15-853:Algorithms in the Real World

Cryptography 3, 4 and 5

15-853 Page 1

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms:

- Diffie-Hellman Key Exchange

- RSA, El-Gamal, Blum-Goldwasser

- Quantum Cryptography
Case Studies: Kerberos, Digital Cash

15-853 Page2

Public Key Cryptosystems

Introduced by Diffie and Hellman in 1976.

Plaintext Public Key systems

: K; = public key
Encryption| K, = private key

Digital signatures
D(C) = M K; = private key
K, = public key

Original Plaintext

Typically used as part of a more complicated protocol.

15-853 Page 3

One-way trapdoor functions

Both Public-Key and Digital signatures make use of
one-way frapdoor functions.

Public Key:

- Encode: ¢ = f(m)

- Decode: m = f-Y(c) using trapdoor
Digital Signatures:

- Sign: ¢ = f-{(m) using trapdoor

- Verify: m = f(c)

15-853 Page4

Example of SSL (3.0)

SSL (Secure Socket Layer) is the standard for the web (https).
Protocol (somewhat simplified): Bob -> amazon.com

B->A: client hello: protocol version, acceptable ciphers

A->B: server hello: cipher, session ID, |amazon.com|,eisign

B->A: key exchange, {masterkey}umazons pubiic key hand-
A->B: server finish: ([amazon prev-messages masterkey]),,| shake
B->A: client finish: ([bob prev-messages masterkey]),.
A->B: server message: (messagel,[messagel])keyl d
B->A: client message: (message2 [message2])y.,. } ata
|hlisswer = Certificate
= Issuer, <h h's public key, time STAMP>suers private key
<. >private key = Digital signature {..},uic ey = Public-key encryption
= Secure Hash (- key = Private-key encryption
keyl and key2 are derived from masterkey and session ID

15-853 Page5

Public Key History

Some algorithms
- Merkle-Hellman, 1978, based on “knapsack problem”
- McEliece, 1978, based on algebraic coding theory
- RSA, 1978, based on factoring
- Rabin, 1979, security can be reduced to factoring
- ElGamal, 1985, based on Discrete logs
- Blum-Goldwasser, 1985, based on quadratic residues
- Elliptic curves, 1985, discrete logs over Elliptic curves
- Chor-Rivest, 1988, based on knapsack problem
- NTRU, 1996, based on Lattices
- XTR, 2000, based on discrete logs of a particular field

15-853 Page 6

Diffie-Hellman Key Exchange

A group (6,*) and a primitive element (generator) g is
made public.
- Alice picks a, and sends g° (publicly) to Bob
Bob picks b and sends g° (publicly) to Alice
Alice computes (g°) = gab
Bob computes (go)° = geb
The shared key is g

Note this is easy for Alice or Bob to compute, but
assuming discrete logs are hard, is hard for
anyone with only g@ and gP.

Can someone see a problem with this protocol?

15-853 Page 7

Person-in-the-middle attack

‘ Alice ‘ ‘ Mallory ‘

Key; = g« Key; = g

Mallory gets to listen to everything.

15-853 Page8

Merkle-Hellman

Gets "security” from the Subet Sum (also called
knapsack) problem which is NP-hard to solve in
general.

Subset Sum (Knapsack): Given a sequence W = {wg,wy,
W1}, w; € Z of weights and a sum S, calculate a
boolean vector B, such that:

1<n

D.BW =S
i=0
Even deciding if there is a solution is NP-hard.

15-853 Page9

Merkle-Hellman
j-1
W is superincreasing if: W =Y w,
i=0
It is easy to solve the subset-sum problem for
superincreasing W in O(n) time - give me a proof!
Main idea:
- Hide the easy case by multiplying each w; by a
constant a modulo a prime p
W =a*w mod p

- Knowing a and p allows you fo retrieve easy case

15-853 Page 10

Merkle-Hellman

What we need Encode:

M Wl,"',Wn y:E(m):Zizln mi W'i
superincreasing Decode:
integers =

] z=aqal y mod o]
 p>X."w; and prime zal Y " m w;imodp
©a 2<a<p-l = al X" maw; mod p
© wi=aw modp = X W

Solve subset sum prob:
(Wi, -, Wy, 2)
obtaining my, --- m,

Public Key: w';
Private Key: w;, p, a,

15-853 Page 11

Merkle Hellman: Problem

Was broken by Shamir in 1984.

Shamir showed how to use integer programming to
solve the particular class of Subset Sum problems
in polynomial time.

Lesson: don't leave your trapdoor loose.

15-853 Page 12

RSA

Invented by Rivest, Shamir and Adleman in 1978
Based on difficulty of factoring.
Used to hide the size of a group Z,” since:
|ZJ: @ =n[1(=1/p)
Factoring has not been reduced to RSA

- an algorithm that generates m from c does not
give an efficient algorithm for factoring
On the other hand, factoring has been reduced to
finding the private-key.
- there is an efficient algorithm for factoring
given one that can find the private key.

15-853 Page 13

RSA Public-key Cryptosystem

What we need: Public Key: (e,n)
- pand q, primes of Private Key: d

approximately the

same size Encode:

n=pq meZ,

¢(n) = (p-1)(g-1) E(m) = me mod n
ceeZyy
© d=e’ mod ¢(n) Decode:

D(c) = c¢mod n

15-853 Page 14

RSA continued

Why it works:
D(c) = c¢mod n = c mod pq
= med mod pq
= m!*ke-D@-D mod pq
=m e (mP 1)) mod pg = m « (MI1)kP-Dmod pq
Chinese Remainder Theorem: If pand q are relatively
prime,anda=b mod panda = b mod q,
then a = b mod pq.
m e (mP-1)k@-D=m mod p
me (mQ‘l)k(P‘l) = m mod q
D(c) = m mod pq

15-853 Page 15

RSA computations

To generate the keys, we need to
- Find two primes p and q. Generate candidates
and use primality festing to filter them.
- Find e-! mod (p-1)(q-1). Use Euclid's
algorithm. Takes time log?(n)
To encode and decode
- Take me or cd. Use the power method.
Takes time log(e) log?(n) and log(d) log?(n) .

In practice e is selected to be small so that encoding
is fast.

15-853 Page 16

Security of RSA

Warning:
- Do not use this or any other algorithm naively!
Possible security holes:

- Need to use "safe” primes p and q. In particular p-
1 and g-1 should have large prime factors.

- p and q should not have the same humber of digits.
Can use a middle attack starting at sqrt(n).

- e cannot be too small
- Don't use same n for different e's.
- You should always "pad”

15-853 Page 17

Algorithm to factor given d and e

If an attacker has an algorithm that generates d from
e, then he/she can factor nin PPT. Variant of the

Rabin-Miller primality test. LasVegas algorithm
Function TryFactor(e,d,n) Probability of pass

1. write ed - 1as 25, r odd is>.b.

2. choose w at random < n Will return p or q

i Vf= W"ImOhd n (fail) if it passes.

. if v = 1 then return(fail Try until you pass
5. whilev = 1modn 221 ed_): pass.
6. vo=vVv wer=w
7. v=vZmodn =wke=1modn
8. if vy = n-1then return(fail)

9. return(pass, gcd(vy + 1, n)) vo2 =1modn
(vo = D(vp + 1)=Kn
15-853 Page 18

RSA Performance

Performance: (600Mhz PIII) (from: ssh toolkit):

Algorithm | Bits/key Mbits/sec

1024 .35sec/ke

RSA Keygen 048 2.83sec/keyy

RSA Encrypt 1024 1786/sec 35
2048 672/sec 12

RSA Decrypt 1024 74/sec 074
2048 12/sec 024

ElGamal Enc. 1024 31/sec 031

ElGamal Dec. 1024 61/sec 061

DES-cbc 56 95

twofish-cbc 128 140

Rijndael 128 180

15-853 Page 19

RSA in the "Real World"

Part of many standards: PKCS, ITU X.509,
ANST X9.31, IEEE P1363

Used by: SSL, PEM, PGP, Entrust, ...

The standards specify many details on the
implementation, e.g.
- e should be selected to be small, but not too
small
- "multi prime” versions make use of n = pgr...
this makes it cheaper to decode especially in
parallel (uses Chinese remainder theorem).

15-853 Page 20

Factoring in the Real World

Quadratic Sieve (QS):
T(n) = e(1+o(n))(|nn)1’2(|n(|nn))1’2

- Used in 1994 to factor a 129 digit (428-bit)
number. 1600 Machines, 8 months.

Number field Sieve (NFS):

T(n) = e(1.923+o(l))(lnn)“3(In(Inn))m

- Used in 1999 to factor 155 digit (512-bit) number.

35 CPU years. At least 4x faster than QS
The RSA Challenge numbers

15-853 Page 21

ElGamal

Based on the difficulty of the discrete log problem.
Invented in 1985
Digital signature and Key-exchange variants

- DSA based on ElGamal AES standard

- Incorporated in SSL (as is RSA)

- Public Key used by TRW (avoided RSA patent)
Works over various groups

- Zp,

- Multiplicative group GF(p),

- Elliptic Curves

15-853 Page 22

ElGamal Public-key Cryptosystem

(6.,*) is a group Encode:
- a agenerator for G Pick random k € Z\,
*aeZy E(m) = (Y& Yz)
= (aX,
« B=a0

G is selected so that it Decode:
is hard to solve the D(y) = y2 * (Y&

discrete log problem. * (aka)!
- m " ﬁk* (841
Public Key: (e, 8) and =m
some description of 6| |You need to know a to
Private Key: a easily decode y!
15-853 Page 23

ElGamal: Example

6=z, Encode: 7
c a=2 Pick random k = 4
- a=8 E(m)=(24,7* 3%
=(5,6)
+ B=28(mod 11)=3

Decode: (5, 6)

B(y) = 67 (5%
=6* 41

= 6* 3 (mod 11)
Public Key: (2, 3), Z,, =7

Private Key:a=8

15-853 Page 24

Probabilistic Encryption

For RSA one message goes to one cipher word. This
means we might gain information by running
Epublic(M)-

Probabilistic encryption maps every M to many C
randomly. Cryptanalysists can't tell whether
C = Epupiic(M).

ElGamal is an example (based on the random k), but it
doubles the size of message.

15-853 Page 25

BBS "secure" random bits

BBS (Blum, Blum and Shub, 1984)

- Based on difficulty of factoring, or finding
square roots modulo n = pq.

Fixed For a particular bit seq.
+ pand qare primes such | |+ Seed: random x
that p = q = 3 (mod 4) relatively prime to n.
* n=pq(is called a Blum ||+ Initial state: x, = x?
integer) - ith state: x; = (x;4)?
- ith bit: Isb of x;

Note that: x,= x™2 ™" (modn)
Therefore knowing p and q allows us to find x, from x;

15-853 Page 26

Blum-Goldwasser: A stream cypher

Public key: n (= pq) Private key: p or q

Encrypt: m (0 =<i<l) ¢O0=<i<l)
tbi
Isb

o x| s

|

*ci(lsi<l+logn):x,

Decrypt: N o
Using p and q, find Xo=% > ™**™® (modn)
Use this to regenerate the b; and hence m;

15-853 Page 27

Quantum Cryptography

In quantum mechanics, there is no way to take a
measurement without potentially changing the
state. E.g.

- Measuring position, spreads out the momentum

- Measuring spin horizontally, "spreads out” the
spin probability vertically

Related to Heisenberg's uncertainty principal

15-853 Page 28

Using photon polarization

!
/

[o / =«

measure measure
diagonal square

f or \ ? (equal probability)

I or <+ ? (equal probability)

destroys state

15-853 Page 29

Quantum Key Exchange

1. Alice sends bob photon stream randomly polarized
in one of 4 polarizations: I -« /4 \

2. Bob measures photons in random orientations

eg: X ++ X X X + X (orientations used)

\'| - \// - \ (measured polarizations)
and tells Alice in the open what orientations he
used, but not what he measured.

3. Alice tells Bob in the open which are correct
4. Bob and Alice keep the correct values
Susceptible to a man-in-the-middle attack

15-853 Page 30

In the "real world"

Not yet used in practice, but experiments have
verified that it works.

IBM has working system over 30cm at 10bits/sec.

15-853 Page 31

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies:

- Kerberos

- Digital Cash

15-853 Page 32

Kerberos

A key-serving system based on Private-Keys (DES).

Assumptions

+ Built on top of TCP/IP networks

+ Many “clients"” (typically users, but perhaps
software)

+ Many "servers" (e.g. file servers, compute servers,
print servers, ...)

+ User machines and servers are potentially insecure
without compromising the whole system

+ A kerberos server must be secure.

15-853 Page 33

At Carnegie Mellon

Single password (in SCS, ECE or ANDREW) gives you
access to:

- Andrew file system

- Loging into andrew, ece, or scs machines
- POP and IMAP (mail servers)

- SSH, RSH, FTP and TELNET

- Electronic grades, HUB, ...

- Root access

15-853 Page 34

Kerberos V

Request ticket-granting-ticket (TGT)
<TGT>

Request server-ticket (ST)

<ST>

Request service

O AW

15-853 Page 35

Tickets

Ticket: A message “signed" by a “higher authority” giving
you certain rights at a particular server S.
Tes = S, {CAVK:sIKs
C=client S =server

Ks = server key. A static key only known by the server
and the “higher authority” (not by the client).

A = client's network address
V = time range for which the ticket is valid
K¢ s = client-server key. A dynamic key specific to this
ticket. Known by the server and client.
A ticket can be used many times with a single server.

15-853 Page 36

Authenticators

Authenticator: a message "signed"” by the client identifying
herself. Tt must be accompanied by a ticket.
It says "I have the right to use this ticket"

AC,S = {CITI[K]}KC,S
C = client S =server

K s = client-server key. A dynamic key specific to the
associated ticket.

T = timestamp (must be in range of associated ticket)
K = session key (used for data transfer, if needed)
An authenticator can only be used once.
A single ticket can use many authenticators

15-853 Page 37

Kerberos V Messages

Kerberos Ticket Granting Service
(T6S)

Tes= S, {CAV K sKs
Acs = {C:T:[K]}KC,S

Client to Kerberos: {C, TGS}K,
Kerberos to Client: {K¢ 155}Ke, Te1ss
Client to TGS: Actes. Tetes

TGS to Client: {Kcslcres, Tes |Possibly

O s W

Client to Server: A, Tes repeat
" 15853 Page 38

Kerberos Notes

All machines have to have synchronized clocks
- Must not be able to reuse authenticators
Servers should store all previous and valid tickets
- Help prevent replays

Client keys are typically a one-way hash of the
password. Clients do not keep these keys.

Kerberos 5 uses CBC mode for encryption Kerberos 4
was insecure because it used a nonstandard mode.

15-853 Page 39

Electronic Payments

Privacy
- Identified

- Anonymous
Involvement
- Offline (just buyer and seller)
more practical for "micropayments”
- Online
* Notational fund transfer (e.g. Visa, CyberCash)
* Trusted 34 party (e.g. FirstVirtual)
Today: "Digital Cash” (anonymous and possibly offline)

15-853 Page 40

10

Some more protocols

1. Secret splitting (and sharing)
2. Bit commitment
3. Blind signatures

15-853 Page 41

Secret Splitting

Take a secret (e.g. a bit-string B) and split it among
multiple parties such that all parties have to
cooperate to regenerate any part of the secret.

An_implementation:

- Trent picks a random bit-string R of same
length as B

- Sends Alice R

- Sends Bob R xor B

Generalizes to k parties by picking k-1 random bit-
strings.

15-853 Page 42

Secret Sharing

m out of n (m < n) parties can recreate the secret.
Also called an (m,n)-threshold scheme
An _implementation (Shamir):
- Write secret as coefficients of a polynomial
GF(pH[x] of degree m-1(n < ph).
p(x) = X+ +c_1x+c_0
- Evaluate p(x) at n distinct points in GF(p')
- Give each party one of the results
- Any m results can be used fo reconstruct the
polynomial.

15-853 Page 43

Bit Commitment

Alice commits a bit to Bob without revealing the bit
(until Bob asks her to prove it later)
An _implementation:
- Commit
+ Alice picks random r, and uses a one-way
hash function to generate y = f(r,b)
f(r,b) must be “unbiased"” on b (y by itself
tells you nothing about b).
+ Alice sends Bob y.
- Open (expose bit and prove it was commited)
+ Alice sends Bob b and r.
Example: y = Rijndael (000...b), perhaps

15-853 Page 44

11

Blind Signatures

Sign a message m without knowing anything about m

Sounds dangerous, but can be used to give “value" to
an anonymous message

- Each signature has meaning:
$5 signature, $20 signature, ...

15-853 Page 45

Blind Signatures

An implementation: based on RSA
Trent blindly signs a message m from Alice
- Trent has public key (e,n) and private key d
- Alice selects random r < n and generates
m'=mremodn
and sends it fo Trent.
This is called blinding m
- Trent signs it: s(m’) = (m re)d mod n
- Alice calculates:
s(m) = s(m") r'! = md red-l = md mod n
Patented by Chaum in 1990.

15-853 Page 46

An anonymous online scheme

'!
n Merchant

Blinded Unique Random large ID (no collisions).
Siggiice(request for $100).

—_

2. Sigpank_g100(blinded(ID)): signed by bank

3. Sigeank_$100(ID) Minting: 1. and 2.
4. Sigpank_g100(ID) Spending: 3.-6.

5. OK from bank Left out encryption
6. OK from merchant

15-853 Page 47

eCash

Uses the protocol

Bought assets and patents from Digicash
Founded by Chaum, went into Chapter 11 in 1998

Has not picked up as fast as hoped

- Credit card companies are putting up fight and
transactions are becoming more efficient

- Government is afraid of abuse

Currently mostly used for Gift Certificates, but also
used by Deutsche Bank in Europe.

15-853 Page 48

12

The Perfect Crime

+ Kidnapper takes hostage

* Ransom demand is a series of blinded coins (IDs)
and a request to publish the signed blinded IDs in
a newspaper (they're just strings)

+ Banks signs the coins to pay ransom and publishes
them

+ Only the kidnapper can unblind the coins (only she
knows the blinding factor)

+ Kidnapper can now use the coins and is completely
anonymous

15-853 Page 49

Offline Anonymous Cash

A paradox: Digital cash is just a sequence of bits.
By their very nature they are trivial to
counterfeit.

Without a middleperson, how do you make sure
that the user is not spending them twice?

I go to Amazon and present them a $20 “coin”.

I then go to Ebay and use the same $20 “coin”.

In the offline scheme they can't talk to each other
or a bank during the transaction.

In an anonymous scheme they can't know who I am.

Any ideas?
15-853 Page 50

Chaum's protocol for offline
anonymous cash

Properties:
- If used properly, Alice stays anonymous

- If Alice spends a coin twice, she is revealed

- If Merchant remits twice, this is detected and
Alice remains anonymous

- Must be secure against Alice and Merchant
colluding

- Must be secure against one framing the other.
An amazing protocol

15-853 Page 51

Basic Idea

Use blinded coins
Include Alice's ID in the coin

Alice uses interactive proof with merchant to prove
that her ID is in the coin, without revealing ID.

If she does a second interactive proof on same coin
it will reveal her ID.

"Questions” merchant asks as part of the proof are
chosen at random, so it is unlikely the same ones
will be asked twice.

Similar to “zero knowledge" ideas.

15-853 Page 52

13

Chaum's protocol: money orders

u = Alice's account humber (identifies her)

ro, M4, .., Pp.g = N random numbers

(ul;, ur;) = a secret split of uusingr; (0 <i<n)
e.g. using (r;, r; xor u)

vl, = a bit commitment of all bits of ul;

vr; = a bit commitment of all bits of ur;

Money order (created by Alice from u):
- Amount
- Unique ID
= (vlg.vro), (vl vry), .., (vl qvro)
Alice keeps ry, ..., r,.; and commitment keys.
15-853 Page 53

Chaum's protocol: Minting
1

— 2
Alice | Bank
— 3 =

]

1. Two blinded money orders and Alice's account #

2. A request to unblind and prove all bit commitments
for one of the two orders (chosen at random)

3. The blinding factor and proof of commitment for
that order

4. Assuming step 3. passes, the other blinded order
sighed

15-853 Page 54

Chaum's protocol: Spending
1

e

1. The signed money order C (unblinded)
2. A random bit vector B of length n
3. For eachiiif B; = O return bit values for ul; else
return bit values for ur;
Include all "proofs” that the ul or ur match vl or vr
Now the merchant checks that the money order is

properly signed by the bank, and that the ul or ur
match the vl or vr

15-853 Page 55

Chaum's protocol: Returning
1

1. The signed money order
The vector B along with the values of ul; or ur; that it
received from Alice.
2. An OK, or fail
If fail, i.e., already returned:
1. If B matches previous order, the Merchant is guilty
2. Otherwise Alice is guilty and can be identified since
for some i (where Bs don't match) the bank will have
(ul;, ury), which reveals her secret u (her identity).

15-853 Page 56

14

