
Algorithms in The Real World

Fall 2002

Homework Assignment 2 – Solutions

Problem 1. Suppose that a bipartite graph with n nodes on the left and
n nodes on the right is constructed by connecting each node on the left to d
randomly-selected nodes on the right (each chosen with probability 1/n). All
random choices are made independently, and there is no restriction on the degree
of a node on the right, i.e., nodes on the right may have any degree from 0 to
dn. Show that for any fixed β > 1, and any fixed d > β + 1, there exists a fixed
α such that the graph has (α, β) expansion with probability >0.

Solution. (Maria-Florina Balcan).
We know that, in general, a graph has (α, β) expansion if every subset of

k < αn nodes on the left has at least βk neighbors on the right, where α and β
are fixed constants, which satisfy 0 ≤ α ≤ 1, β > 0.

Let’s suppose first that a (n, n) bipartite graph is created in the following
way: for each node on the left, we pick a random subset of d nodes on the right
as its neighbors (so each node on the left has exactly d distinct neighbors on the
right).

We have β > 1 fixed, d fixed, d > β + 1. We choose α such that:

α = ( ββ−d

3eβ+d+1 )
1

d−β−1

It is clear from above that 0 ≤ α ≤ 1.
We show that for this choice, our graph has (α, β) expansion with probability

>0. We have:

P (graph has (α, β) expansion property) =
= 1− P (graph does not have (α, β) expansion property) = 1− p1

where:

p1 = P (graph does not have (α, β) expansion property) =
= P (there exist k ≤ αn nodes on the left that have at most βk neighbors on

the right)

Consider 1 ≤ k ≤ αn; denote Ak the event that a subset of k vertices on the
left has fewer than βk neighbors on the right. It’s clear that:
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p1 ≤
∑

1≤k≤αn,k∈N

P (Ak)

Fix a subset S of k nodes on the left, and a subset T of βk nodes on the

right. There are
(

n
k

)
ways of choosing S and

(
n
βk

)
ways of choosing T.

The probability that all neighbors of S lie inside T is less or equal to :
 βk

d

k

 n
d

k

So,

P (Ak) ≤
(

n
k

) (
n
βk

)  βk
d

k

 n
d

k

which is the probability that all dk edges emanating from some k nodes on the
left fall within some βk nodes on the right. But then we have:

P (Ak) ≤
(

n
k

) (
n
βk

)  βk
d

k

 n
d

k

P (Ak) ≤
[(

ne
k

)k
(

ne
βk

)βk (
βke
d

)dk
]

/
(

n
d

)dk

P (Ak) ≤
(
nβ+1−d · kd−β−1 · βd−β · eβ+1+d

)k

Using k ≤ αn, we have:

P (Ak) ≤
(
αd−β−1 · βd−β · eβ+1+d

)k

Due to the choice of α, it follows that:

P (Ak) ≤
(

ββ−d

3eβ+d+1 · βd−β · eβ+1+d
)k

=
(

1
3

)k

We have thus showed that:

p1 ≤
∑

1≤k≤αn,k∈N

P (Ak) ≤
∑
k≥1

(
1
3

)k =
1
3

1− 1
3

= 1
2

So, p1 < 1, and thus the probability that the graph has (α, β) expansion
property is 1− p1 > 0.

We have just proved that there exists a fixed α such that the graph has the
(α, β) expansion property with probability >0.
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Problem 2.
A. Prove that the bisection width (i.e. the number of edges that must be

removed to separate a graph into two equal-sized parts, within 1) of the complete
graph with n vertices is (n/2)2.

B. Prove that the bisection width of the n-node hypercube is n/2. This
should be proved from below and above. (Hint: show that the complete graph
can be embedded in the hypercube so that vertices map to vertices, edges in the
complete graph map to paths in the hypercube, and each hypercube edge ends
up supporting the same number of paths.)

Solution. (Ryan Williams).
A. Let G be a complete graph.
We will prove that the bisection width of a complete graph with n nodes is

bn
2 cd

n
2 e. For n even this is exactly (n/2)2, and for n odd this is n+1

2 · n−1
2 , which

corresponds to a separating the graph in two ”equal-sized parts, within 1”.
Clearly, there exists a bisection of G, of size bn

2 cd
n
2 e, if we place bn

2 c of
G’s nodes in a set S, and the other dn

2 e nodes in a set T . Each node in S is
responsible for exactly dn

2 e edges crossing the cut (S, T ) and |S| = bn
2 c, so this

is a bn
2 cd

n
2 e bisection.

Notice the S and T were arbitrary, so this holds for all bisections of G.
B. We can easily think of an n = 2k node hypercube as a set of strings

over {0, 1}k, with an edge between string x to y iff h(x, y) = 1 (where h is the
Hamming distance). So let E = {(x, y) : h(x, y) = 1}.

Consider the bisection (S, T ) where S = {0b : 0b ∈ {0, 1}k}, T = {1b : 1b ∈
{0, 1}k}. Given any s ∈ S, note there is a unique t ∈ T such that (s, t) ∈ E,
and viceversa, i.e. a 1-1 correspondence between members of S and members of
T. There are 2k−1 nodes in S, hence 2k−1 = n/2 edges in the bisection. So, the
bisection width is at most n/2.

Now, for the lower bound. We embed a directed complete graph K2k , into
the hypercube. First, number the nodes in K2k (from 0 to 2k−1), and associate
nodes in K2k with nodes in the hypercube by associating n with its binary
encoding b(n). Then associate each directed edge (u, v) in K2k with a path in
the hypercube from b(u) to b(v). Note a path in the hypercube of length k from
b(u) to b(v) can be thought of as a sequence of k bit flips that start with b(u)
and end with b(v).

Remember from A that the bisection width of K2k is (2k/2)2 = (n/2)2.
Let (S, T ) be a bisection of the hypercube. By our argument above, there is a
corresponding (S′, T ′) bisection of K2k with labels on the nodes. Consider any
edge (b(u), b(v)) crossing the bisection (S, T ). There are 2k/2 = n/2 pairs of
nodes {b(s), b(t)} in the hypercube, where b(s) ∈ S and b(t) ∈ T , that take only
the edge (b(u), b(v)) in the path from b(s) to b(t) (and no other edges crossing
the bisection). Therefore, if the bisection width of the hypercube were less than
n/2, then the number of paths in the hypercube that use those edges in the
corresponding (S′, T ′) bisection of K2k is less than (2k/2)2, which contradicts
the result from A.

Problem 3. In class, and in the Karypis and Kumar reading, we covered a
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multilevel edge-separator algorithm. In this problem you need to generalize this
technique to work for vertex separators directly (do not use a postprocessing
stage). In particular:

1. Argue why coarsening using a maximal matching is or is not still appro-
priate.

2. Describe what we should keep track of when coarsening (contracting the
graph) (e.g. on the edge separator version each edge kept a weight representing
the number of original edges between two multivertices).

3. Describe how we project the solution of the coarsened version back onto
the original graph (the recursive solution must return a vertex separator).

4. Describe a variant of Kernighan-Lin or (preferably) the Fiduccia-Mattheyses
heuristic for vertex separators. Be explicit about what the gain metric is.

Solution. (Cha Zhang)
1. Coarsening using a maximal matching is still appropriate. Because if at

a coarser level Gi we have a vertex separator that has k vertices, then after we
expand the graph back to Gi−1, we have a vertex separator that has maximum
2k vertices. There won’t be edges newly generated between the two subsets that
are being separated. Hence this provides still a relatively good separator.

2.When coarsening the graph, we need to keep a weight for each node, rep-
resenting how many nodes were merged to this one.

3. As stated in 1, when projecting the coarsened version back to the original
graph, the result is still a reasonably good vertex separator. We just expand the
separator and the two other members of the partition separately. The number
of edges between A and C, or between C and B may increase, because each end
of an edge may expand to two nodes in the next level, and thus for each edge
in the coarser graph we may obtain 4 edges in the finer version. However, we
only care about the number of vertices, and as already stated in 1, this number
(in any of the partition members) can increase at most two times.

4. Variant of the Fiduccia-Mattheyses heuristic:
For each node v, we define gain G(v) as follows: if v belongs to A, then

G(v) is the reduction in the size of the vertex separator if we move v into the
separator, and then move v’ neighbors from the separator into B, if these nodes
have no edge to A. Similarly, we can define the gain if v belongs to B. Our
algorithm would be:

FM(G, A,B,C)
For every u in A,

Put u in a priority queue QA, based on priority G(u)
For every v in B,

Put u in a priority queue QB , based on priority G(v)
While possible,

Find the maximum from QA and QB and do the corresponding
vertex-moving operation (as in the definition of G).
Update the gains.

4



Note: We can also count the reduction in size of the separator, when moving
vertex v out of it and into A (or B) and bring its neighbors from B (or A,
respectively) into the separator.

Problem 4. Prove that given a class of graphs satisfying an O(n(d−1)/d)
edge-separator theorem, all members must have bounded degree.

or (more challenging)

Prove that given a class of graphs satisfying an O(n(d−1)/d) vertex-separator
theorem, the edges of any member can be directed so that the out-degree is
bounded. You can use the fact mentioned in the class that such graphs have
bounded density (i.e. the average degree is bounded).

Solution. (Doru-Cristian Balcan)
I We have to prove that, given S a class of graphs satisfying a n(d−1)/d edge

separator theorem, all the members must have bounded degree. Let’s suppose
the opposite:

∀t ∈ N,∃Gt ∈ S such that deg(G) ≥ t ⇔
⇔ ∀t ∈ N,∃Gt ∈ S,∃vt ∈ Vt such that deg(vt) ≥ t (*)

In order for S to satisfy a n(d−1)/d edge separator theorem, it is necessary
(by definition) that S be closed with respect to the subgraph operation. That
is, if Gt ∈ S, then all its subgraphs are in S, satisfying the ”n(d−1)/d condition”.

From (*) it follows that, for every t ∈ N , there exists a graph containing a
vertex of degree larger than t. If from Gt we extract the star graph formed by
this vertex vt and its neighbors, it follows that for every t ∈ N , S contains a
member (a star graph) with at least t + 1 nodes.

From the course, we know that the class of the star graphs does not satisfy
a O(n(d−1)/d), but a O(n) edge separator theorem. But this simply contradicts
our supposition.

In conclusion, the degrees of all S’s members must be bounded by a positive
constant.

II Let’s take a class of graphs satisfying a O(n(d−1)/d) vertex separator
theorem. From the course, we know that the average degree of such graphs is
bounded. Let k be such a bound. Then, for a graph G with n vertices, we have:

1
n

n∑
i=1

deg(vi) ≤ k ⇔
n∑

i=1

deg(vi) ≤ nk

We study the possibility of giving an orientation for the edges of G, such that
the out-degree of all vertices is bounded (basically, we mean that the maximum
out-degree bound does not depend on n).

For a directed graph, we know that:

n∑
i=1

deg−(vi) =
n∑

i=1

deg+(vi) = |E|, and
n∑

i=1

deg−(vi) +
n∑

i=1

deg+(vi) =
n∑

i=1

deg(vi)
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It follows that
n∑

i=1

deg+(vi) = 1
2

n∑
i=1

deg(vi) ≤ k
2n (so, we might have an idea

of this bound’s magnitude).
We will prove the out-degree boundedness by induction over the graph size.

We use mainly the fact that the class of graphs considered here is closed with
respect to the subgraph operation.

Let v1 be the vertex with the smallest degree. We shall orient its incident
edges ”outwards”. Obviously, then, deg+(v1) = deg(v1).

Since
n∑

i=1

deg(vi) ≤ kn and deg(v1) = min
v∈V

deg(v), it follows that deg(v1) ≤ k.

The problem would be solved if we found an orientation of all the other edges
of the graph, such that the out-degree of all the vertices (different from v1!) is
bounded.

But we know this, from the induction hypothesis: by taking out v1 and its
incident edges, we do not interfere with other vertices’ future out-degree, and
we basically reduce the problem to an identical one, but for a smaller graph size.
So, we can give an orientation of the remaining edges (those non-incident with
v1) such that the out-degree of the vertices different from v1 is bounded by a
constant b0.

If we choose b = max(k, b0), then it follows that we can orient the edges
of any graph in the class, such that the maximum out-degree is smaller than a
constant b.

With this, the problem is solved completely.

Problem 5. Consider applying divide-and-conquer to graphs and let’s say
that merging two recursive solutions take f(s) time, where s is the number of
edges separating the two graphs. For each of the following f(s), and assuming
you are given an edge-separator tree for which all separators for the subgraphs
of size n are 1/2 − 2/3 balanced and bounded by kn1/2, what is the running
time of such an approach.

1. s
2. s log s
3. s2

4. s4

Solution. (Hubert Chan)
Let T (n) be the running time in the case of a graph of size n. The recursive

formula is:

T (n) = T (n
3 ) + T ( 2n

3 ) + f(k
√

n), for n > n0

T (n) = O(1), for n ≤ n0

where n0 is the threshold to stop the recursion.

1. f(s) = s
Assume for all n ≤ n0, we have A > 0 large enough such that:

T (n) ≤ An−Bk
√

(n) for n > n0, where B = 1√
2
3+
√

1
3−1

.
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The inductive step:

T (n) = T (n
3 ) + T ( 2n

3 ) + f(k
√

n)

≤ 1
3An−Bk

√
n
3 + 2n

3 A−Bk
√

2n
3 + k

√
n

= An− k
√

n

( √
2
3+
√

1
3√

2
3+
√

1
3−1

− 1
)

= An−Bk
√

n

2. f(s) = s log(s) (log is base 2)
Using a similar approach, we show:

T (n) ≤ An−B
√

n log n− C
√

n for all n,

for some constants A, B, C.
We first figure out what B and C can be, by looking at the inductive step.

Denote P (n) = An−B
√

n log n− C
√

n. We need to have:

T (n) = T (n
3 ) + T ( 2n

3 ) + k
√

n log (k
√

n)
≤ P (n

3 ) + P ( 2n
3 ) + 1

2k
√

n log n + k (log k)
√

n

So, we need:

P (n
3 ) + P ( 2n

3 ) + 1
2k
√

n log n + k log k
√

n ≤ P (n). (1)

We can easily see that:

(2): P (n
3 ) + P ( 2n

3 ) + 1
2k
√

n log n + k log k
√

n

= An
3 − B

√
n
3 log n

3 − C
√

n
3 + A 2n

3 − B
√

2n
3 log 2n

3 − C
√

2n
3 + 1

2k
√

n log n +
k log k

√
n

= An −
[
B 1√

3

√
n log n−B 1√

3

√
n log 3

]
−

[
B

√
2
3

√
n log n−B

√
2
3

√
n log 3

2

]
−

C
√

n
3 − C

√
2n
3 + 1

2k
√

n log n + k log k
√

n

= An−
√

n log n
[
B 1√

3
+ B

√
2
3 −

1
2k

]
−
√

n
[
−B 1√

3
log 3−B

√
2
3 log 3

2 + C
√

1
3 + C

√
2
3 − k log k

]
It is quite easy to see that the last member of the above equation is lower

or equal to P (n), if we choose:

B = max
{

1, k

2
(
1/
√

3+
√

2/3−1
)}

C = max
{

1,
k log k+B 1√

3
log 3+B

√
2
3 log 3

2

1/
√

3+
√

2/3−1

}
A = max{C + 1, 2}

3. f(s) = s2

Suppose T (n) ≤ k2

H( 1
3 )

n log2 n + An for large enough A, such that the in-

equality holds for n ≤ n0 and H(p) = −p log2 p− (1− p) log2(1− p).
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We write H = H( 1
3 ) for the rest of the solution. Inductive step:

T (n) = T (n
3 ) + T ( 2n

3 ) + k2n

≤ k2

H
n
3 log

(
n
3

)
+ k2

H
2n
3 log

(
2n
3

)
+ k2n + An

3 + 2An
3

= k2

H

(
n
3 log n + 2n

3 log n
)

+ k2

H n
(

1
3 log 1

3 + 2
3 log 2

3

)
+ k2n + An

= k2

H n log n + An

4. f(s) = s4

Again, let A > 0 be large enough, so that for n ≥ n0, we have:

T (n) ≤ 9
4k4n2 + An

Inductive step:

T (n) = T (n
3 ) + T ( 2n

3 ) + k4n2

≤ 9
4k4

(
n
3

)2 + 9
4k4

(
2n
3

)2 + k4n2 + A
(

n
3

)
+ A

(
2n
3

)
= 9

4k4n2 + An.
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