15-853:Algorithms in the Real World

Error Correcting Codes IT
- Cyclic Codes
- Reed-Solomon Codes

15-853 Pagel

And now a word from our founder...

Governor Sandford [sic] made a useless rival as you
and I saw when in San Francisco, to the State
University. I could be no party to such a thing.

- Andrew Carnegie in a letter to Andrew White,
Ambassador to Berlin, on the establishment
of Stanford University, 1901.

15-853 Page2

Reed-Solomon: Outline

A (n, k, n-k+1) Reed Solomon Code:
Consider the polynomial
P(X) = g XK1+ -+ 0 x + ag
Message: (a4, -, a1, Gp)
Codeword: (p(1), p(2), ..., p(n))
To keep the p(i) fixed size, we use a; O GF(p")
To make the p(i) distinct, n<pr

Any subset of size k of (p(1), p(2), ..., p(n)) is enough
to reconstruct p(x).

15-853 Page3

Reed Solomon: Outline

A (n, k, 2s +1) Reed Solomon Code:
\ k |« 25 |

| n d

Can detect 2s errors
Can correct s errors

Generally can correct a erasures and B errors if
a+2B<2s

15-853 Paged

Reed Solomon: Outline

Correcting s errors:

1. Find k + s symbols that agree on a polynomial p(x).
These must exist since originally k + 2s symbols
agreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p'(x)
- Any subset of k symbols will define p'(x)
- Since at most s out of the k+s symbols are in
error, p'(x) = p(x)

15-853 Pages

Reed Solomon: Outline

Systematic version of Reed-Solomon
P(X) = @y g XK1+ -+ ay X + ag
Message: (q, 4, .., 04, Q)
Codeword: (q,.1, -, a1, ag, p(1), p(2), ..., p(25))
This has the advantage that if we know there are no
errors, it is trivial to decode.
Later we will see that version of RS used in practice
uses something slightly different than p(1), p(2), ...
This will allow us to use the "Parity Check" ideas
from linear codes (i.e HcT = 0?) to quickly test for
errors.

15-853 Pages

RS in the Real World

(204,188,17),5, : ITU J.83(A)?
(128,122,7),5, : ITU J.83(B)
(255,223,33),5, : Common in Practice

- Note that they are all byte based
(i.e. symbols are from GF(28)).

Performance on 600MHz Pentium (approx.):
- (255,251) = 45Mbps
- (255,223) = 4Mbps

Dozens of companies sell hardware cores that
operate 10x faster (or more)

- (204,188) = 320Mbps (Altera decoder)

15-853 Page7

Applications of Reed-Solomon Codes

+ Storage: CDs, DVDs, “hard drives”,

+ Wireless: Cell phones, wireless links

+ Sateline and Space: TV, Mars rover, ...
+ Digital Television: DVD, MPEG2 layover
- High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.
- e.g. Gallager codes, Turbo codes

15-853 Page8

RS and "burst” errors

Let's compare to Hamming Codes (which are “optimal).

code bits | check bits
RS (255, 253, 3),5 2040 16
Hamming (211-1, 211-11-1, 3), 2047 11

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits
However, RS can fix 8 contiguous bit errors in one byte

- Much better than lower bound for 8 arbitrary errors

Iog[1+(2j +e- +[2D > 8log(n - 7) = 88 check bits

15-853 Paged

Galois Fields

The polynomials
Z,[x] mod p(x)
where
p(x) O Z [x],
p(x) is irreducible,
and deg(p(x)) = n
form a finite field. Such a field has p”n elements.
These fields are called Galois Fields or GF(p").
The special case n = 1 reduces to the fields Z
The multiplicative group of GF(p")/{0} is cyclic (this
will be important later).

15-853 Pagel0

GF(2M

Hugely practical!
The coefficients are bits {0,1}.

For example, the elements of GF(28) can be
represented as a byte, one bit for each term, and
GF(2%*) as a 64-bit word.

- eg., x5+ x*+ x +1=01010011
How do we do addition?

Addition over Z , corresponds to xor.

+ Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap

15-853 Pagell

Multiplication over GF(2")

If nis small enough can use a table of all
combinations.

The size will be 2" x 2" (e.g., 64K for GF(28)).
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial
on an overflow by 1 term is simply a test and an
xor.

eg. 0111/1001 = 0111
1011 / 1001 = 1011 xor 1001 = 0010
~ just look at this bit for GF(23)

15-853 Pagel2

Multiplication over GF(25)

typedef unsigned char uc;

uc mult(uc a, uc b) {
int p=a,
uc r = 0;
while(b) {
if (b&1) r =r1r " p;
b=>b > 1;
p=p <<l
if (p &0x10) p = p ~ 0x11B;
return r;

}

15-853 Pagel3

Finding inverses over GF(2")

Again, if nis small just store in a table.
- Table size is just 2",
For larger n, use long division algorithm.
- This is again easy o do with shift and xors.

15-853 Pageld

Galois Field

GF(23) with irreducible polynomial: x3 + x + 1
o = X is a generator

o] X 010 2
a? x? 100 3
a3 x+1 011 4
a4 X2 + X 110 5
a’ x2+x+1 111 6
ab x2+1 101 7
o 1 001 1

Will use this as an example.

15-853 Pagel5

Discrete Fourier Transform

Another View of Reed-Solomon Codes
a is a primitive nth root of unity (a" = 1) - a generator

m=T7"c
Inverse DFT

1) m,
o : :
22D Ci-1 =T M4
. C 0
e :
Co1 0
The Discrete
Fourier Transform
(DFT)
15-853 Pagel6

DFT Example

a = x is 7t root of unity in GF(23)/x3 + x + 1
(ie, multiplicative group, which excludes additive inverse)

Recall o = "2", a2 ="3", .. ,a7=1="1"
11 1 1 1 1 1y(111 1 1 1 1
1 a a* o a* a® o |1 2 22 28 20 25 26
1 a® a* daf 13 3 3

T=1 a® a° =1 4 42

1 a* 15
1 a° 16
1 a 17 76

Should be clear that ¢ = T « (mg,my,.... m,_1,0,..)7
is the same as evaluating p(x) = mg + mx + ... + m_;xk?

at n points.
15-853 Pagel7

Decoding
Why is it hard?

Brute Force: try k+s choose k + 2s possibilities and
solve for each.

15-853 Pagel8

Cyclic Codes

A linear code is cyclic if:
(co. €1, o €p1) OC = (€1, Co, -u Cp2) O C

Both Hamming and Reed-Solomon codes are cyclic.

Note: we might have to reorder the columns to make
the code "cyclic”.

Motivation: They are more efficient to decode than
general codes.

15-853 Pagel9

Generator and Parity Check Matrices

Generator Matrix:
A k x n matrix 6 such that:
C={m+6|mDOXY
Made from stacking the basis vectors
Parity Check Matrix:
A (n - k) x n matrix H such that:
C={vOX"|HevT=0}
Codewords are the nullspace of H

These always exist for linear codes
HeG6"=0

15-853 Page20

Generator and Parity Check Polynomials

Generator Polynomial:
A degree (n-k) polynomial g such that:
C={m+g|mOXx]}
such that g | x" -1
Parity Check Polynomial:
A degree k polynomial h such that:
C={vOX"[x]] hev=0 (mod xn-1)}
such thath | xn -1

These always exist for linear cyclic codes
heg=x1-1

15-853 Page21

Viewing g as a matrix

If g=go+ giX + .. + GriX™™
We can put this generator in matrix form:

90 9% " Onx o - 0
G= 0 (2] On-k-1 In—k O
0 0 - Y O - Onx

Write m = mg + my X + .. m_xX*1as (mg, my, ..., my_;)
Then c = mG6

15-853 Page22

g generates cyclic codes

9 9% - Onx o - 0 g
G= O Y On-k-1 On-k 0 — Xg
0 0 - g g - Onx x“g

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (x" -1)
Consider h = hy + hyx + .. + hx¥ (gh = x"-1)

hog + (hyx)g + ... + (hy 1 xk1)g + (hx¥)g = x" - 1

xkg = -hi(hog + hy(xg) + ... + h 4(x*g)) mod (x" -1)
This is a linear combination of the rows.

15-853 Page23

Viewing h as a matrix

If h=hy+hx+ .. +hxk
we can put this parity check poly. in matrix form:

0 -~ 0 h - Nh h
W) e
hh - h h O - 0

HecT=0

15-853 Page24

Hamming Codes Revisited

The Hamming (7,4,3), code.
g=1+x+x3 X+ x2+x+1

0 0

[En

h=
0

H=|0

1

o o o R
o o R
B Rk o R
o r OO
» O O o
o r o
R o R
=)
B oR e
o r P
o ok

1 1
1 0
0 1
gh=x"-1, 6H"=0

The columns are not identical to the previous
example Hamming code.

15-853 Page25

Factors of x" -1

Intentionally left blank

15-853 Page26

Another way to write g

Let a be a generator of GF(p").
Let n=pr-1 (the size of the multiplicative group)
Then we can write a generator polynomial as
g(x) = (x-0)(x-a?) ... (x - ark)
Lemma: g | x"-1 (a| b, means a divides b)
Proof:
- a"=1 (because of the size of the group)
=>an-1=0
= o root of x"-1
=(x-a)|x-1
- similarly for o2, a3, ..., amk
- therefore x"- 1is divisible by (x - a)(x - o) ...

15-853 Page27

Back to Reed-Solomon

Consider a generator polynomial g 00 GF(p)[x], s.t. g | (x"- 1)
Recall that n- k=2s (the degree of g)

Encode:
- m=mx3 (basically shift by 2s)
- b=m'(mod g)

-c=m'-b =(my, .., Mg, -bygy, ... -bg)
- Note that c is a cyclic code based on g
-m'=qg+b
-c=m'-b=qg
Parity check:
-hc=0?

15-853 Page28

Example

Lets consider the (7,3,5)3 Reed-Solomon code.
We use GF(23)/x3 + x + 1

o X 010 2
o? x2 100 3
[o§ x+1 o11 4
a4 X2+ X 110 5
ab x2+x+1 111 6
ab x2+1 101 7
a’ 1 001 1
15-853 Page29

Example RS (7,35);

g = (x - a)(x - a®)(x - a®)(x - of) o 1010
= x4+ 03x3 + x2 + ax + ad w2 100
h=(x - a%)(x - ad)(x - a”) o ot
=x3+ad3x3+a’x +at o [110
gh=x7-1 o5 | 111
Consider the message: 110 000 110 o6 | 101
m::a4x2+a4 a’ | 001

m' = x*m = a4x® + a*x?

= (0* x2+x+0d)g + 40(3x3 + aox + a°)

Cc= qa4 0 G4L a3 0 ab aéb)
Y, , 0, 0%, : 4
- 110000 110 011 000 101 101 <" = O (mod x7-1)

15-853 Page30

A useful theorem

Theorem: For any B, if g(B) = O then BZm(B) = b(B)
Proof:

x2sm(x) = g(x)q(x) + b(x)

B#sm(B) = g(B)q(B) + b(B) = b(B)

Corollary: B2sm(B) = b(B) for B U {a, a?, .., a2}

Proof:
{a, a?, ..., a2} are the roots of g by definition.

15-853 Pagesl

Fixing errors

Theorem: Any k symbols from ¢ can reconstruct ¢
and hence m

Proof:

We can write 2s equations involving m (c,.1, ..., Css)
and b (cyeq, .., Cp). These are

a2 m(a) = b(a)
o% m(a?) = b(a?)

.(;25(25) m(u25) = b(GZS)
We have at most 2s unknowns, so we can solve for
them. (I'm skipping showing that the equations
are linearly independent).

15-853 Page32

Efficient Decoding

I don't plan to go into the Reed-Solomon decoding
algorithm, other than to mention the steps.

il

Error Error Error
Syndrome Polynomial Locations Magnitudes| Error
Calculator Berlekamp—— Chien Forney Corrector
Massy Search Algorithm
?
15-853 Page33

