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1. Separator theorems

At the end of last dass we introduced the concept of a
separator theorem: a separator theorem proves that it is
possible to obtain a good separator for a certain daoss of
graphs.

A good separator wos defined os having a cut of size
smadller than a fixed constant fimes a function of the size of
the groph, and such that the size of the bigger of the fwo
sub-graphs generated by the cut is smaller than a fixed
fraction of the size of the original graph.

It is important to notice that it does not moke sense to
have a separator theorem for a single graph because it is
dways possible to find a big enough bound such that any
separaftor is good enough. What we need is a dass of
graphs where the size of the grophs can vary with a
parameter n.

We defined a daoss of grophs so that each sub-graph of a
graph that belongs to the dass dlso belongs to that dass.
This is useful for developing the theory, but for some
application this is not dways the cose: however, in many
coses, the results are still applicable in practice.

For instonce, if we consider the routing groph of the

Internet, it has a good separator, but there are some sub-
graphs that are highly connected and they do not have a
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good separator. The adlgorithms based on graph separators
still work well in practice in coses like this, as long os the
highly connected sub-graphs are small enough.

We will start refreshing some of the definitions.

Definition 1.1: A dass of graphs is aset § of graphs that
is dosed under the sub-graph relation.

We can define a vertex-separator theorem as follows:

Definition 1.2: A dass of graphs § satisfies a f(n)-
vertex-separator theorem if there are constants a <1 and
>0 such that for every groph G=(V,E) in the doss S
there exists a cut set C cV which partitions the graph G
in two sub-graphs A and B such that |C|<Bf(G) . |A|<ea|G]
ond |B|<a|G|.

And analogously an edge-separator theorem:

Definition 1.3: A doss of grophs § satisfies a f(n)-edge-
separator theorem if there are constants a<1 and B>0
such that for every groph G=(V,E) in the doss S there
exists a cut set Cc E which partitions the graph G in two
sub-graphs A and B such that |[C|<Bf(G]). |A|<a|G] ond
|B|<a|Gl.

As we showed in the previous dass, every good edge-
separator can be tfurned intfo a good vertex-separator.
Therefore if a dass of graphs haos on  f(n)-edge-separator

theorem, it dlso has an f(n)-vertex-separator theorem.

However the other way around is not dways true. For
instance, planar graphs (os we will see below) have a
f(n)-vertex-separator theorem: however, if we consider
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the planar graph with n vertices obtadined connecting one
vertex to dl the ofthers (to form a star), it has a good
vertex-separator (the cut which contains only the center of
the star is a vertex-separator), but it does not have any
good edge separator: in fact, in order to divide the vertices
in hadf it is necessary to have a cut that contains n/2

edges.

Figure 1.1 — Planar graph with a good
vertex separator but not a good edge
separator.

We will show that planar grophs satfisfy a Jn -vertex-
separator theorem. Also a porticular dass of d-
dimensiona meshes satisfies a n'“™"“-vertex-separator of
which planar grophs represent the case d =2.

Theorem 1.4: Any goph from a dass with a »'*-
separaftor theorem with € >0 hos O(n) edges.

This means that if a groph is from a dass that has a less
than linear separator theorem the averoge degree of the
graph is constant.

The proof is left as an exerdise.

2. Separator Trees

A separator tree is the tree induced by recursively finding
separaftors until you are left with single vertices. The root
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of the tree contains the original groph; each node of the
free is either aleadf if the node contains only a vertex, or it
has two children: the children contain the partitions of the
graph in the parent node defined by a separator (either
edge- or vertex-separator).

B o,

Figure 2.1 — A separator free,

Sometimes the vertices in the cut are carried to both
children, sometimes only to one of them, sometimes to
neither.

A separator tree is fully balanced if the two children are
equal sized (within one vertex difference).

Theorem 2.1: For a dass of graphs § satfisfying an («, B)

n'*-edge-separator theorem, we can generate a perfectly
balanced separator tree with separator size |C|<kBf(G)).

éé&ééé !

Figure 2.1 - Unbalanced and balanced separator free.
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Proof: The separator tree obtcined by the («, ) »n'*-edge-
separaftor hos alinear order (n) of leafs, which correspond
to the vertices of the graph. First find a path in the
separator free from the root to the midde leaf (n/2).
Consider cutting the tree so that dl the nodes on the left
of the middle node are on one side and the rest are on the
other side. It is possible to separate these two halves by
cutting dll edges in the nodes on the selected path: the
maximum number of edges cut in the nodes, starting af
the top, is:
Bn'™ + B(an) = + B’n) " +...= Bt Q+o+ o’ +..)"F
The term (I+a+a’+..) is constant, assuming that a aond
€ are constants and since there are af most n levels in the
tfree. So we can define:
1-¢&
k=(+o+a’+..)"* S(L}
I+
and we have:
|C|<kpn'*
ond since |G|=n and f(n)=n"":

(cl<kB el
W

What this theorem means is that if the size of the cut is
sub-linear to the size of the size of the graph, given a
(a,B) f(n)-separator theorem we con convert it info a
(1/2,kB) f(n)-separator theorem with k>1 (and therefore
dlowing a bigger cut size).

3. Planar Separator Theorem

We are going to formulate now a separator theorem for
planar graphs. First we need to define the dass of planar
graphs formally.

Definition 3.1: The set of planar graphs is the set of

graphs that can be embedded in a plane or in a sphere so
that no two edges cross.
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It is eosy to see that this is a dass of graphs since if @
graph can be embedded in a plane (or a sphere) without
any edges aossing, ony sub-graph of this graph can be
embedded in the same plane (or sphere) without any
edges caossing os well. Therefore the seft of planar graphs
is dosed under the sub-graph relation and forms a dass of
graphs.

Also note that if a graph is plonar, oan embedding in a
plaone (or in asphere) can be found in linear time.

Theorem 3.2 (Planar Separators - Lipton-Tarjan,
1977): The doss of planar graphs obeys a (2/3,4) n-
vertex-separator theorem.

Proof:

The proof of this theorem is going to be constructive, in
which we show that there exists such a separator by giving
an algorithm constructing it.

The algorithm, which is linear-time, is described in the
following and a pseudo-code for it is given in Figure 3.1.

First of dl we need to find on embedding of the planar
groph in the plane: then we perform a breadth first search
starting from a random vertex. The starting vertex con be
any vertex, even if in practice it is better to choose a
periphera vertex, since this improves the performaonce of
the algorithm.

If the number of levels that are necessary to visit the
whole graph is less than n (Figure 3.1), then we cdll a

sub-procedure called CUTSHALLOW, which gives a
separator which satisfies the constraints — we will desaibe
this procedure Iater on.

This represents the case where the graph is not very deep.
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If there are more thon n levels, we will look for the level
j in the BFS which contains the n/2™ vertex. If this level
contains less than +/n vertices (Figure 3.2), then the
vertices in the level j are a separator for the graph

because they split the space in two hdves, one before
level j ond one doffer: since level j contains the n/2

vertex, there are af most n/2-1 vertices in the levels
before (and after) level j. These two sets will be sets A

and B in which the graph is partitioned whose cardinadlity
is af most n/2-1. This would be enough to satisfy the

bounds imposed on the size of the sub-graphs.

Figure 3.1 - A Shadlow graph.

This represents the cose where the graph is not very thick,
where of each level of the groph there are not many
vertices.

Figure 3.2 — A thin groph.

What we still have to take care of are those graphs that
are too deep to fdl in the first cose but have some levels
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around the middle of the graoph fthat contain foo many
vertices to be used to partition the graph (Figure 3.3).

If there are more than Vn vertices in level j we will ook
for levels i and k, such that i< j<k, k—i<+/n, ond there
are less thon /n vertices in levels i and .

Figure 3.3 — Levels i, j, and k.

By a simple counting argument it is possible to show that
such level must exist. |If there were no such i and k., then
for every vaue of i and k we would have that there are

more than n vertices in both levels, which means that for
each level | such that i<i<k there are at least n
vertices on each level. Since i ond k con be at most Vn
levels away, there must be Jn levels with more thon n
vertices in each of them, which means that there are more
thon nvn=n vertices in the groph. But the graph has

exactly n vertices so that’'s a contradiction and levels i
and k& which satisfy the given properties must exist.

If the number of vertices before level i is less thon /3,

then we can use level i aos aseparator (the same applies if
the number of vertices ofter level k is less than n/3).

Otftherwise we can extract the graph between levels i and
k ond substitute level i with a single root vertex: calling
CUTSHALLOW on this graph will refurn a cut of this sub-
groph. We con piece together the two parts of the groph
obtained with CUTSHALLOW with the two parts obtained
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removing levels i through j to form a 2/3-1/3 partition of

the graph, adding the bigger of the left ond right
components to the bigger of the two partitions.

Let R be the number of vertices in the levels before i; let
S be the number of vertices in the levels ofter k. Then the
number of nodes between level i and k is n—R-S: the
procedure CUTSHALLOW computes a partitioning with is in
the worst-cose 1/3-2/3. If we ossume, without loss of

generdlity, that R<S we have that:
|A|=R+§(n—R—S)
|B|=S+%(n—R—S)

since we ossumed R<S ond from before R<n/3 ond
S <n/3, we have:

|A|:R+3(n—R_s):R+____ +
3 3 3 3 3 3
and:
R-25<0

becouse R< S, SO:

similorly for |B|:

|B|:S+l(n—R—S):S+ﬁ—5—§=ﬁ+2S_R
3 3 3 3 3 3
but:
2]’1
2§-R 25 “3 2n _n
<—<—=—<—
3 3 3 9 3
becouse R<S ond S<n/3, so
Bj< 2 o2
3 3 3

SEPARATOR (G)
Find an embedding of G in the plane.
Perform BFS.
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If number of levels < J; Then
C =CUTSHALLOW (G) .
Done.

Fi.

Find level j containing n/2 vertex.
If |Lj|<\/; Then
C=L,.

Done.
Fi.

Find i and j such that:
i<j<k;
k—i<J;;
L] <n ;
L] < .

If the number of vertices before
level i is greater than n/3 Then
C=L .
Done.
Fi.

If the number of vertices after level k
is greater than n/3 Then
Cc=L .
Done.
Fi.

Extract the part of the graph between
levels i and k.

Replace level 1 with a single root
vertex.

Call CUTSHALLOW.

Add the bigger of the left and right
components to the smaller of the two
partitions and vice versa.

Done.
Figure 3.4 - Lipton-Tarjaon dgorithm.

The subroutine CUTSHALLOW assumes that the DFS of the
groph hos d levels and refurns a 2/3-1/3-vertex-separator

of size aof most 24 +1.
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Here's the intuition behind the CUTSHALLOW procedure:
let’s consider the BFS tree: this tree is embedded in the
planar graph, and since the graph is planar, it is embedded
in aplane (or sphere).

We con therefore find a path from the root to one of the
vertices induding at most one vertex from each level:
therefore this path will have of most d+1 vertices,
induding the root. Taking another such path we split the
free (and the graph) in two and we have a cut of size at
most 2d +1, because they share the root.

It is inferesting fo notice that a version of this theorem for
slightly looser bounds, a +/nlogn-vertex-separator
theorem, dates back to Ungar in 1951.

4. Kernighan-Lin Heuristic

Even if the planar graph separator theorem by Lipton and
Tarjon proposes an algorithm to find such a separator, this
is not the currently most used algorithm for this purpose.

Kernighan ond Lin proposed a heuristic to improve a given
edge separator based on “hill dimbing” which is most used
in practice. The initid partitioning can be obtained using a
different algorithm (for example the CUTSHALLOW
presented before), or by randomly partitioning the graph.

This dgorithm was developed in the context of drcuit
design for solving the problem of routing connection
between boards: a system would contain different boards
that need to be inferconnected. If we con find an edge
separator (with a small amount of aossing edges) we can
reduce the number of intferconnections that are necessary
among the boards.

This algorithm dllows for weighted edges., which means

that each edge is assigned a weight and the problem we
want to solve is to find an edge separator with a small

Page 11 of 14



Algorithms in the Real World - Graph Separators |1

weight, where the weight of the separator is the sum of
the weight of the edges that belong to the cut.

The dgorithm assumes we have on initial cut, with two
equal sized partitions A oand B. We waont then to swap a
subset X of A with a subset ¥ of B, where X ond Y
have the same size: the hope is that this switch will reduce
the cut size.

Finding the optimal subset would solve the optimal
separator program itself, therefore it must be NP-hard.

Instead, the Kernighan aond Lin propose a heuristic which
swops a single pair of vertices at a time, swapping that
pair that at the time most decaeases the cut size, or less
increcses it.

The idea is to improve the cut size when possible with a
greedy scheme. When this is not impossible, insteod of
stopping. the adgorithm allows a swaop to increase the cut
size: this is useful when we reached a locd minimum,
since it might take us out of it being dble to reach a better
result later on.

Here are some definitions that we will use during the
explanation of the algorithm:

w(u,v) the weight of the edge between u and v.

C(A,B) the weighted cut between A and B.

I(v) the sum of the weights of the edges
incddent in v which stay within the some
partition.

E(v) the sum of the weights of the edges
incdent in v fthat go to the other
partition.

G)=EW)—1(v)
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the single vertex gain, the reduction of
the cut size achieved by putting v on the
ofther side.

Gu,v)=Gu)+Gw)»-2w(u,v)
the pair wise gain, the reduction of the
aut size achieve by swopping v and v.

Figure 4.1 - I(wW=1, E(wW=3, S(uW)=2
on a graph with unit weights.

Given a groph G=(V,E) and a poartitioning (A,B) of its
verfices in two equd size subsets, the Kernighan-Lin
agorithm puts every pair (u,v) where ue A ond ve B in A
priority queue Q based on the priority G(u,v), the pair wise
gain.

Then it repeats |V|/2 times the following steps: it extract
from Q the padr (u,v) with the highest priority, removes
from Q every pair involving either u or v; updates the
priorities of the neighbors of « ond v, updating their
position in the queue if necessary: if w is aneighbor of u,
its priority is increased by 2w(u,w) if w is on the same side
as u before changing the partitions, decreases it by the
same quantity otherwise; swaps the vertices u and v.

At the end, the partition obtadined corresponds fto the
origindl one where the subsets A and B have been
swopped. We select the best intermediate cut C,. This

requires to be able to reconstruct the best cut, either by
undoing some of the swaps, redo the sequence of swaps
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that led to such a aut, or saving the best cut during
processing.

We con estimate the running time os o0O@’) for each
iteration of the loop, so the toftd running time would be
omn’).

Fiducda-Mattheyses is a variation of Kernighan-Lin where
we consider individud vertices instead of pairs.

First we build fwo queues Q, ond @, which confain the

vertices in A and B respectively, based on the priority
Gu).

Then at each step, that we repeat ogain [V|/2 times, we

select the two vertices at the top of the two queues, and
we swaop them. We dont need to remove ony other
vertices, but we still need to update the priorities for the
neighbors of the two chosen vertices.

Again, at the end, we have to select the best cut among
the infermediate ones.

This version of the algorithm hos a running time that is
O(V|+|E|) using appropriate data strucfures: remember

that each queue now hos a size that is linear in the
number of vertices, while before it was quadratic.
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