15-853:Algorithms in the Real World

Error Correcting Codes I
- Overview
- Hamming Codes
- Linear Codes
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Mathematicians are like Frenchmen:
whatever you say to them they translate
into their own language and forthwith it is
something entirely different.

- Goethe
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General Model

message (m) Errors introduced by the
. noisy channel:
coder + changed fields in the
codeword (e.g. a
lcodewor‘d (c) flipped bit)
noisy * missing fields in the
channel codeword (e.g. a lost

byte). Called erasures

How the decoder deals
with errors.

- error detection vs.
+ error correction

lcodewor‘d’ (c)

decoder

'

message or error
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Applications

+ Storage: CDs, DVDs, “hard drives”,

+ Wireless: Cell phones, wireless links

+ Satellite and Space: TV, Mars rover, ...
+ Digital Television: DVD, MPEG2 layover
- High Speed Modems: ADSL, DSL, ..

Reed-Solomon codes are by far the most used in

practice, including pretty much all the examples
mentioned above.

Algorithms for decoding are quite sophisticated.
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Block Codes

message (m) Each message and codeword
v is of fixed size
coder Y. = codeword alphabet

lcodeword © k=lm| n=lc| q=[
; C 0 =" (codewords)
noisy

channel A(x,y) = number of positions

o st x 2y,
lcodewor‘d () d- min{A(;lly) i xyOC, x#y)
decoder s = max{A(c,c")} that the code
! can correct
message or error Code described as: (n,k,d),
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Hierarchy of Codes

C forms a linear subspace of >"

linear . .
of dimension k

[

C is linear and

cyclic CoC1Cy..Cpy iS @ codeword implies
f €4C;...Cp.1Co IS a codeword
BCH Bose-Chaudhuri-Hochquenghem

T

Hamming Reed-Solomon

These are all block codes.
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Binary Codes

Today we will mostly be considering > = {0,1} and
will sometimes use (n,k,d) as shorthand for (n,k.d),

In binary A(x,y) is often called the Hamming
distance
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Hypercube Interpretation

Consider codewords as vertices on a hypercube.

10 111
o codeword
010 o11

d = 2 = min distance
101 n = 3 = dimensionality
2" = 8 = number of nodes

100

000 001

The distance between nodes on the hypercube is the

Hamming distance A. The minimum distance is d.

001 is equidistance from 000, 011 and 101.
For s-bit error detectiond >s + 1
For s-bit error correctiond = 2s + 1
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Error Detection with Parity Bit

A (k+1k,2), systematic code
Encoding:
mim,..my = mlmz...mkpkq
where Pk+1 = My a ms 0o..ad my

d = 2 since the parity is always even (it takes two bit
changes to go from one codeword to another).

Detects one-bit error since this gives odd parity

Cannot be used to correct 1-bit error since any
odd-parity word is equal distance A to k+1 valid
codewords.
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Error Correcting One Bit Messages

How many bits do we need to correct a one bit error
on a one bit message?

110 Jii
1o 1 010, o11
100

101
00 ot 000”001
2 bits 3 bits
0->00,1->11 0 ->000, 1-> 111
(n=2 k=1,d=2) (n=3 k=1.d=3)

In general need d = 3 to correct one error. Why?
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Example of (6,3.3), systematic code

Definition: A Systematic code
message | codeword is one in which the message

000 000000 appears in the codeword

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000
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Error Correcting Multibit Messages

We will first discuss Hamming Codes
Detect and correct 1-bit errors.

Codes are of form: (2-1,2"-1-r, 3) forany r > 1
eg.(3.1,3),(7,4,3),(15,11,3), (31, 26, 3), ..
which correspond to 2, 3,4, 5, ... “parity bits” (i.e. h-k)

The high-level idea is to "localize” the error.
Any specific ideas?

15-853 Pagel2




Hamming Codes: Encoding
Localizing error to top or bottom half 1xxx or Oxxx
‘m15"“14"’“13‘7“12"“11"“10‘ m9.""7‘m6‘m5‘ ‘ma‘ ‘ .
Pg = My5 0 myy O myz3 O myp O my O mye O myg
Localizing error to x1xx or xOxx
‘m15"“14"’“13"“12‘”\11‘”‘10‘ mg‘ Ps ‘m7‘ mé‘m5.m3‘m2‘ .
Pa=mys O myy O myz O mg O my Ome O ms
Localizing error to xx1x or xx0x
‘m15"“14‘"\13‘”\12‘7“11"“10‘ mg‘ Ps ‘m7‘ mé‘m5‘ P4 ‘ma.:.
P2 = Mg O myy O my O mye O my O mg O My
Localizing error to xxx1 or xxx0
‘m15"“14"’“13"“12‘“‘11"“10‘ m9‘ Ps ‘m7‘ me‘ms‘ P4 ‘ma‘ P2 -
p1=mys 0 my O m11158;29 U my 0 ms 0 mg
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Hamming Codes: Decoding
T L . | mg|ms .E-

We don't need pg, so we have a (15,11,?) code.
After transmission, we generate
bg = pg O My5 0 myy O my5 O myp O my; O My O mg
bs=ps O mys O myy O Mz O my, O mz 0 mg O g
b, = p, 0 mys O myy O my; O my O my O mg O mg
by = py O my 0 mys Omy Omg O my O mg O mg
With no errors, these will all be zero
With one error bgb,b,b; gives us the error location.

e.g. 0100 would tell us that p, is wrong, and
1100 would tell us that my, is wrong
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Hamming Codes

Can be generalized to any power of 2
- n=2"-1(15in the example)
= (n-k) = r (4 in the example)
- d = 3 (discuss later)
- Gives (2r-1, 2r-1-r, 3) code
Extended Hamming code
- Add back the parity bit at the end
- Gives (27, 2r-1-r, 4) code
- Can correct one error and detect 2.
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Lower bound on parity bits

How many nodes in hypercube do we need so that d = 3?

Each of the 2% codewords eliminates n neighbors plus
itself, i.e. n+1

2" > (n+1)2"
> k+log,(n+1)
n = k+|_log2(n +1)-|

In previous hamming code 15 > 11 +[ log,(15+1) 1= 15

Hamming Codes are called perfect codes since they
match the lower bound exactly
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Lower bound on parity bits

What about fixing 2 errors (i.e. d=5)?
Each of the 2k codewords eliminates itself, its

neighbors and its neighbors' neighbors, giving: 1+®+@

2n
n

\Y)

(L+n+n(n-1/2)2¢
k+log,(1+n+n(n-1)/2)
k+2log,n-1

\

\

Generally to correct s errors:

()

15-853

Pagel?

Lower Bounds: a side note

The lower bounds assume random placement of bit
errors.

In practice errors are likely to be less than random, e.g.
evenly spaced or clustered:

I 2 3 A 3~ I ™3

LT T TT T I IXIXIXIXIx[ [ [T T T TTTT]

Can we do better if we assume regular errors?

We will come back to this later when we talk about
Reed-Solomon codes. In fact, this is the main
reason why Reed-Solomon codes are used much
more than Hamming-codes.
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Linear Codes

If X is a field, then X" is a vector space

Definition: C is a linear code if it is a linear subspace

of X" of dimension k.

This means that there is a set of k basis vectors
v; 02" (1 <i<k) that span the subspace.

i.e. every codeword can be written as:

c=avi+..*+a v, aqOX

The sum of two codewords is a codeword.
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Linear Codes

Basis vectors for the (7,4,3), Hamming code:

mz Mg Ms py M3 P Py

v =/1 0 0 1 0 1 1
vw = 01 01 0 10
vy = 0 01 1 0 0 1
vy = 0 0 0 0/1 1 1

How can we see that d = 3?

For all binary linear codes, the minimum distance is
equal to the least weight non-zero codeword.
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Generator and Parity Check Matrices

Generator Matrix:
A k x nmatrix 6 such that: C={x6 | x 02X}
Made from stacking the basis vectors
Parity Check Matrix:
An (n - k) x n matrix H such that: C = {y O X" | HyT = 0}
Codewords are the nullspace of H
These always exist for linear codes

HG™ = 0 since:
0= HyT = H(x6)T = H(6™T) = (HGT)x™
only true for all x if HGT =0
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Advantages of Linear Codes

+ Encoding is efficient (vector-matrix multiply)
+ Error detection is efficient (vector-matrix multiply)
+ Syndrome (HyT) has error information

- Gives gk sized table for decoding
Useful if n-k is small
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Example and "Standard Form"

For the Hamming (7,4,3) code:

1001011
G:0101010
0011001
0000111

By swapping columns 4 and 5 it is in the for‘m@
A code with a matrix in this form is systematic, and
G is in "standard form"

G=

o r O O
P o o o
P P ok

[ = ==

© o o~
oo r o
o R Rk P
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Relationship of G and H

If Gis in standard form [I,,A]
thenH=[ATT, ]

Proof:
H6T= ATT, + I, ,AT=AT+AT=0

Example of (7,4,3) Hamming code:

_ranspose

5200110 1110100

G=0010101 H=|11 0 10 1 0
1011001

10 0 0 1j)|0 1 1 = =
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The d of linear codes

Theorem: Linear codes have distance d if every set
of (d-1) columns of H are linearly independent, but
there is a set of d columns that are linearly
dependent.

Proof summary: if d columns are linearly dependent
then there exist two codewords that differ in the
d bits corresponding to those columns that make
the same contribution to the syndrome.
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Dual Codes

For every code with
6=I,A and H=ATT ,
we have a dual code with
6=I,.,,A" and H=AT,

The dual of the Hamming codes are the binary
simplex codes: (2"-1, r, 2r-1-r)

The dual of the extended Hamming codes are the
first-order Reed-Muller codes.

Note that these codes are highly redundant and can
fix many errors.
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NASA Mariner:

Deep space probes from
1969-1977.

Mariner 10 shown

Used (32,6,16) Reed Muller code (r = 5)
Rate = 6/32 = .1875 (only 1 out of 5 bits are useful)
Can fix up to 7 bit errors per 32-bit word
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How to find the error locations

HyT is called the syndrome (no error if O).

In general we can find the error location by creating
a table that maps each syndrome to a set of error
locations.

Theorem: assuming s < 2d-1 every syndrome value
corresponds to a unique set of error locations.

Proof: Exercise.

Table has q"* entries, each of size at most n (i.e.
keep a bit vector of locations).
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