Do any four of the following five problems.
Problem 1: $(25 \mathrm{pt})$ (Strang Chapter 8 problem 8.2.1)

$$
\begin{array}{lcccccc}
\text { minimize: } & x_{1} & +x_{2} & -x_{3} & & & \\
\text { subject to: } & 2 x_{1} & -4 x_{2} & +x_{3} & +x_{4} & & =4 \\
& 3 x_{1} & +5 x_{2} & +x_{3} & & +x_{5} & =2 \\
& & & & x & \geq 0
\end{array}
$$

Which of x_{1}, x_{2}, x_{3} should enter the basis, an which of x_{4} and x_{5} should leave? Compute the new pair of basic variables and find the cost at the new corner.

Problem 2: (25pt)
Consider the following problem

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 4 \\
& x \geq 0
\end{array}
$$

(a) Starting with the initial solution $\left(x_{1}, x_{2}\right)=(.1, .1)$ solve this problem using the affine scaling interior-point method. You should choose a step size that moves you 96% of the way from your current location to the boundary of the feasible region.
(b) Illustrate the progress of the algorithm on a graph in $x_{1}-x_{2}$ space. Note that the solution should only be taking a few steps to get very close to the final solution.

Problem 3: (25pt)
Let's say we augment linear programs to allow constraints to include absolute values (e.g. $\left|x_{1}\right|+$ $3\left|x_{2}\right| \leq b$). Can we solve all such problems in polynomial time? Show why or why not. (Assume $P \neq N P$.)

Problem 4: (25pt)
Let $S=\left\{x \in R^{n}: A x \leq b\right\}$ and $T=\left\{x \in R^{n}: B x \leq d\right\}$. Assuming that S and T are nonempty, describe a polynomial time algorithm (in n) for checking whether $S \subset T$.

Problem 5: (25pt)
Solve the following problem using the implicit enumeration branch-and-bound technique (the 0-1 programming technique) describe in class. You should show the tree and mark on any leaf node why it was pruned.

$$
\begin{array}{ll}
\operatorname{minimize} & 3 x_{1}+2 x_{2}+5 x_{3}+x_{4} \\
\text { subject to } & -2 x_{1}+x_{2}-x_{3}-2 x_{4} \leq-2 \\
& -x_{1}-5 x_{2}-2 x_{3}+3 x_{4} \leq-3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \text { binary }
\end{array}
$$

