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1 5 -8 5 3 :  Algor i t hms  in t he R eal W or ld 
Lecture 6, S eptember  30, 2002  

 

Graph S eparator s  
Par t I I  

 
L ect ur er :  Prof. Guy B lelloch 

S cr ibe:  Flavio Lerda 
 

1. Separator theorems 
At the end of las t clas s  we introduced the concept of a 
separator  theorem:  a separator  theorem proves  that it is  
pos s ible to obtain a good separator  for  a cer tain clas s  of 
graphs . 
 
A good separator  was  defined as  having a cut of s ize 
smaller  than a fixed cons tant times  a function of the s ize of 
the graph, and such that the s ize of the bigger  of the two 
sub-graphs  generated by the cut is  s maller  than a fixed 
fraction of the s ize of the or iginal graph. 
 
I t is  impor tant to notice that it does  not make sense to 
have a separator  theorem for  a s ingle graph because it is  
always  pos s ible to find a big enough bound such that any 
separator  is  good enough. What we need is  a clas s  of 
graphs  where the s ize of the graphs  can vary with a 
parameter  n. 
 
We defined a clas s  of graphs  so that each sub-graph of a 
graph that belongs  to the clas s  also belongs  to that clas s . 
T his  is  useful for  developing the theory, but for  some 
application this  is  not always  the case:  however , in many 
cases , the results  are s til l applicable in practice. 
 
For  ins tance, if we cons ider  the routing graph of the 
I nternet, it has  a good separator , but there are some sub-
graphs  that are highly connected and they do not have a 
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good separator . T he algor ithms  based on graph separator s  
s til l work well in practice in cases  like this , as  long as  the 
highly connected sub-graphs  are small enough. 
 
We will s tar t refreshing some of the definitions . 
 
Def in i t ion 1 .1 :  A clas s  of graphs  is  a s et S  of graphs  that 
is  closed under  the sub-graph relation. 
 
We can define a ver tex-separator  theorem as  follows :  
 
Def in i t ion 1 .2 :  A clas s  of graphs  S  satis fies  a ( )f n -
ver tex-separator  theorem if there are cons tants  1α <  and 

0β >  such that for  every graph ( ),G V E=  in the clas s  S  

there ex is ts  a cut s et C V⊆  which par titions  the graph G  
in two sub-graphs  A  and B  such that ( )C f Gβ≤ , A Gα≤  

and B Gα≤ . 

 
And analogous ly an edge-separator  theorem:  
 
Def in i t ion 1 .3 :  A clas s  of graphs  S  satis fies  a ( )f n -edge-
separator  theorem if there are cons tants  1α <  and 0β >  
such that for  every graph ( ),G V E=  in the clas s  S  there 

ex is ts  a cut set C E⊆  which par titions  the gr aph G  in two 
sub-graphs  A  and B  such that ( )C f Gβ≤ , A Gα≤  and 

B Gα≤ . 

 
As  we showed in the previous  clas s , every good edge-
separator  can be turned into a good ver tex-separator . 
T herefore if a clas s  of graphs  has  an ( )f n -edge-separator  
theorem, it also has  an ( )f n -ver tex-separator  theorem. 
 
However  the other  way around is  not always  true. For  
ins tance, planar  gr aphs  (as  we wil l see below) have a 

( )f n -ver tex-separator  theorem:  however , if we cons ider  



 Algor ithms  in the Real Wor ld –  Graph S eparator s  I I  

 Page 3 of 14 

the planar  graph with n  ver tices  obtained connecting one 
ver tex to all the other s  (to form a s tar ), it has  a good 
ver tex-separator  (the cut which contains  only the center  of 
the s tar  is  a ver tex-separator ), but it does  not have any 
good edge separator :  in fact, in order  to divide the ver tices  
in half it is  necessary to have a cut that contains  2n  
edges . 
 

Figure 1.1 –  Planar  graph with a good 
ver tex  s eparator  but not a good edge 

separator . 
 
We will show that planar  graphs  satis fy a n -ver tex-
separator  theorem. Also a par ticular  clas s  of d -
dimens ional meshes  satis fies  a ( 1)d dn − -ver tex-separator  of 
which planar  graphs  represent the case 2d = . 
 
T heor em 1 .4 :  Any graph from a clas s  with a 1n ε− -
separator  theorem with 0ε >  has  ( )O n  edges . 
 
T his  means  that if a graph is  from a clas s  that has  a les s  
than l inear  separator  theorem the average degree of the 
graph is  cons tant. 
 
T he proof is  left as  an exercise. 
 

2. Separator Trees 
 
A separator  tree is  the tree induced by recur s ively finding 
separator s  until you are left with s ingle ver tices . T he root 
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of the tree contains  the or iginal graph;  each node of the 
tree is  either  a leaf if the node contains  only a ver tex, or  it 
has  two children:  the children contain the par titions  of the 
graph in the parent node defined by a separator  (either  
edge-  or  ver tex-separator ). 
 

Figure 2.1 – A s eparator  tree. 
 
S ometimes  the ver tices  in the cut are car r ied to both 
children, sometimes  only to one of them, sometimes  to 
neither . 
 
A separator  tree is  ful ly balanced if the two children ar e 
equal s ized (within one ver tex difference). 
 
T heor em 2 .1 :  For  a clas s  of graphs  S  s atis fying an ( , )α β  

1n ε− -edge-separator  theorem, we can generate a per fectly 
balanced separator  tree with separator  s ize ( )C k f Gβ≤ . 

Figure 2.1 – Unbalanced and balanced separator  tree. 
 

G 

B A 
C 
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P r oof :  T he separator  tree obtained by the ( , )α β  1n ε− -edge-
separator  has  a linear  order  ( n ) of leafs , which cor respond 
to the ver tices  of the graph. F ir s t find a path in the 
separator  tree from the root to the middle leaf ( 2n ).  
Cons ider  cutting the tree so that all the nodes  on the left 
of the middle node are on one s ide and the res t are on the 
other  s ide. I t is  pos s ible to separate these two halves  by 
cutting all edges  in the nodes  on the selected path:  the 
maximum number  of edges  cut in the nodes , s tar ting at 
the top, is :  
 1 1 2 1 1 2 1( ) ( ) ... (1 ...)n n n nε ε ε ε εβ β α β α β α α− − − − −+ + + = + + +  
T he term 2 1(1 ...) εα α −+ + +  is  cons tant, as suming that α  and 
ε  are cons tants  and s ince there are at mos t n  levels  in the 
tree. S o we can define:  

 
1

2 1 1
(1 ...)

1
k

ε
εα α

α

−
−  = + + + ≤  + 

 

and we have:  
 1C k n εβ −≤  

and s ince G n=  and 1( )f n n ε−= :  

 ( )C k f Gβ≤  

W 
 
What this  theorem means  is  that if the s ize of the cut is  
sub- linear  to the s ize of the s ize of the graph, given a 
( , )α β  ( )f n - separator  theorem we can conver t it into a 
(1 2, )kβ  ( )f n - separator  theorem with 1k >  (and therefore 
allowing a bigger  cut s ize). 

3. Planar Separator Theorem 
We are going to formulate now a separator  theorem for  
planar  graphs . F ir s t we need to define the clas s  of planar  
graphs  formally. 
 
Def in i t ion 3 .1 :  T he set of planar  graphs  is  the set of 
graphs  that can be embedded in a plane or  in a sphere so 
that no two edges  cros s . 
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I t is  easy to see that this  is  a clas s  of graphs  s ince if a 
graph can be embedded in a plane (or  a sphere) without 
any edges  cros s ing, any sub-graph of this  graph can be 
embedded in the same plane (or  sphere) without any 
edges  cros s ing as  well. T herefore the set of planar  graphs  
is  closed under  the sub-graph relation and forms  a clas s  of 
graphs . 
 
Also note that if a graph is  planar , an embedding in a 
plane (or  in a sphere) can be found in linear  time. 
 
T heor em 3 .2  ( P lanar  S epar at or s  –  L ipt on-T ar jan, 
1 9 7 7 ) :  T he clas s  of planar  graphs  obeys  a (2 3,4)  n -
ver tex-separator  theorem. 
P r oof :  
T he proof of this  theorem is  going to be cons tructive, in 
which we show that there ex is ts  such a separator  by giving 
an algor ithm cons tr ucting it. 
 
T he algor ithm, which is  l inear - time, is  descr ibed in the 
following and a pseudo-code for  it is  given in Figure 3.1. 
 
Fir s t of all we need to find an embedding of the planar  
graph in the plane:  then we per form a breadth fir s t search 
s tar ting from a random ver tex. T he s tar ting ver tex can be 
any ver tex, even if in practice it is  better  to choose a 
per ipheral ver tex, s ince this  improves  the per formance of 
the algor ithm. 
 
I f the number  of levels  that are necessary to vis it the 
whole graph is  les s  than n  (Figure 3.1), then we call a 
sub-procedure called CUT S HALLOW, which gives  a 
separator  which satis fies  the cons traints  – we will descr ibe 
this  procedure later  on. 
 
T his  represents  the case where the graph is  not very deep. 
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I f there are more than n  levels , we wil l look for  the level 
j  in the BFS  which contains  the 2n th ver tex. I f this  level 

contains  les s  than n  ver tices  (Figure 3.2), then the 
ver tices  in the level j  are a separator  for  the graph 
because they split the space in two halves , one before 
level j  and one after :  s ince level j  contains  the 2n  
ver tex, there are at mos t 2 1n −  ver tices  in the levels  
before (and after ) level j . T hese two s ets  wil l be sets  A  
and B  in which the graph is  par titioned whose cardinality 
is  at mos t 2 1n − . T his  would be enough to satis fy the 
bounds  imposed on the s ize of the sub-graphs . 
 

Figure 3.1 – A S hallow graph. 
 
T his  represents  the case where the graph is  not very thick, 
where at each level of the graph there are not many 
ver tices .  
 

Figure 3.2 – A thin graph. 
 
What we s til l have to take care of are those graphs  that 
are too deep to fall in the fir s t case but have some levels  
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around the middle of the graph that contain too many 
ver tices  to be used to par tition the graph (Figure 3.3). 
 
I f there are more than n  ver tices  in level j  we will look 

for  levels  i  and k , such that i j k< < , k i n− < , and there 

are les s  than n  ver tices  in levels  i  and k . 
 

Figure 3.3 – Levels  i ,  j ,  and k. 
 
By a s imple counting argument it is  pos s ible to show that 
such level mus t ex is t. I f there were no such i  and k , then 
for  every value of i  and k  we would have that there are 
more than n  ver tices  in both levels ,  which means  that for  
each level l  such that i l k< <  there are at leas t n  
ver tices  on each level. S ince i  and k  can be at mos t n  
levels  away, there mus t be n  levels  with more than n  
ver tices  in each of them, which means  that there are more 
than n n n=  ver tices  in the graph. But the graph has  
exactly n  ver tices  s o that’s  a contradiction and levels  i  
and k  which satis fy the given proper ties  mus t ex is t. 
 
I f the number  of ver tices  before level i  is  les s  than 3n ,  
then we can use level i  as  a separator  (the same applies  if 
the number  of ver tices  after  level k  is  les s  than 3n ). 
 
Otherwise we can extract the graph between levels  i  and 
k  and subs titute level i  with a s ingle root ver tex:  calling 
CUT S HALLOW on this  graph will return a cut of this  sub-
graph. We can piece together  the two par ts  of the graph 
obtained with CUT S HALLOW with the two par ts  obtained 

j  i k 
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removing levels  i  through j  to form a 2 3 1 3−  par tition of 
the graph, adding the bigger  of the left and r ight 
components  to the bigger  of the two par titions . 
 
Let R  be the number  of ver tices  in the levels  before i ;  let 
S  be the number  of ver tices  in the levels  after  k . T hen the 
number  of nodes  between level i  and k  is  n R S− − :  the 
procedure CUT S HALLOW computes  a par titioning with is  in 
the wor s t-case 1 3 2 3− . I f we as sume, without los s  of 
generality, that R S<  we have that:  

 ( )2
3

A R n R S= + − −  

 ( )1
3

B S n R S= + − −  

s ince we as sumed R S<  and from before 3R n<  and 
3S n< , we have:  

 ( )2 2 2 2 2 2
3 3 3 3 3 3

n R S n R S
A R n R S R

−= + − − = + − − = +  

and:  
 2 0R S− <  
because R S< , so:  

 
2 2 2
3 3 3
n R S n

A
−< + <  

s imilar ly for  B :  

 
1 2

( )
3 3 3 3 3 3

n R S n S R
B S n R S S

−= + − − = + − − = +  

but:  

 
22 2 23

3 3 3 9 3

n
S R S n n− < < = <  

because R S<  and 3S n< , so:  

 
2

3 3 3
n n n

B < + =  

W 
 
SEPARATOR(G) 
  Find an embedding of G in the plane. 
  Perform BFS. 
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  If number of levels < n  Then 
    C = CUTSHALLOW(G). 
    Done. 
  Fi. 
 
  Find level j containing 2n  vertex. 

  If jL n<  Then 

    jC L= . 

    Done. 
  Fi. 
  
  Find i and j such that: 
    i j k< < ; 

    k i n− < ; 

    iL n< ; 

    kL n< . 

  If the number of vertices before 
   level i is greater than 3n  Then 

    iC L= . 

    Done. 
  Fi. 
 
  If the number of vertices after level k 
   is greater than 3n  Then 

    kC L= . 

    Done. 
  Fi. 
 
  Extract the part of the graph between 
   levels i and k. 
  Replace level i with a single root 
   vertex. 
  Call CUTSHALLOW. 
  Add the bigger of the left and right 
   components to the smaller of the two 
   partitions and vice versa. 
 
  Done. 

Figure 3.4 – Lipton-T ar j an algor ithm. 
 
T he subroutine CUT S HALLOW assumes  that the DFS  of the 
graph has  d  levels  and returns  a 2 3 1 3− -ver tex-separator  
of s ize at mos t 2 1d + . 
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Here’s  the intuition behind the CUT S HALLOW procedure:  
let’s  cons ider  the BFS  tree:  this  tree is  embedded in the 
planar  graph, and s ince the graph is  planar , it is  embedded 
in a plane (or  sphere). 
 
We can therefore find a path from the root to one of the 
ver tices  including at mos t one ver tex from each level:  
therefore this  path wil l have at mos t 1d +  ver tices , 
including the root. T aking another  such path we split the 
tree (and the graph) in two and we have a cut of s ize at 
mos t 2 1d + , because they share the root. 
 
I t is  interes ting to notice that a ver s ion of this  theorem for  
s lightly looser  bounds , a logn n -ver tex-separator  
theorem, dates  back to Ungar  in 1951. 

4. Kernighan-Lin Heuristic 
Even if the planar  graph separator  theorem by L ipton and 
T ar jan proposes  an algor ithm to find such a separator , this  
is  not the cur rently mos t used algor ithm for  this  purpose. 
 
Kernighan and Lin proposed a heur is tic to improve a given 
edge separator  bas ed on “hill climbing” which is  mos t used 
in practice. T he initial par titioning can be obtained us ing a 
different algor ithm (for  example the CUT S HALLOW 
presented before), or  by randomly par titioning the graph. 
 
T his  algor ithm was  developed in the context of circuit 
des ign for  solving the problem of routing connection 
between boards :  a sys tem would contain different boards  
that need to be interconnected. I f we can find an edge 
separator  (with a s mall amount of cros s ing edges) we can 
reduce the number  of interconnections  that are necessary 
among the boards . 
 
T his  algor ithm allows  for  weighted edges , which means  
that each edge is  as s igned a weight and the problem we 
want to solve is  to find an edge separator  with a small 
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weight, where the weight of the separator  is  the sum of 
the weight of the edges  that belong to the cut. 
 
T he algor ithm as sumes  we have an initial cut, with two 
equal s ized par titions  A  and B . We want then to swap a 
subset X  of A  with a subset Y  of B , wher e X  and Y  
have the same s ize:  the hope is  that this  switch wil l reduce 
the cut s ize. 
 
Finding the optimal subset would solve the optimal 
separator  program itself, therefore it mus t be NP-hard. 
 
I ns tead, the Kernighan and Lin propos e a heur is tic which 
swaps  a s ingle pair  of ver tices  at a time, swapping that 
pair  that at the time mos t decreases  the cut s ize, or  les s  
increases  it. 
 
T he idea is  to impr ove the cut s ize when poss ible with a 
greedy scheme. When this  is  not imposs ible, ins tead of 
s topping, the algor ithm allows  a swap to increase the cut 
s ize:  this  is  useful when we reached a local minimum, 
s ince it might take us  out of it being able to reach a better  
result later  on. 
 
Here are some definitions  that we will use dur ing the 
explanation of the algor ithm:  
 
 ( , )w u v  the weight of the edge between u  and v . 
 ( , )C A B  the weighted cut between A  and B . 

( )I v  the sum of the weights  of the edges  
incident in v  which s tay within the same 
par tition. 

( )E v  the sum of the weights  of the edges  
incident in v  that go to the other  
par tition. 

( ) ( ) ( )G v E v I v= −  
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the s ingle ver tex gain, the reduction of 
the cut s ize achieved by putting v  on the 
other  s ide. 

( , ) ( ) ( ) 2 ( , )G u v G u G v w u v= + −  
the pair  wise gain, the reduction of the 
cut s ize achieve by swapping u  and v . 

 

Figure 4.1 – I (u)= 1, E(u)= 3, G(u)= 2 
on a graph with unit weights . 

 
Given a graph ( , )G V E=  and a par titioning ( , )A B  of its  
ver tices  in two equal s ize subsets , the Kernighan-Lin 
algor ithm puts  every pair  ( , )u v  where u A∈  and v B∈  in a 
pr ior ity queue Q  based on the pr ior ity ( , )G u v , the pair  wise 
gain. 
 
T hen it repeats  2V  times  the following s teps :  it extract 

from Q  the pair  ( , )u v  with the highes t pr ior ity, removes  
from Q  every pair  involving either  u  or  v ;  updates  the 
pr ior ities  of the neighbor s  of u  and v , updating their  
pos ition in the queue if necessary:  if w  is  a neighbor  of u ,  
its  pr ior ity is  increased by 2 ( , )w u w  if w  is  on the same s ide 
as  u  before changing the par titions , decreases  it by the 
same quantity otherwise;  swaps  the ver tices  u  and v . 
 
At the end, the par tition obtained cor responds  to the 
or iginal one where the subsets  A  and B  have been 
swapped. We select the bes t intermediate cut kC . T his  
requires  to be able to recons truct the bes t cut, either  by 
undoing some of the swaps , redo the sequence of swaps  

 

u u 

A A B B  
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that led to such a cut, or  saving the bes t cut dur ing 
process ing. 
 
We can es timate the running time as  2( )O n  for  each 
iteration of the loop, so the total running time would be 

3( )O n . 
 
Fiduccia-Mattheyses  is  a var iation of Kernighan-Lin where 
we cons ider  individual ver tices  ins tead of pair s . 
 
Fir s t we build two queues  aQ  and bQ  which contain the 
ver tices  in A  and B  respectively, based on the pr ior ity 

( )G u . 
 
T hen at each s tep, that we repeat again 2V  times , we 

select the two ver tices  at the top of the two queues , and 
we swap them. We don’t need to remove any other  
ver tices , but we s ti l l need to update the pr ior ities  for  the 
neighbor s  of the two chosen ver tices . 
 
Again, at the end, we have to select the bes t cut among 
the intermediate ones . 
 
T his  ver s ion of the algor ithm has  a running time that is  

( )O V E+  us ing appropr iate data s tructures :  remember  

that each queue now has  a s ize that is  l inear  in the 
number  of ver tices , while before it was  quadratic. 


