Do any four of the following five problems.

Problem 1: (25pt) (Strang Chapter 8 problem 8.2.1)

minimize:	x_1	$+x_{2}$	$-x_3$			
subject to:	$2x_1$	$-4x_{2}$	$+x_{3}$	$+x_{4}$		=4
	$3x_1$	$+5x_{2}$	$+x_{3}$		$+x_{5}$	= 2
					x	≥ 0

Which of x_1 , x_2 , x_3 should enter the basis, an which of x_4 and x_5 should leave? Compute the new pair of basic variables and find the cost at the new corner.

Problem 2: (25pt) Consider the following problem

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 \le 4$
 $x \ge 0$

- (a) Starting with the initial solution $(x_1, x_2) = (.1, .1)$ solve this problem using the affine scaling interior-point method. You should choose a step size that moves you 96% of the way from your current location to the boundary of the feasible region.
- (b) Illustrate the progress of the algorithm on a graph in $x_1 x_2$ space. Note that the solution should only be taking a few steps to get very close to the final solution.

Problem 3: (25pt)

Let's say we augment linear programs to allow constraints to include absolute values (e.g. $|x_1| + 3|x_2| \le b$). Can we solve all such problems in polynomial time? Show why or why not. (Assume $P \ne NP$.)

Problem 4: (25pt)

Let $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ and $T = \{x \in \mathbb{R}^n : Bx \leq d\}$. Assuming that S and T are nonempty, describe a polynomial time algorithm (in n) for checking whether $S \subset T$.

Problem 5: (25pt)

Solve the following problem using the implicit enumeration branch-and-bound technique (the 0-1 programming technique) describe in class. You should show the tree and mark on any leaf node why it was pruned.

minimize
$$3x_1 + 2x_2 + 5x_3 + x_4$$

subject to $-2x_1 + x_2 - x_3 - 2x_4 \le -2$
 $-x_1 - 5x_2 - 2x_3 + 3x_4 \le -3$
 x_1, x_2, x_3, x_4 binary