� �O
�ZB� Z� � µx¶ �

« � H� �j
�Z<� Z� � w
« � H� �j
�Z<� Z� ��� Z¹ « � H· �
��� ¹

Recallthat �º�n� nodesareexecutedby thebusyprocessors.
Therefore,if » is therandomvariabledenotingthetotalnum-
berof nodesexecutedduringthis timestep,then

¯o° » ± «
������{���'� H � · ¹ �« � � · ¹¼�½�¾ ³ ¾x¿ g ³ ¾ N ¯o° ����» ± �À����� � · ¹\ �Á
�Z6�'Z � · ¹ �
Thequantity
��o�%»�� mustbenon-negative; therefore,using
theMarkov’s inequality[33, Theorem3.2],weget

²&³ °�
��@�*»$�<`���
�ZB��Z �ÃÂ ¹ � ±¥Ä ¯�°2
����'»�� ±��ÅxZB� �KQÆ{Ç
� Å Z6� �HQÆ ÇÅ Z6� �KQÆOÇ Ä ÈZ�m

¼<½}¾ ³ ¾x¿ g ³ ¾ N ²´³ ° » « � �ÃÂ ¹ ± ` ZZ#m
We will call eachtimestepof typeA successfulif at least� �{Â ¹ nodesgetexecutedduringthetimestep.Thentheproba-

bility of thetimestepbeingsuccessfulisatleastZ � Z#m . Because
thereare

�
nodesin theentirecomputation,therecanbe at

most
Â ¹ � ��� � successfultimestepsof typeA. Therefore,the

expectedvaluefor �q© is atmost
Â m ¹ � �*� � .

ThehighprobabilityboundcanbeprovedusingtheCher-
noff bound [33, Theorem4.2]. In particular, we can show
that the executionwill not completeeven after ÉOm ¹ �*� ���Â m&f��&
�Z � �#� typeA timestepswith probabilityatmost� (see[34]
for details).Thus,for any ��`	m , � © \ ��
 ��� �º�%f���
�Z � �#���
with probabilityat least ZB��� .
Type B: ¨ ~ Ä � . We now considertimestepsin which the
numberof dequesin U is lessthan� . Wesplit typeB timesteps

intophasessuchthateachphasehasbetween� and · ����Z steal
attempts.We canthenuseapotentialfunctionargumentsim-
ilar to the dedicatedmachinecaseby Arora et al. [2]. Com-
posingphasesfrom only type B timesteps(ignoring type A
timesteps)retainsthevalidity of theiranalysis.Webriefly out-
line theproofhere.Nodesareassignedexponentiallydecreas-
ing potentialsstartingfrom theroot downwards.Thusa node
at a depthof Ê is assigneda potentialof Ë H�Ì5Í ¶qÎ¢Ï , andin the
timestepin which it is aboutto be executedon a processor,
a weight of Ë H�Ì5Í ¶qÎ¢ÏA¶ � . They show that in any phaseduring
which between� and · ���	Z stealattemptsoccur, the total
potentialof the nodesin all the dequesdropsby a constant
factorwith at leasta constantprobability. Sincethepotential
at the startof the executionis Ë H�Í ¶ � , the expectedvalueof
the total numberof phasesis ��

��� . Thedifferencewith our
algorithmis thataprocessormayexecuteanode,andthenput
up to 2 (insteadof 1) childrenof the nodeon the dequeif it
runsout of memory;however, this differencedoesnotviolate
thebasisof their arguments.Sinceeachphasehas e�
��q� steal
attempts,theexpectednumberof stealattemptsduringtypeB
timestepsis ��
��)��� . Further, for any �B`�m , wecanshow that
the total numberof stealattemptsduring timestepsof typeB
is ��
����j

�£�*f��&
�Z � ������� with probabilityat least ZB��� .

Recall that in every timestep,eachprocessoreitherexe-
cutesastealattemptthatfails,or executesanodefromthedag.
Therefore,if �Ð�ÑÓÒAÔAÕ is the total the numberof stealattempts
duringtypeB timesteps,then �)ª is at most
 � �n �Ð2ÑJÒAÔAÕ5� � � .
Therefore,theexpectedvaluefor �)ª is ��
 �*� ������� , andfor
any �¬`'m , thenumberof timestepsis ��
 �*� ���º�*�Öf���
�Z � �#���
with probabilityat least ZB��� .

The total numberof timestepsin the entire executionis� © �£� ª . Therefore,the expectednumberof timestepsin
theexecutionis ��
 �*� ������� . Further, combiningthe high
probabilityboundsfor timestepsof typeA andB, (andusing
thefact that M�
J×'Ø�Ù$�6�­M�
J×��)��M�

Ù$�), we canshow that
for any ��`Úm , the total numberof timestepsin the parallel
executionis ��
 �*� �@�Û����f��&
�Z � �#��� with probabilityat leastZB��� .

Recallthatweadddummy bJV � �dc threadsto handleeach
largeallocationof V units(where Vz`¡�). This transforma-
tion of thedagincreasesits depthby atmostaconstantfactor.
If � ^ is the total spaceallocatedin the program(not count-
ing thedeallocations),thenumberof nodesin thetransformed
dagis at most

� ��� ^ � � . Therefore,usingLemma4.4,the
modifiedtimeboundis statedasfollows.

Theorem 4.5 Theexpectedtimeto executea parallel compu-
tation with

�
work, � depth,and total spaceallocation � ^

on � processorsusingalgorithmDFDeques(�) is ��
 �*� ���� ^ � �)� ����� . Further, for any ��`§m , the time requiredto
executethecomputationis ��
 �*� �����)^ � �)�"���Û��f���
�Z � �#���
with probabilityat least Z<�*� .
In a systemwhereevery memorylocationallocatedmustbe
zeroed,�)^ \ ��
 � � . Theexpectedtime boundthereforebe-
comes��
 �*� �º����� . This time bound,althoughasymptoti-
cally optimal[10], is not aslow asthetime boundof

�*� �����

��� for work stealing[9].

Trade-off between space, time, and scheduling granular-
ity. As thememorythreshold� is increased,thescheduling
granularityincreases,sincea processorcanexecutemorein-
structionsbetweensteals.In addition,thenumberof dummy
threadsaddedbeforelargeallocationsdecreases.However, the

spacerequirementincreaseswith � . Thus,adjustingthevalue
of � providesatrade-off betweenrunningtime(or scheduling
granularity),andspacerequirement.

5 Experiments with Pthreads

We implementedthe scheduleraspart of an existing library
for Posix standardthreadsor Pthreads[24]. The library is
thenative, user-level Pthreadslibrary on Solaris2.5 [40, 44].
Pthreadson Solarisaremultiplexed at theuserlevel on top of
kernelthreads,whichact like virtual processors.Theoriginal
schedulerin the Pthreadlibrary usesa FIFO queue.Our ex-
perimentswereconductedon an 8 processorEnterprise5000
SMPwith 2GB mainmemory. Eachprocessoris a 167MHz
UltraSPARC with a512kB L2 cache.

Having to supportthe generalPthreadsfunctionalitypre-
ventseven a user-level Pthreadsimplementationfrom being
extremelylightweight. For example,a threadcreationis two
ordersof magnitudemoreexpensive thana null functioncall
on the UltraSPARC. Therefore,the useris requiredto create
Pthreadsthatarecoarseenoughto amortizethecostof thread
operations.However, with a depth-firstscheduler, threadsat
thisgranularityhadto becoarsenedfurthertogetgoodparallel
performance[37]. We show thatusingalgorithmDFDeques,
good speedupscan be achieved using Pthreadswithout this
additionalcoarsening.Thus,the usercannow fix the thread
granularityto amortizethreadoperationcosts,andexpect to
getgoodparallelperformancein bothspaceandtime.

ThePthreadsmodelsupportsabinaryfork andjoin mech-
anism.Wemodifiedmemoryallocationroutinesmalloc and
free to keeptrack of the memoryquotaof the currentpro-
cessor(or kernel thread)and to fork dummythreadsbefore
an allocation if required. Our schedulerimplementationis
a simpleextensionof algorithmDFDequesthat supportsthe
full Pthreadsfunctionality (including blocking8 mutexesand
conditionvariables)by maintainingadditionalentriesin U for
threadssuspendedon synchronizations.Our benchmarksare
predominantlynestedparallel,and makelimited useof mu-
texesandconditionvariables.For example,the tree-building
phasein Barnes-Hutusesmutexesto protectmodificationsto
thetree’s cells.However, theSolarisPthreadsimplementation
itself makesextensiveuseof blockingsynchronizationprimi-
tivessuchasPthreadmutexesandconditionvariables.

Sinceour executionplatform is an SMP with a modest
numberof processors,accessto the readythreadsin U was
serialized. U is implementedasa linked list of dequespro-
tectedby a sharedschedulerlock. Weoptimizedthecommon
casesof pushingandpoppingthreadsontoa processor’s cur-
rent dequeby minimizing locking time. A stealrequiresthe
lock to beacquiredmoreoftenandfor a longerperiodof time.

In the existing Pthreadsimplementation,it is not always
possibletoplaceareawakenedthreadonthesamedequeasthe
threadthatwakesit up; therefore,our implementationof DFD-
equesis anapproximationof thepseudocodein Figure5. Fur-
ther, sincewe serializeaccessto U , andsupportmutexesand
conditionvariables,settingthememorythreshold� to infin-
ity doesnot producethe samescheduleasthespace-efficient
work-stealing scheduler intended for fully strict
computations[9]. Therefore,we canusethis settingonly as
a roughapproximationof apurework-stealingscheduler.

8We use the term “blocking” for synchronizationthat causesthe calling
threadto blockandsuspend,ratherthanspinwait.

Wefirst list thebenchmarksusedin ourexperiments.Next,
we comparethe spaceandtime performanceof the library’s
original scheduler(labelled“FIFO”) with an asynchronous,
depth-firstscheduler[37] (labelled“ADF”), andthenew DFD-
equesscheduler(labelled“DFD”) for afixedvalueof themem-
ory threshold� . We alsouseDFDeques(i) asan approx-
imation for a work-stealingscheduler(labelled“DFD-inf ”).
To studyhow theperformanceof theschedulersis affectedby
threadgranularity, wepresentresultsof theexperimentsattwo
different threadgranularities.Finally, we measurethe trade-
off betweenrunning time, schedulinggranularity, andspace
for algorithmDFDequesby varyingthevalueof thememory
threshold� for oneof thebenchmarks.

5.1 Parallel benchmarks

The benchmarkswereeitheradaptedfrom publicly available
coarsegrainedversions[20, 38, 43, 47],orwrittenfromscratch
usingthe lightweight threadsmodel[37]. The parallelismin
bothdivide-and-conquerrecursionandparallelloopswasex-
pressedasa binarytreeof forks, with a separatePthreadcre-
atedfor eachrecursive call. Threadgranularitywasadjusted
by serializingthe recursionnearthe leafs. In thecomparison
resultsin Section5.2,mediumgranularityrefersto thethread
granularitythatprovidesgoodparallelperformanceusingthe
depth-firstscheduler[37]. Even at mediumgranularity, the
numberof threadssignificantlyexceedsthenumberof proces-
sors;this allows simplecodingandautomaticloadbalancing,
while resultingin performanceequivalentto hand-partitioned,
coarse-grainedcodeusingthedepth-firstscheduler[37]. Fine
granularityrefersto the finest threadgranularitythat allows
thecostof threadoperationsin asingle-processorexecutionto
beupto 5%of theserialexecutiontime9. Thebenchmarksare
volumerendering,densematrixmultiply, sparsematrixmulti-
ply, FastFourierTransform,FastMultipole Method,Barnes-
Hut, andadecisiontreebuilder10. Figure8 lists thetotalnum-
berof threadsexpressedin eachbenchmarkatboththethread
granularities.

5.2 Comparison results

In all the comparisonresults,we usea memorythresholdof� \ÝÜ m-N�mjmOm bytes for “ADF” and “DFD” 11. Eachactive
threadis allocateda minimum8kB (1 page)stack.Therefore,
thespace-efficientschedulerseffectively conservestackmem-
ory by creatingfewersimultaneouslyactive threadscompared
to theoriginalFIFOscheduler(seeFigure8). TheFIFOsched-
ulerspendssignificantportionsof timeexecutingsystemcalls
relatedto memoryallocationfor the threadstacks[37]; this
problemis aggravatedwhenthethreadsaremadefinegrained.

The8-processorspeedupsfor all thebenchmarksatmedium
andfine threadgranularitiesareshown in Figure9. To con-
centrateon the effect of the scheduler, andto ignore the ef-
fect of increasedthreadoverheads(up to 5% for all except
densematrix multiply) at the fine granularity, speedupsfor
eachthreadgranularityarewith respectto thesingle-processor
multithreadedexecutionatthatgranularity. Thespeedupsshow

9Theexceptionwasthedensematrix multiply, which we wrote for Þºß�Þ
blocks,whereÞ is apowerof two. Therefore,finegranularityinvolvedreducing
theblocksizeby a factorof 4, andincreasingthenumberof threadsby a factor
of 8, resultingin 10%additionaloverhead.

10Detailson thebenchmarkscanbefoundelsewhere[35].
11In thedepth-firstscheduler, thememorythresholdà is thememoryquota

assignedto eachthreadbetweenthreadpreemptions[37].

Benchmark Input size Mediumgrained Finegrained
total FIFO ADF DFD total FIFO ADF DFD

Vol. Rend. á{â�ã I vol, äOå{â H img 1427 195 29 29 4499 436 36 37

DenseMM æQçjáéè�ê�æQçOá�è doubles 4687 623 33 48 37491 3752 55 77
SparseMVM 30K nodes,151K edges 1263 54 31 31 5103 173 51 49

FFTW ë	ì'á H�H 177 64 13 18 1777 510 30 33
FMM ë­ìÛæQç{í , 5 mpl terms 4500 1314 21 29 36676 2030 50 54

BarnesHut ë(ìÛæQçÃç{í , Plmrmodel 40893 1264 33 106 124767 3570 42 120
DecisionTree 133,999instances 3059 82 60 77 6995 194 138 149

Figure8: Input sizesfor eachbenchmark,total numberof threadsexpressedin theprogramat mediumandfine granularities,and
max. numberof simultaneouslyactive threadscreatedby eachschedulerat bothgranularities,for � = 50,000bytes.“DFD-inf ”
createsat most twice asmany threadsas“DFD” for DenseMM, andat most15% morethreadsthan“DFD” for the remaining
benchmarks.

 Medium-Grain

 Fine-Grain

 0

 2

 4

 6

 8

 FIFO ADF DFD

(a)VolumeRendering

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(b) DenseMatrix Multiply (c) SparseMatrix Multiply

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(d) FastFourierTransform (e)FastMultipole Method

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(f) BarnesHut (g) DecisionTreeBuilder

Figure 9: Speedupson 8 processorswith respectto single-
processorexecutionsfor the three schedulers(the original
“FIFO”, the depth-first “ADF”, and the new “DFD” or
DFDeques) at both medium and fine thread granularities,
with � = 50,000 bytes. Performanceof “DFD-inf ” (or
DFDeques(i �), being very similar to that of “DFD”,
is not shown here. All benchmarkswere compiled us-
ing cc -fast -xarch=v8plusa -xchip=ultra
-xtarget=native -xO4.

0

10

20

30

40

50

1 2 3 4 5 6 7 8

M
E

M
O

R
Yî

PROCESSORS

Cilk
DFD
ADF

Input size

Figure10: Variationof thememoryrequirementwith thenum-
berof processorsfor densematrixmultiply usingthreesched-
ulers: depth-first (“ADF”), DFDeques(“DFD”), and Cilk
(“Cilk”).

thatboththedepth-firstschedulerandthenew DFDequessched-
uler outperformthe library’s original FIFO scheduler. How-
ever, at thefinethreadgranularity, thenew schedulerprovides
betterperformancethanthedepth-firstscheduler. This differ-
encecanbeexplainedby thebetterlocality andlowerschedul-
ing contentionexperiencedby algorithmDFDeques.

We measuredthe external(L2) cachemissratesfor each
benchmarkusingon-chipUltraSPARC performancecounters.
Figure1, which lists the resultsat thefine threadgranularity,
shows that our schedulerachievesrelatively low cachemiss
rates(i.e., resultsin betterlocality).

Threeout of the seven benchmarksmakesignificantuse
of heapmemory. For thesebenchmarks,we measuredthe
high watermark for heapmemoryallocationusingthe three
schedulers.Figure11 showsthatalgorithmDFDequesresults
in slightly higherheapmemoryrequirementcomparedto the
depth-firstscheduler, but still outperformsthe original FIFO
scheduler.

TheCilk runtimesystem[21] usesaprovablyspace-efficient
work stealingalgorithmto schedulethreads12. Figure10com-
paresthe spaceperformanceof Cilk with the depth-firstand
DFDequesschedulersfor the densematrix multiply bench-
mark(at thefine threadgranularity).Thefigureindicatesthat
DFDequesrequiresmorememorythanthedepth-firstsched-
uler, but lessmemorythanCilk. In particular, similar to the
depth-firstscheduler, the memoryrequirementof DFDeques
increasesslowly with thenumberof processors.

12BecauseCilk requiresgcc to compile the benchmarks(which resultsin
slower codefor floating point operationscomparedto the native cc compiler
on UltraSPARCs), we do not show a direct comparisonof running times or
speedupsof Cilk benchmarkswith ourPthreads-basedsystemhere.

 Medium-Grain Fine-Grain

 0

 40

 80

 120

 160

 200

 240

 FIFO ADF DFD DFD-inf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 FIFO ADF DFD DFD-inf

 0

 10

 20

 30

 40

 50

 60

 FIFO ADF DFD DFD-inf

(a)DenseMatrix Multiply (b) FastMultipole Method (c) DecisionTreeBuilder

Figure11: High watermark of heapmemoryallocation(in MB) on 8 processorsfor benchmarksinvolving dynamicmemory
allocation(� = 50,000bytesfor “ADF” and “DFD”), at both threadgranularities. “DFD-inf ” is our approximationof work
stealingusingDFDeques(i).

0

1

2

3

4

5

6

1e+02 1e+04 1e+06

T
im

e
(s

ec
)

K (bytes)

0

20

40

60

80

1e+02 1e+04 1e+06

M
em

or
y

(M
B

)

ï

K (bytes)

0

5

10

15

20

1e+02 1e+04 1e+06

S
ch

ed
. g

ra
nu

la
rit

y

ï

K (bytes)

(a)Runningtime (b) MemoryAllocation (c) Schedulinggranularity

Figure 12: Trade-off betweenrunning time, memoryallocationand schedulinggranularityusing algorithm DFDequesas the
memorythreshold� is varied,for thedensematrixmultiply benchmarkatfinethreadgranularity.

5.3 Measuring the tradeoff between space, time, and
scheduling granularity

We studiedthe effect of the sizeof memorythreshold� on
therunningtime,memoryrequirement,andschedulinggranu-
larity usingDFDeques(�). Eachprocessorkeepstrackof the
numberof timesathreadfrom its owndequeis scheduled,and
thenumberof timesit hasto performasteal.Theratioof these
two counts,averagedover all the processors,is our approx-
imation of the schedulinggranularity. The trade-off is best
illustratedin thedensematrix multiply benchmark,which al-
locatessignificantamountsof heapmemory. Figure12 shows
the resultingtrade-off for this benchmarkat the fine thread
granularity. As expected,bothmemoryandschedulinggran-
ularity increasewith � , while runningtime reducesas � is
increased.

6 Simulating the scheduler s

To comparealgorithmDFDequeswith awork-stealingsched-
uler, webuilt asimplesystemthatsimulatestheparallelexecu-
tion of synthetic,nested-parallel,divide-and-conquerbench-
marks13. Our implementationsimulatestheexecutionof the
space-efficientwork-stealingscheduler[9] (labeled“WS”), the
space-efficient,asynchronousdepth-firstscheduler[36] (“ADF”),
andournew DFDequesscheduler(labeled“DFD”).

Due to limited space,we presentresultsfor only oneof

13Tomodelirregularapplications,thespaceandtimerequirementsof athread
ateachlevel of therecursionareselecteduniformly atrandomwith thespecified
mean.

the syntheticbenchmarkshere14, in which both the memory
requirementandthethreadgranularitydecreasegeometrically
down the recursiontree. A numberof divide-and-conquer
programsexhibit suchproperties.Schedulinggranularitywas
measuredastheaveragenumberof actionsexecutedby apro-
cessorbetweentwosteals. Figure13showsthatworkstealing
resultsin high schedulinggranularityandhigh spacerequire-
ment,thedepthfirst schedulerresultsin low schedulinggran-
ularity and low spacerequirement, while DFDequesallows
schedulinggranularityto betradedwith spacerequirementby
varyingthememorythreshold� .

7 Summary and Discussion

Depth-first schedulersare space-efficient, but unlike work-
stealingschedulers,they requiretheuserto explicitly increase
the threadgranularitybeyond what is requiredto amortize
basic threadcosts. In contrast,algorithm DFDequesauto-
matically increasesthe schedulinggranularityby executing
neighboring,fine-grainedthreadson the sameprocessorto
yield good locality and low schedulingcontention. In the-
ory, for nested-parallelprogramswith a large amountof par-
allelism,algorithmDFDequeshasa lower spaceboundthan
work-stealingschedulers.We showed that in practice,it re-
quiresmorememorythanadepth-firstscheduler,andlessmem-
ory thanworkstealing.DFDequesalsoallowstheuserto con-
trol thetrade-off betweenspacerequirementandrunningtime
(or schedulinggranularity).BecausealgorithmDFDequesal-

14Resultsfor otherbenchmarksandadetaileddescriptionof thesimulatorcan
befoundelsewhere[35].

0

0.02

0.04

0.06

0.08

0.1

0.12

0 40 80 120 160
S

ch
ed

ul
in

g
G

ra
nu

la
rit

y

Memory Threshold K (KB)

WS
DFD
ADF

400

800

1200

1600

2000

0 40 80 120 160

M
em

or
y

(K
B

)

ð

Memory Threshold (KB)

WS
DFD
ADF

(a)Schedulinggranularity (b) Memory

Figure13: Simulationresultsfor adivide-and-conquerbenchmarkwith 15 levelsof recursionrunningon64 processors.Themem-
ory requirementandthreadgranularitydecreasegeometrically(by a factorof 2) down therecursiontree.Schedulinggranularityis
shownasapercentageof thetotalwork in thedag.“WS” is thespace-efficientwork-stealingscheduler, “ADF” is thespace-efficient
depth-firstscheduler, and“DFD” is ournew DFDequesscheduler.

 Medium-Grain Fine-Grain

 0

 2

 4

 6

 8

 FIFO ADF DFD Cilk

Figure 14: Speedupsfor the tree-building phaseof Barnes
Hut (for 1M particles). The phaseinvolvesextensive useof
locks on cells of the tree to ensuremutual exclusion. The
Pthreads-basedschedulers(all exceptCilk) supportblocking
locks. “DFD” doesnot result in a large schedulinggranular-
ity dueto frequentsuspensionof the threadson locks; there-
fore, its performanceis similar to that of “ADF”. Cilk [21]
usesa purework stealerandsupportsspinwaiting locks. For
thisbenchmark,thesingle-processorexecutiontimeonCilk is
comparablewith thatonthePthreads-basedsystem.

lows moredequesthanprocessors,it canbe easilyextended
to supportblocking synchronizations.For example,prelimi-
naryresultson a benchmarkwhichmakesa significantuseof
locks, indicatethat DFDequeswith blocking locksresultsin
betterperformancethana work stealerthatusesspin-waiting
locks(seeFigure14).

Eachprocessorin DFDequestreatsits dequeasa regular
stack. Therefore,in a systemthat supportsvery lightweight
threads,the algorithmshouldbenefitfrom stack-basedopti-
mizationssuchas lazy threadcreation[22, 32]; thesemeth-
odsavoid allocatingresourcesfor a threadunlessit is stolen,
therebymakingmostthreadcreationsnearlyascheapasfunc-
tion calls.

Increasingschedulinggranularitytypically serves to en-
hancedata locality on SMPs with limited-size, hardware-
coherentcaches.However, on distributedmemorymachines
(or software-coherentclusters),executingthreadswherethe
datapermanentlyresidesbecomesimportant. A multi-level
schedulingstrategy may allow the threadimplementationto
scaleto clustersof SMPs. For example,the DFDequesal-
gorithmcould be deployedwithin a singleSMP, while some
schemebasedondataaffinity is usedacrossSMPs.

An openquestionis how to automaticallyfind theappro-
priatevalueof thememorythreshold� , whichmaydependon
the benchmark,andon the threadimplementation.Onepos-

siblesolutionis for theuser(or theruntimesystem)to set �
to anappropriatevalueafterrunningtheprogramfor a range
of valuesof � onsmallerinputsizes.Alternatively, it maybe
possiblefor thesystemto keepstatisticsto dynamicallyset �
to anappropriatevalueduringtheexecution.

Ackno wledgements

Guy Blelloch,RobertBlumofe,BwolenYang,andtheanony-
mousrefereesprovided valuablefeedbackon previous ver-
sionsof this paper. We also thankGuy Blelloch andAvrim
Blum for usefuldiscussions.

References

[1] T. E. Anderson,E. D. Lazowska, and H. M. Levy. The per-
formanceimplications of threadmanagementalternatives for
shared-memorymultiprocessors.PerformanceEvaluationRe-
view, 17:49–60,May 1989.

[2] N. S.Arora,R. D. Blumofe,andC. G. Plaxton.Threadschedul-
ing for multiprogrammedmultiprocessors.In ACM symp.Par-
allel AlgorithmsandArchitectures, 1998.

[3] F. BellosaandM. Steckermeier. Theperformanceimplications
of locality informationusagein shared-memorymultiprocessors.
J. Parallel and DistributedComputing, 37(1):113–121, August
1996.

[4] G. Blelloch, P. Gibbons,Y. Matias, and G. Narlikar. Space-
efficient schedulingof parallelismwith synchronizationvari-
ables. In Proc. ACM Symp.on Parallel Algorithmsand Archi-
tectures, pages12–23,1997.

[5] G. E. Blelloch, S.Chatterjee,J. C. Hardwick,J. Sipelstein,and
M. Zagha.Implementationof aportablenesteddata-parallellan-
guage.J. Parallel andDistributedComputing, 21(1):4–14,April
1994.

[6] G. E. Blelloch,P. B. Gibbons,andY. Matias. Provablyefficient
schedulingfor languageswith fine-grainedparallelism.In Proc.
ACM symp.Parallel AlgorithmsandArchitectures, pages1–12,
SantaBarbara,California,July 17–19,1995.

[7] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,and
K. H. Randall.An analysisof dag-consistentdistributedshared-
memoryalgorithms. In Proc. ACM Symposiumon Parallel Al-
gorithmsandArchitectures, pages297–308,June1996.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul,C. E. Leiserson,
K. H. Randall,andY. Zhou. Cilk: An efficient multithreaded
runtimesystem.J. Par. andDistr. Computing, 37(1):55–69,Au-
gust1996.

[9] R. D. Blumofe andC. E. Leiserson.Schedulingmultithreaded
computationsby work stealing. In Proc.Symp.Foundationsof
ComputerScience, pages356–368,1994.

[10] R. P. Brent.Theparallelevaluationof generalarithmeticexpres-
sions.J. ACM, 21(2):201–206, April 1974.

[11] F. W. Burton andD. J. Simpson. Spaceefficient executionof
deterministicparallelprograms.Manuscript,December1994.

[12] F. W. Burton and M. R. Sleep. Executing functional pro-
gramson a virtual treeof processors.In Proc. ACM Conf.on
Functional ProgrammingLanguagesand ComputerArchitec-
ture, pages187–194,1981.

[13] R.Chandra,A. Gupta,andJ.L. Hennessy. Datalocalityandload
balancingin COOL. In Proc.ACM symp.Principles& Practice
of Parallel Programming, pages239–259,1993.

[14] K. M. Chandyand C. Kesselman.Compositionalc++: com-
positionalparallelprogramming.In Proc. Intl. Wkshp.on Lan-
guagesandCompilersfor Parallel Computing, pages124–144,
New Haven,CT, August1992.

[15] S. A. Cook. A taxonomyof problemswith fast parallelalgo-
rithms. InformationandControl, 64:2–22,1985.

[16] T. H. Cormen,C. E. Leiserson,andR. L. Rivest. Introduction
to algorithms. MIT PressandMcGraw-Hill BookCompany, 6th
edition,1992.

[17] D. E. Culler andG. Arvind. Resourcerequirementsof dataflow
programs.In Proc. Intl. Symp.on ComputerArchitecture, pages
141–151,1988.

[18] D. R. Engler, G. R. Andrews,andD. K. Lowenthal. Filaments:
Efficientsupportfor fine-grainparallelism.TechnicalReport93-
13,Universityof Arizona.Dept.of ComputerScience,1993.

[19] R. Feldmann,P. Mysliwietz, and B. Monien. Studyingover-
headsin massively parallelmin/max-treeevaluation(extended
abstract).In ACM Symp.Parallel AlgorithmsandArchitectures,
pages94–103,1994.

[20] M. Frigo and S. G. Johnson. The fastestfourier transformin
the west. TechnicalReportMIT-LCS-TR-728,Massachusetts
Instituteof Technology, September1997.

[21] M. Frigo,C. E. Leiserson,andK. H. Randall.Theimplementa-
tion of theCilk-5 multithreadedlanguage.In Proc.ACM Conf.
on ProgrammingLanguageDesignand Implementation, pages
212–223,1998.

[22] S.C.Goldstein,K. E.Schauser, andD. E.Culler. Enablingprim-
itives for compiling parallel languages.In Workshopon Lan-
guages,Compilers,and Run-Time Systemsfor ScalableCom-
puters, May 1995.

[23] High PerformanceFortranForum. High performancefortran
languagespecificationvertion1.0,1993.

[24] IEEE. InformationTechnology–PortableOperatingSystemIn-
terface(POSIX)–Part1: SystemApplication:ProgramInterface
(API) [C Language].IEEE/ANSIStd1003.1,1996Edition.

[25] V. Karamcheti,J. Plevyak, andA. A. Chien. Runtimemecha-
nismsfor efficientdynamicmultithreading.J. Parallel andDis-
tributedComputing, 37(1):21–40,August1996.

[26] R. KarpandY. Zhang.A randomizedparallelbranch-and-bound
procedure.In Proc.Symp.Theoryof Computing,pages290–300,
1988.

[27] D. A. Kranz,R. H. Halstead,Jr., andE. Mohr. Mul-T: A High-
PerformanceParallelLisp. In Proc.ProgrammingLanguageDe-
signandImplementation, Portland,Oregon,June21–23,1989.

[28] E. P. MarkatosandT. J. LeBlanc. Locality-basedschedulingin
shared-memorymultiprocessors.TechnicalReport94, Inst for
ICS-FORTH, Heraklio,Crete,Greec,1993.

[29] EvangelosMarkatos and ThomasLeBlanc. Locality-based
schedulingin shared-memorymultiprocessors.TechnicalReport
TR93-0094,ICS-FORTH, Heraklio,Crete,Greece,1993.

[30] P. H. Mills, L. S.Nyland,J.F. Prins,J.H. Reif, andR. A. Wag-
ner. Prototypingparallel anddistributedprogramsin Proteus.
TechnicalReportUNC-CH TR90-041,ComputerScienceDe-
partment,Universityof NorthCarolina,1990.

[31] T. Miyazaki, C. Sakamoto,M. Kuwayama,L. Saisho, and
A. Fukuda. Parallelpthreadlibrary (PPL):user-level threadli-
brary with parallelismandportability. In Proc. Intl. Computer
Software andApplicationsConf.(COMPSAC), pages301–306,
November1994.

[32] E.Mohr, D. Kranz,andR. Halstead.Lazytaskcreation:A tech-
niquefor increasingthegranularityof parallelprograms.IEEE
Trans.onParallel andDistributedSystems, 1990.

[33] R. Motwani andP. Raghavan. RandomizedAlgorithms. Cam-
bridgeUniversityPress,Cambridge,England,June1995.

[34] G. J. Narlikar. Schedulingthreadsfor low spacerequirement
and good locality. TechnicalReportCMU-CS-99-121,Com-
puterScienceDepartment,CarnegieMellon University, 1999.

[35] G. J. Narlikar. Space-Efficient Schedulingfor Parallel, Multi-
threadedComputations. PhD thesis,CarnegieMellon Univer-
sity, 1999.AvailableasCMU-CS-99-119.

[36] G. J. Narlikar andG. E. Blelloch. Space-efficient implementa-
tion of nestedparallelism.In Proc.ACM SIGPLANSymp.Prin-
ciplesandPracticeof Parallel Programming,pages25–36,June
1997.

[37] G. J. Narlikar and G. E. Blelloch. Pthreadsfor dynamicand
irregularparallelism.In Proc.ofSupercomputing’98, November
1998.

[38] D. O’Hallaron.Spark98:Sparsematrixkernelsfor sharedmem-
ory andmessagepassingsystems.TechnicalReportCMU-CS-
97-178,Schoolof ComputerScience,CarnegieMellon Univer-
sity, 1997.

[39] J. Philbin, J. E., O. J. Anshus,and C. C. Douglas. Thread
schedulingfor cachelocality. In Intl. Conf.ArchitecturalSup-
port for ProgrammingLanguagesandOperatingSystems, pages
60–71,1996.

[40] M. L. Powell, S.R. Kleiman,S.Barton,D. Shah,D. Stein,and
M. Weeks. SunOSmulti-threadarchitecture. In Proc. Winter
1991USENIXTechnicalConferenceandExhibition, pages65–
80,Dallas,TX, USA, January1991.

[41] Jr. R. H. Halstead.Multilisp: A languagefor concurrentsym-
boliccomputation.ACMTrans.onProgrammingLanguagesand
Systems, 7(4):501–538, 1985.

[42] C. A. RuggieroandJ. Sargeant. Control of parallelismin the
manchesterdataflow machine. In G. Kahn, editor, Functional
ProgrammingLanguagesandComputerArchitecture, pages1–
16.Springer-Verlag,Berlin,DE, 1987.

[43] J.P. Singh,A. Gupta,andM. Levoy. Parallelvisualizationalgo-
rithms:Performanceandarchitecturalimplications.IEEECom-
puter, 27(7):45–55,July 1994.

[44] D. Steinand D. Shah. Implementinglightweight threads. In
Proc.Summer1992USENIXTechnicalConferenceandExhibi-
tion, pages1–10,SanAntonio,TX, 1992.USENIX.

[45] M. T. VandevoordeandE. S.Roberts.WorkCrews: anabstrac-
tion for controllingparallelism. Intl. J. Parallel Programming,
17(4):347–366, August1988.

[46] B. Weissman.Performancecountersandstatesharingannota-
tions: aunifiedapproachto threadlocality. In Intl. Conf.on Ar-
chitecturalSupportfor ProgrammingLanguagesandOperating
Systems, pages262–273,October1998.

[47] S.C. Woo, M. Ohara,E. Torrie, J.P. Singh,andA. Gupta.The
SPLASH-2programs:Characteriationandmethodologicalcon-
siderations.In Proc. Intl. Symp.ComputerArchitecture, pages
24–37,June1995.

