Portcullis: Protecting Connection Setup from
Denial-of-Capability Attacks

Bryan Parno
Carnegie Mellon University

parno@cmu.edu
Adrian Perrig

Carnegie Mellon University
perrig@cmu.edu

ABSTRACT

Systems using capabilities to provide preferential sent se-
lected flows have been proposed as a defense against |lalge-sc
network denial-of-service attacks. While these systeries efrong
protection for established network flows, the Denial-op&aility
(DoC) attack, which prevents new capability-setup packeis
reaching the destination, limits the value of these systems

Portcullis mitigates DoC attacks by allocating scarce bakd-
width for connection establishment packets baseplasrcomputation
fairness. We prove that a legitimate sender can establiapabd-
ity with high probability regardless of an attacker's res@s or
strategy and that no system can improve on our guarantee.
simulate full and partial deployments of Portcullis on atetnet-
scale topology to confirm our theoretical results and dermnates
the substantial benefits of using per-computation fairness

Categories and Subject Descriptors:C.2.0 [Computer-Communication
Networks]: Security and protection

General Terms: Security, Design

Keywords: Network Capability, Per-Computation Fairness

1. INTRODUCTION

In a Distributed Denial-of-Service (DDoS) attack, an adegy,
sometimes controlling tens of thousands of hosts, senffic ti@a
victim to exhaust a limited resource, e.g., network cagamitcom-
putation. The victim of a network DDoS attack can often idfgnt
legitimate traffic flows but lacks the ability to give thesenftopri-
oritized access to the bottleneck link; in contrast, raiteave the
power to prioritize traffic, but cannot effectively identiegitimate
packets without input from the receiver.

Network capabilities enable a receiver to inform routerstof
desire to prioritize particular flows, offering a promisib@oS de-
fense [3,22, 25,31, 32]. To set up a network capability, thece
sends a capability request packet to the destination, aridroon
the path add cryptographic markings to the packet headeenWh
the request packet arrives at the receiver, the accumutzekings
represent the capability. The receiver permits a flow byrnétg
the capability to the sender, who includes the capabilitgubse-
quent packets to receive prioritized service from the nsute

Permission to make digital or hard copies of all or part o§ thiork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

SIGCOMM’07, August 27-31, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-713-1/07/00085..00.

Dan Wendlandt
Carnegie Mellon University

dwendlan@cs.cmu.edu
Bruce Maggs

Carnegie Mellon University
Akamai Technologies

bmm@cs.cmu.edu

Elaine Shi
CarnegieT Mellon University
rshi@cmu.edu

Yih-Chun Hu
University of lllinois at
Urbana-Champaign

yihchun@crhc.uiuc.edu

The Denial-of-Capability Attack and Defenses. Current pro-
posals for capability-based systems treat prioritizefficra.e., pack-
ets with a valid capability) preferentially over non-pitared traf-
fic. However, capability-based systems still suffer fromrii-c
cal weakness: they cannot protect the initial capabilityusst,
because that request is sent unprotected as non-pridritiagfic.
An attacker can flood the capability-setup channel, thusgmte
ing a legitimate sender from establishing a new capahilitytected
channel. This attack, referred to as Denial-of-Capabf{tgC) by
Argyraki and Cheriton [4], is the Achilles heel of currenpedility
proposals. Agryraki and Cheriton show that several thodisn

Wetackers can easily saturate the request channel of a typgoabrk

service, preventing legitimate senders from acquiringbdijbies.

When describing the DoC vulnerability, Argyraki and Cheri-
ton argue that the same mechanism that protects the reduast c
nel could be used to proteatl traffic [4]. We strongly disagree:
since only a single capability request packet is needed ttose
capability-protected communication, a simple and higfificient
network-based defense suffices. As long as the mechanism pro
vides a predictable and non-negligible probability that skender’s
request packet reaches the receiver, it can prevent Do€kattBor
example, if the capability request channel suffers a 50%gidoss
rate, a legitimate sender only needs to send about two saitkeét
up a capability-protected communication channel. Ala$% foss
rate would be far too high for efficient communication usingPt
and thus such a mechanism would not be appropriate for piregec
subsequent packets.

Previously proposed capability-based systems offer feany,
defenses against a DoC attack. Early systems simply trgat ca
bility request packets as best-effort packets [3, 22, 31je most
recent capability architecture, TVA [32], attempts to aski DoC
robustness by tagging each packet with an identifier initigahe
packet’s ingress point to the autonomous system (AS) amcdfétire
queuing packets at each router based on this identifier. tAmwe
our evaluation in Section 6 indicates that this heuristimguffi-
cient to thwart DDoS attacks on Internet-scale topologies.

In this work, we present Portcullfsa system that uses computa-
tional proofs of work (puzzles) to enforce fair sharing af tequest
channel. As a result, Portcullis strictly bounds the delay adver-
sary can impose on a legitimate sender’s capability estainient.
Why Puzzles? While we explore the design space of DoC so-
lutions in Section 2.3, we now provide a high-level explamabf
why puzzles are particularly well-suited for solving the®prob-
lem. We argue that approaches like TVA that attempt to use a
packet identifier to group and prioritize aggregates ofitrafre in-
adequate for networks as large and diverse as the Intermatjéx
reason is that, short of trusting all routers on the Intemetwork

1A portcullis is a grille or gate that restricts entry into ate.

identifiers are likely to be either spoofable or very cougsained.
Additionally, a single network identifier (e.g., IP addresan rep-
resent vastly different numbers of actual users (e.g.shuettind a
NAT), limiting achievable fairness.

Proof-of-work schemes offer a compelling alternativetéasl of
trying to use identifiers in the packet header to providenfess, a
router simply provides fairness proportional to the amafntork
performed by a sender. Such work can be verified and is thus dif
ficult for an attacker to productively spoof. Because onlynagle
packet must reach the destination in order to successfatiys
a capability, proof-of-work schemes are sufficient to previ2oC
despite requiring high-loss rates that might make normial dam-
munication impractical.

Walfish et al. propose a system calkgobak-ughat encourages
legitimate hosts to significantly increase their sendingsauring
application-layer denial-of-service attacks [26], effegly using
bandwidth as “work”. However, the use of bandwidth as a “cur-
rency” is questionable, because the bandwidth availabigpiocal
users may vary by factors of more than 1,500 (dial-up modem vs
LAN connection), potentially placing legitimate users atignifi-
cant disadvantage. Moreover, their results focused oricapiain
layer DDoS attacks and assumed that the network itself was un
congested. In the context of DoC and network-level congesti
a speak-up style approach would inevitably create sigmificega-
tive externalities for the network, because the increasfid from
legitimate users can create new bottlenecks for clientessicg
destinations not under attack.

In contrast, puzzles provide a compelling solution becabse
“work” performed by the end host, hence avoiding additiamat-
work congestion. Also, computational disparities betweasers are
orders of magnitude smaller than disparities in networldadth
(Section 7.1 demonstrates a 38x difference in puzzle caatipat
power between a well-provisioned workstation and a cellngho
Note that previous work [21] claiming that puzzles do not kvor
contains a crucial arithmetic miscalculation, and onlysiders a
simple, fixed-cost puzzle scheme that differs significafityn the
novel, variable proof-of-work scheme used by Portcullee(Sec-
tion 8 for more details).

Contributions. In this paper we propose Portcullis, a system
that enforceper-computatiorfairness for a capability system’s re-
quest channel. Portcullis makes the following contribugio
e We theoretically prove strict bounds on the delay that air arb
trary number of cooperating attackers computing and s@arin
puzzles can inflict on a legitimate client’s capability ets-
ing Portcullis (Section 4). This guarantee holds even if the
legitimate sender possesses no information about curegnt n
work conditions or the adversary’s resources.
e \We theoretically prove that no system can improve on the
bounds provided by Portcullis.
e With Internet-scale simulations, we confirm experimegtall

2. PROBLEM DEFINITION AND GENERAL
COUNTERMEASURES

2.1 Background and Terminology

Capability-based systems divide packets ipt@rity packets
request packetsindbest-effort packet$ Priority packets are pack-
ets that carry a valid capability. Senders use request patkes-
tablish a capability. As the request packet traverses thiere be-
tween the sender and the receiver, it accumulates the nose-
ings that will form the capability. Best-effort packets aent by
legacy hosts that are not capability-aware. Some capabiised
systems also treat packets with invalid capabilities as-&késrt
traffic, while others drop them. Proposed capability systE3n22,
31, 32] typically dedicate a large fraction of router bandhito
priority packets, a small fraction (5-10%) of total bandithitb re-
quest packets (often referred to as tbguest channgl and the rest
(5-10%) to best-effort packets.

2.2 Problem Definition

Capability systems attempt to thwart DDoS attacks by pimri
ing legitimate traffic. However, an attacker can also laum&DoS
attack on the request channel of the capability systemelfaquest
packets of legitimate users do not reach the capabilitytgratinen
the capability system provides little protection agaimst éffects
of the traditional DDoS attack. Thus, providing a secureuesy
channel is essential to the effectiveness of a capabiliiesy.

An effective request channel should guarantee that a sender
cessfully transmits a request packet with only a small nunolfe
retries, even in the presence of a large DDoS attack on theeseq
channel itself. We consider the case in which the adversamy c
trols nm hosts each sending traffic at a rage We also assume the
presence ofly legitimate senders that each send request packets at
a raterg (typically very low), but we make no assumptions about
the relative size ofig versusnm.

We only examine the case in which the request channel is con-
gested, i.e.nm-rm+ng-rg >y, wherey=B-a, B is the capacity
of the bottleneck link, andr is the percentage of bandwidth re-
served for the request channel. Since request packetsicaomta
input from the capability-granting destination to allovstilictions
between desired and undesired requests, the best the ketaror
do is provide an equal level of service to all requesters. theo
words, each requester should receiv#:én— share of the available

request channef, regardless of WhetTwerg that node is an attacker
with a high request rate or a legitimate node with a low retjuss.
However, even with any reasonable fairness guarantedntbee-
quired to establish a setup packet is still necessarily ridgrg on
the total number of usersig+ ng) and the amount of network ca-
pacity available.

that even when tens of thousands of attackers cooperate t02.3 Space of Countermeasures Against DoC

compute and share puzzles, a legitimate client can quickly
overcome the numerical disparity and establish a capgbilit
(Section 6).

e Portcullis’s novel proof-of-work mechanism avoids the- pit
falls of previous puzzle schemes: it does not require rsuter
or servers to individually provide puzzles to the sende275,
28], does not rely on the sender’s IP address [5,27,28] davoi

In this section, we divide the design space of potential tain
measures against DoC attacks into two classes based oityident
and proof-of-work.

2.3.1 Identity-Based Fairness

Identity-based fairness schemes attempt to provide fssrhased
on some packet identifier (e.g., an IP address). These ssheme

ing problems with NATs and IP spoofing), does not require 4re often susceptible to malicious spoofing of the identiffgace
senders to solve a different puzzle for each router along the h5t can greatly magnify attacker power. Identity-baséthéss
path to the destination [28], and does not allow puzzle reuse

at multiple servers nor require extensive CPU and memory at 2gqih Machiraju et al. [22] and Yaar et al. [31] treat requesthets
clients, routers or servers [29]. as best-effort packets.

schemes can also experience problems when significantitispa
exist with respect to the number of users sharing a singlifit.
Per-Source Fairness. A DDoS-defense system could attempt to
share bandwidth equally over all sources of traffic. In otherds,
in a system witmg 4- ny, senders, a legitimate host would achieve
an outbound sending rate cﬁ = min(rg, ngim). Note thatré is
independent of the aggregate attacking raterm.

Unfortunately, at the network level, an adversary can gapibof
its IP address, and sources behind large NATs may be subject t
grossly unfair treatment. Egress filtering can lessen therig of
this attack [13], but without ubiquitous deployment, we mas-
sume that many adversaries can spoof IP addresses withityipun
Per-Path Fairness. For per-path fairness, #= {p1, p2, ..., Pk}
represents the set of paths leading to the bottleneck rantb,,
represents the number of senders using atlthen a legitimate
sender using patlp; should achieve an outbound sending rate of

r’g =min <rg7 ‘TL" N%,) To encode a path, Yaar, Perrig and Song pro-

pose Pi [30], a system in which routers insert path-depengp-
tographic markings into the packet header. However, rayien-

Per-Computation Fairness. As an alternative to per-bandwidth
fairness, we base our notion of fairness on computatiorfattef
With per-computation fairness, the probability of requeatket
delivery is directly proportional to the amount of compidaal ef-
fort expended by a sender. Thus, a legitimate sender sholie\ve

an outbound rate ofy = min(rg7y%), wherecy represents the
sender’s computational effort, a@irepresents the computational
effort expended by other senders using the same link. Ifyever
sender has equal computational power, then per-compuittie
ness is equivalent to per-source fairness, but without tobl@ms

of shared or spoofed identifiers mentioned above. In thewvedd,
computational disparities do exist, but they are not neaslyro-
nounced as the disparities in available bandwidth. As detan
Section 7.1, a well-provisioned PC and a smartphone hayeaonl
38x disparity for computational puzzles. Additionallysearchers
have proposed the use of memory bound functions that can de-
crease computational disparities below 10x [1, 11, 12]al§mby
shifting the playing field from bandwidth to computationys ex-
ternalities exist because the impact of the work is limited single
machine, making per-computation a significantly more netwo

ing based on such path markings breaks when malicious sender friendly approach.

insert bogus initial markings in the path ID field, making fippgar
that such packets have traversed many distinct paths befidvang

at a particular router. This increas®$, hurting legitimate senders,
and creates small values N, for the spoofed paths, helping the
attacker. TVA bases its notion of fairness on path-depenuenk-
ings [32]. However, to avoid spoofing problems, their magkin
depend only on the interface from which a packet entereduhe c
rent AS, and hence operates at a very coarse granularity.
Per-Destination Fairness. Alternately, a router could apportion
request channel bandwidth based on a packet’s destinattess.
While destination addresses cannot be spoofed, an attaeker
“game” this approach by flooding packets to all destinatithrat
share the victim’s bottleneck link. Because legitimatersisend
packets only to a single host, per-destination queuing ctualy
amplify the power of an attacker.

2.3.2 Proof-of-Work Schemes

Proof-of-work schemes require senders to demonstratesthe u
of a limited resource to the network infrastructure, witirfass al-
lotted proportionally to the “cost” of that resource. Thidves the
spoofing/gaming issue (as long as work indicates a real,dmst)
the resources needed for this work may have negative elitersna
Per-Bandwidth Fairness. With per-bandwidth fairness, a sender
with bandwidth capacitk should achieve an outbound sending
rate ofré =min (rg, y%) , Where 7" represents the aggregate band-
width of all senders. To attain per-bandwidth fairness,fislaket al.
propose a system called speak-up [26]. When a host expesemc
increase in incoming traffic, it uses the speak-up systemdowa-
age legitimate senders to significantly increase theirisgnztes.
While their results demonstrate that each endhost will teerive
service proportional to its bandwidth, the analysis is fmzlien-
tirely on protecting end-host resources, not network lirgksd as-
sumes the network is uncongested. Other fundamental pnsble
with using bandwidth as a currency exist. First, requiriogth to
compete on the basis of bandwidth necessarily imposesasladt
negative side-effects on the network as a whole, since Isestd-
ing to destinations other than the victim may experienceestion
because of the increase in traffic from legitimate sendeesoixd,
large disparities can exist in the amount of bandwidth atéél to
legitimate users. A user with a 100Mbps connection has dv@0 1
times more bandwidth than a user connecting at modem raés. T
leads to significant inequalities between legitimate users

3. PORTCULLIS ARCHITECTURE

Portcullis aims to provide a strong defense against lacgées
DDoS attacks: even when under attack, a legitimate sender ca
successfully initiate a connection with the receiver anehicwini-
cate with low packet loss. Portcullis augments a standgrdhibity
mechanism [3,31, 32] with our new puzzle-based protectiocd-
pability request packets. Hence, the goal of the remainfigri®
paper is to design a DoC-resistant request channel for diti&pa
system. This design is based on computational puzzles hwinc
prove can provide optimal fairness for the request charseel Sec-
tion 4). As a result, Portcullis strictly bounds the delayo#extion
of attackers can impose on legitimate clients.

To achieve per-computation fairness we leverage a novel@uz
based mechanism, which enables all routers to easily veuifyle
solutions and uses the existing DNS infrastructure to digsate
trustworthy and verifiably fresh puzzle challenges (Secsid). By
enforcing per-computation fairness in the request chafeetcullis
severely limits the attacker’s flooding rate.

In order to provide per-computation fairness, the Porisplliz-
zle system needs the following properties:

e Authenticity: Any host or router can verify the authenticity
of a puzzle challenge and the correctness of the solution.

e Availability: The puzzle distribution service must be dis-
tributed and highly robust.

e Freshness:A solution to a puzzle must indicatecentcom-
putational effort.

e Efficiency: Routers must be able to quickly verify the cor-
rectness, authenticity, and freshness of a puzzle solution

e Granularity: The puzzles should allow clients to demon-
strate various levels of computational effort.

3.1 Assumptions and Threat Model

We assume space in the request packet header to encode capa-
bilities, puzzles, and puzzle solutions. Because requaskets
represent a tiny fraction of data traffic, puzzle data regmesa
negligible amount of overhead.

In our threat model, we assume endhosts may be compromised
and collude with each other. We also assume that maliciausm®
may assist the DoC attack, though we note that a maliciougirou
on the path between a legitimate sender and receiver carysalwa

Release

<= [n] <=
Compute

Figure 1: Hash Chain. The seed generator repeatedly hashes a
random valuehg to create a series of seed values. The hash-chain
anchor, hy, is signed and released. As time advances, additional
seeds are released in reverse order. An authehijcan be used

to authenticate later seeds by repeatedly hashing thi; value.

If this process produces, then theh; value is authentic.

simply drop packets. We do not assume trust relationshijyedes
routers and receivers, nor among the routers themselvess, Th
each router makes decisions independent of other routers.

3.2 Design Overview
The seed generatois a trusted entity that periodically releases

3.4 Seed Distribution Service

The seed generator provides puzzle seeds to the seed wdistrib
tion service, which makes them available to clients. A dliean-
tacts the seed distribution service to obtain the latest beeThis
seed is used to create puzzles (using the algorithm deddrit&ec-
tion 3.5) for connections made during the nertinutes.

The seed distribution service also allows routers and seride
obtain the hash-chain anchigy needed to verify subsequent seeds.
This yearly operation is the only time that routers need tatact
the seed distribution service. To simplify routers, an |9RId
have one or more non-router hosts contact the seed disbritaer-
vice once a year and participate in an intradomain routingogol.
These hosts verify the authenticity of the signaturéngrand then
use the routing protocol to disseminatgto all of the ISP’s routers.
Because the anchor is small (approximately 80 bits), itatealkily
fit within a special field of a routing update.

In general, puzzle seed distribution could be handled bydisty
tributed and well-provisioned set of servers. While usingria
vately operated content distribution network (CDN) is omebie
approach, the simple nature of the puzzle seed and hashatzot d

seedghat senders can use to create puzzles. Senders obtain seedsiakes the existing DNS infrastructure an attractive choice

from aseed distribution servicavhich need not be trusted. The
puzzle generation algorithris a public function for generating a
puzzle based on the most recent puzzle seed and flow-speeific i
formation. Each puzzle solution is associated withuazle level
The puzzle level represents the expected amount of conmutat
required to find a solution to the puzzle.

When a sender wishes to set up a prioritized flow, it obtaias th
latest seed from the seed distribution service and gerssigiazzle
using the puzzle generation algorithm. The sender then ot@sp
the solution to the puzzle. It includes the puzzle and swfuith the
header of the request packet. The routers verify the autitgraf
the puzzle and the solution, and give priority to requestsgaining
higher-level puzzles.

3.3 Seed Generation

The seed generator periodically releases a new seed foersend
to use in creating puzzles. The seeds are released throegedd
distribution service described in Section 3.4. The seedst ine
unpredictable (i.e., it is computationally infeasible teegs future
seeds based on previous seeds), and efficiently verifiable ¢ne
can easily confirm that a seed is from the seed generator).

Unpredictable and efficiently verifiable seeds can be impleed
as follows. The seed generator randomly picks a nurhpeand
uses a public hash functidd to compute a hash chain of length
n starting athg, i.e., hx,1 = H(hg||K) (see Figure 1). To prevent
attacks against the hash chali,should be a cryptographic hash
function providing pre-image resistance and second pegécol-
lision resistance. The seed generator digitally signs &stichain
anchor (the last value on the hash chdip)and releases the sig-
nature,sIGN(h,). Since hash chains can be of arbitrary length and
yet stored efficiently, hash-chain anchors are releaseedquéntly,
e.g., once ayear.

Seed Distribution Via DNS. In our DNS-based puzzle distribu-
tion design, one or more sets of global top-level domain @)L
servers store a DNS record for both the most recent puzzteasee
well as the signed root hash value. gTLD servers (e.g., Swvers
for the .com domain) are already highly provisioned and lyide
replicated because a successful DoS attack against thesgsse
would make many network services unavailable.

Taking the example of the .com gTLD servers, in additionoo-st
ing all NS records for domains within .com, each server cbalk
records for the special domains puzzleseed.com and aochor.
These records would be of type TXT and would contain texbdad
values of the latest puzzle seed and hash-chain anchor<igith-
ture). Both values are small enough to fit into a single UDR-dat
gram. Use of the text record means local DNS servers requoire n
modifications to query for or cache this data.

Figure 2 illustrates a sample implementation. Once a yhar, t
seed generator run by a trusted party (e.g., ICANN) compates
hash chain and publishes the hash-chain anchor, as weligisaa s
ture on the hash-chain anchor, as a DNS record (see Figue 2(a
Hosts and routers can perform a standard DNS query to retifiéy
record, verify the signature, and store the hash-chainanaiue
for the following year.

Once event minutes, the seed generator inserts a new puzzle
seed into DNS. To obtain the latest sdgda client performs a
standard DNS query, shown in Figure 2(b). Based on the seed,
the client computes a puzzle (as discussed in Section 2bEss
the puzzle, and includes the puzzle seed and solution inaits ¢
pability setup packet. Note that a single sdégdctan be used to
create puzzles for connections to multiple servers (eayvntbad-
ing web content from multiple hosts would only require a &ng
DNS query for the latest puzzle seed), though for each senaer
DDoS attack, the client must generate and solve a diffenezttlp.

Everyt minutes, the seed generator makes a new seed availableRouters receiving the setup packet can verify the authignat h;

in the form of a value from the hash chain in reverse ordet {tha
valueh; 1 is released befork;). Senders obtain the current seed
from the seed distribution service and include it in thepataility
requests. The authenticity of the newly released seed carrbe
fied by hashing it and comparing the result with the seed sela
in the previous time slot. For example, during the first tinot a
sender would include sedg_1 in a packet. Any router can verify
the authenticity oh,_1 by checking thaH (h,_1||n— 1) equals the
hash-chain anchdm,.

usinghy, (or the most recently authenticated seed value, lejdar
i < j <n), and verify the puzzle solution using Equation 1.

If a body like ICANN is in charge of seed generation, it could
easily include the task of puzzle distribution as part ofdbietracts
it already establishes to run gTLD servers for domains Idamn.
Since providers of large and distributed DNS infrastruesusuch
as Akamai often contain records for popular sites with TTEs o
only a few minutes, updating this infrastructure to releageesh
puzzle seed on the order of 2-10 minutes would be quite fieasib

DNS

| S | h,, Signg(h,))
anchor.com anchor.com
h,, Signg(h,) h,, Signg(h,)

(o]

(a) Yearly Setup

DNS

h,
[§J |
puzzleseed%
h;

(C] — helx . AR

(b) Connection Establishment

Figure 2: Puzzle Distribution Via DNS. (a) Once a year, a trusted seed generator (S) publishes thehanvalueh, of a hash chain,
along with a signature orhy,, as a DNS record. By performing a DNS lookup on a well-knownma, clients and routers can obtain this
record. (b) To establish a capability, the client performsather DNS request. The resulting DNS record contains ther@nt puzzle
seedh;. The client creates a puzzle based bnand includes the puzzle solutiorx) it its setup packet. The router first verifies the puzzle
seedh; by repeatedly hashing it to gét,. In most cases, the router will have already seknand hashing will be unnecessary. Finally,

the router uses Equation 1 to verify the puzzle solution.

DNS TTLs allow ISPs to correctly cache the seeds if possible must resort to a brute-force approach by trying random gadiig

and answer client requests with no additional complexityhile/
recent work suggests that approximately 14% of local DN&essr
violate the DNS standard by ignoring TTL values [23], addamy
expiration time to the puzzle seed record allows clientsdtec
stale data and query the gTLD server directly for a freshnieco

Portcullis should not significantly increase the load onBiNS
infrastructure for two reasons. First, we expect legitersgnders
to request puzzle seeds only when contacting a destinatidaru
DoS attack. Second, studies of the behavior of local DNSveso
from a moderately-sized academic institution [18] showt thech
local servers contact root and gTLD servers over,0600 times per
week. In contrast, even if puzzle seeds changes every 5 esinut
and sources in a domain experience constant DDoS attacksefor
entire duration of the week, the puzzle queries would irsgehe
number of gTLD DNS queries from that domain by only0Q0
(e.g., less than.84%).

Additionally, a DoS attack on DNS does not affect Portcullis
unless a simultaneous DoS attack is launched against ayparti
lar destination. An adversary able to deny DNS access tatslie

to find a solution for the chosen level.

We intentionally do not make hash puzzles depend on the sourc
IP address. Including the source address causes probleimssiis
behind NATs or proxies, yet does little to prevent attackesm
sharing puzzles because an attacker can simply spoof itsl-IP a
dress. To limit puzzle sharing, routers drop duplicate frszfwe
discuss how Portcullis is effective despite attackersisbaruzzles
in Section 5.1). Since routers drop duplicate puzzles, exsnare
motivated to choose at random. However, the input to the hash
does include the destination IP address, which preventt@akar
from reusing the same puzzle to attack multiple destinat{anlike
source information, the destination address cannot bdasgpdNe
also include the difficulty level of the puzzle in the hash porta-
tion to prevent an adversary from reusing computation foas h
puzzle as a solution for an easy puzzle. In other words, ifthe
versary attempts to solve a level 7 puzzle, she may discoablev
solutions for puzzles at level 1-6. If we did not inclu@lean at-
tacker could expend the computational effort to find a sofutb
a level 7 puzzle, and receive solutions to lower-level pegZzfor

can already paralyze communication, and systems such as Confree”. Committing to¢ by including it in the hash prevents this.

fiDNS [24] can allow users to quickly and securely circumvat
tacks on local DNS resolvers. Note that a DNS-based implémen
tion does not require secure DNS, nor does it require DNSes&rv
to perform any cryptographic operations or in any other weyi-d
ate from normal operation. The hash-chain anchor is autizat
by the signature accompanying it, and subsequent puzais see
authenticated based on the hash-chain anchor.

3.5 Puzzle Generation Algorithm

When an endhost decides to establish a connection, it asquir
the latest random seds from the seed distribution service. The
sender then chooses a random 64-bit nanaed computes a flow-
specific puzzle as follows:

p=H(X|[r[[hi||dest IR|¢) @
To solve the puzzle at difficulty level, the sender finds a 64-bit
value x such that the last bits of p are all zero. The sender in-
cludesr, h;, ¢, and a puzzle solutior in each request packet. It
need not include, since the router will regenerate it during puzzle
verification. Assuming the publicly-known hash functidns pre-
image resistant and has a good distribution over its rangender

3.6 Puzzle Verification by the Router

Because puzzle seeds are included in each packet and can be ve
ified with the hash-chain, routers only need to update ttasihtver-
ification state when a new hash-chain begins (e.g., yealiyien a
router receives a packet that includes a puzzle solutidimsitver-
ifies the authenticity of the sedwylfor the puzzle. The authenticity
of h; can be verified by computing (h;||i) and comparing it with
the seed released in the last time shgt,). If traffic arrives spo-
radically at a router, the router may need to hhskeveral times
and compare each value with a previous seed seen by the router
to verify its authenticity. However, since each seed isdvédir t
minutes, a new seed need only be verified a single time, aiifi ver
cation can consist of a simple equality check for the remaind
the period.

To verify the puzzle solution, the router computes the saasth
shown in Equation 1, using the noncethe seed;, the sender-
supplied solutiorx, and the destination IP in the request packet.
The router accepts the puzzle solution if the ladtits of p are
zero. With Portcullis, the router only needs to compute glsin
hash to verify the solution to a puzzle.

3.7 Router Scheduling Algorithm

The router’'s request channel scheduling algorithm shoald:
limit reuse of puzzle solutions, and 2) give preference tulses
who have solved higher-level puzzles.

When requests arrive at a router, the associated puzzlesis fir
verified for correctness. To prevent exhaustion attackly, oor-
rect puzzle solutions and their input parameters are ehiate a
Bloom filter [6] configured to detect the reuse of puzzle Sohg
seen in the past peridd Each puzzle is uniquely identified by the
tuple (r,h;,£,dest IB. Sincer is chosen randomly from®2 pos-
sible values, the space of potential puzzles for a givenroggin
address is quite large, and the probability of multiple tiegte
clients using the same puzzle for capability setup withi whn-
dow of eligibility t for hj is negligible.

Bloom filters support a tradeoff between router state and the
probability of incorrectly dropping a unique solution. Jrovide
compact lookups, have no false negatives, and allow falsiiy®
probabilities to be driven to arbitrarily low rates with thee of ad-
ditional memory. To illustrate this, consider a router watB Gbps
link on which 5% of the capacity is allocated to capabilityuests
and a circular buffer oF Bloom filters, where each filter contains
all puzzles seen over a one second period. The router mayeece
80,000 requests/sec, with each of Ehélters being checked to see
if a puzzle is duplicated. Ik different hash functions are used,
insertingn puzzles into a single table of siza bits gives a false
positive probability of approximatelfl — en)k. With an optimak
value, this can be estimated @6185 » . Thus, a filter of 300 KB
can prevent duplicates for one second with a false positigbgs
bility of under ﬁ per packet. A circular buffer configuration Bf
Bloom filters can therefore filter traffic fétf seconds with less than
a(l—(1- %6)':) ~ % false positive probability per packet.

If a request clears the Bloom filter check, the router placiesa
priority queue based on its puzzle level.

3.8 Legitimate Sender Strategy

We now briefly outline the puzzle-solving strategy used bg-a |
gitimate sender. Later in Section 4 we precisely define thigegy
and prove that it will, with high probability, allow the sesrcto es-
tablish a capability, regardless of the attacker's powestategy.
We assume that the legitimate sender has neither knowlddge o
amount of congestion on the path to the DDoS victim, nor knowl
edge of the attacker’s power or strategy (though a sendbrseine
or all of this information can further optimize her stratgssen-
tially, a legitimate sender will compute a solution to thevést-
level puzzle and transmit a request. If the request faiks sénder
solves a puzzle that requires twice the computation of theipus

puzzle and sends a new request packet. The sender contues t

double her computational effort until she succeeds in &stahg
a capability.
3.9 Overhead Analysis

Packet Overhead. We use 64 hits to represent the puzzle solu-
tion x. Hence the highest level puzzle would require approxirgatel

253 hash computations. Contemporary PCs can compute approx-

lishment. Because this overhead need only be incurred areseq
packets and request packets constitute a small fractiomeatiotal
amount of traffic, an extra 27 bytes should be acceptable.

Puzzle Verification Overhead. In analyzing the impact of puz-
zle verification on routers, it is important to note that oalfyaction

of a router’s capacity is devoted to capability setup traffiggest-
ing that puzzle verification need not necessarily operatelldine
speed. Nonetheless, minor hardware improvements woulty eas
allow routers to verify puzzles at line speed. The additidraad-
ware could be incorporated into new generations of routedee
veloped as modules to extend older routers. Within an ASy onl
the border routers need to verify puzzles, setting or ahgaai bit

in the header that internal routers can use to determine uzal@
solution is valid. As we show in Section 6, even if the vicm’
ISP is the only entity to upgrade its routers, the victinl stiteives
substantial benefits.

Commercially available ASIC [15] and FPGA [16] cores for
SHA-1 are capable of performing these hash functions atavel
1Gbps in a small amount of space. For example, the ASIC imple-
mentation of SHA-1 only requires 23,000 gates, whereasiadlyp
ASIC has millions. Similarly, the FPGA implementation tak&77
slices, where a typical FPGA has tens of thousands of sliges.
cause multiple puzzles can be verified in parallel, the usewéral
SHA-1 cores on a single ASIC or low-cost FPGA could handle
line-speed puzzle verification, even for several OC-19Rslinin
fact, the greatest limitation to using a single chip for pezzrifi-
cation is the available bandwidth for bringing data on arfdttoé
chip. In addition, the latency introduced by each verifmativill
be low, since verifying each puzzle involves computing ecfiom
over less than 50 bytes. Hence when the hash function opeatite
1Gbps, verifying a puzzle will introduce well undeps of latency.

Routers could also perform puzzle verifications in softw&iace
a modern PC can performr?® SHA-1 computations per second
(see Section 7.1), a software implementation could sugpmtox-
imately one million request packets per second.

Router Scheduling Overhead. The router scheduling algorithm
used by Portcullis requires several hash computationsédBtoom
filter. These can be computed in parallel, even for a singb>a

and as discussed above, hash computations can be implemente
very efficiently in hardware. Again, we only apply this algom

to request packets, which constitute a small fraction ofiéas to-

tal bandwidth. If every router dedicates 5% of its bandwidttthe
request channel, a software implementation is sufficiestipport

a gigabit link, and a hardware implementation can easilydlean
faster line-rates.

4. THEORETICAL FAIRNESS ANALYSIS

In this section, we prove two main results. First, alloogther-
vice based on per-computation fairness provably guararttes
a legitimate sender can establish a capability with higtbabd-
ity, regardless of an attacker’s resources or strategy Jimrantee
holds even if the legitimate sender has no information abouent
network conditions or the adversary’s resources. Secasljna
ing that routers cannot independently distinguish legiterclients

imately 20 cryptographic hashes per second. Hence we expect from malicious ones, we prove a lower bound indicating that n

that these puzzles will remain computationally difficult f@ars to
come. We use 6 bits to denote the puzzle Iévdlhe 64-bit nonce

is sufficient to distinguish between different sources eating to a
particular destination within a time intervalWe useh; = 80 bits to
represent the puzzle seed. Hence we need approximatelyt@3 by
to encode the puzzle and puzzle solution in the packet he@atir
small overhead can be piggybacked on any other data that begh
included in the request packet, such as for TCP connecti@i-es

system can improve on this guarantee.

4.1 Assumptions and Problem Definition

Assumptions. We assume that routers cannot independently dis-
tinguish packets from legitimate and malicious senders.alldsv
all attackers to collude, jointly compute puzzles, and byogize
their floods, but we assume they have bounded resourcegtthou
the bound on their resources need not be known to the legéima

senders. To simplify the analysis, we assume that all enslhase
the same hardware configuration and hence, equal commahtio
resources. Finally, we consider network latency neglegielative
to the sender’s puzzle computation time.

Problem Definition. We consider a scenario with a single bot-
tleneck router. Request packets from different sourcésgeaat the
bottleneck router, but the remainder of the network hasitefica-
pacity. Thus, a packet can only be queued at the bottlenet&ro

For the purposes of the DoC attack, the adversary contgpls
compromised endhosts. We discretize time into small tiréssl
and assume that a single legitimate sender starts a commsetiup
process at an arbitrary point in time betwe@ro).

We considerZ, a class of router scheduling policies withite
output bandwidthi.e., a router outputs a maximum pfequests in
each time slot. Under router polidy € 2, we defineZR to be a
class of strategies for a legitimate uninformed sender.sEneler is
uninformedin the sense that it is not required to know the real-time
condition of the network or the adversary’s computatiorsglacity
or strategy.

Under router policyR € #, and legitimate sender strate@yc
@R, we define/RC(ny) to be the class of adversary strategies

4.3 Proofs

Given the definition oy, we first prove the following lemma,
which we use in our proof of Theorem 4.1.

LEMMA 4.3. Assume routers adopt the Portcullis scheduling
policy Ry. Let ¢ denote the total amount of computational re-
sources controlled by the adversary £ nnx, where x is the
amount of computational effort a single endhost can exeatsm-
gle unit of time). If the legitimate sender attaches a prdajt/+ o
computation to a request packet (whére- 0 andy is the number
of requests output by the bottleneck router in each timg,dloén
regardless of the adversary’s strategy, the request pasketess-
fully transmits with probability at Iea%.

CoRoOLLARY 1. Ifthe legitimate sender attaches a prooRgi/y
computation (i.e.p = %) to a request packet, the request packet
succeeds with probability at least 1/2.

Before proving Lemma 4.3, we offer some insight into the itesu
Intuitively, to prevent the successful transmission ofgitimate re-

quest in a particular time slot, an adversary needs to selehsit
y requests in the same time slot, each containing a largef pfoo

usingnm compromised machines. Thus, the adversary is aware of computation than the legitimate request. If the adversashes to

the legitimate sender’s strategy, though it does not knownthe
legitimate sender will begin. The adversary’s goal is to iméze
the connection setup time for the legitimate sender.

We definet(R,G,A(nm)) as the expected connection setup time
for a legitimate sender, assuming a router poRey.%, a legitimate
sender’s strateg® € ¥R, and an adversan(m) € «/RC(nm) in
control of n,, compromised machines. The setup time is the time
that elapses from when the sender starts sending requdstpac
until the moment a request packet is successfully receivédea
destination.

Finally, we define the Portcullis router scheduling poliogldhe
Portcullis legitimate sender’s policy.

DEFINITION 1: PORTCULLISROUTERSCHEDULING PoOLICY, Ry
Each request carries an unforgeable proof of the amount of-co
putation performed by the sender. In each time slot, if noemor
than y requests arrive, the router outputs all of them; otherwise,
the router preferentially outputs requests carrying largenounts

of computation and drops any remaining requests.

DEFINITION 2: PORTCULLISLEGITIMATE SENDER PoLICY, Gg
The legitimate sender continues to send request packatsonst
transmits successfully; on thi® mttempt, it attaches a proof of -
2—1 computation, wherg represents the amount of computational
effort an endhost can exert in a single unit of time.

4.2 Main Results

The first result demonstrates that using Portcullis, a secale
always successfully transmit a packet in time bounded bgtheunt
of attacker computation:

THEOREM 4.1. Under the Portcullis router scheduling policy
Ro, a legitimate sender utilizing the Portcullis sending pgl& €
%o to traverse a bottleneck link under attack ymalicious hosts
successfully transmits a request packet img) amount of time in
expectation, regardless of the strategy employed by theraay.

Our second result states that for any scheduling policy,aenyd
sending algorithm, a legitimate sender cannot performebétian
the guarantee provided by Theorem 4.1:

THEOREM 4.2. YRe %, ¥G € ¥R, 3A(nm) € &/RC(ny) such
that the expected time for a legitimate sender to succégsfahs-
mit a request i€ (Nm).

sustain a flood rate of in the long run, she can afford to put no
more thang/y computation into each request. Alternatively, the
adversary can flood at rajein a fractionp of the time and attach
@/(y- p) amount of computation to each request. Lemma 4.3 states
that if the legitimate sender is aware of the adversaryal tmm-
putational resource and the bottleneck bandwidty it benefits
the sender to attach a proof of slightly more thgty computation

to its request. As a result of this strategy, the requestesstally
transmits with non-negligible probability, no matter wisatategy
the adversary uses. Corollary 1 is a special case of Lemmadf4.3
the legitimate sender performg2y computation on a request, the
request gets through with probability at least 1/2.

Proof of Lemma 4.3: Assume the sender puts a request packet on
the wire in thei" time slot, and attaches a proof @fy+ & com-
putation to the request packet. To prevent this request fretting
through, the adversary needs to inject at lgastquests in thé"
time slot, and each request packet should contain at {ggst o
amount of computation. Since the adversary has a total anodun
computational resources if she wishes to flood with at leagtre-

quests, each carrying a proof of at le@gy + & computation, then
she can do so during no more than a fractmn= (p;”ﬂé of the
time. Because the legitimate sender puts a packet on theatvae

random point of time, its probability of success is b; =

_ o
o/y+o°

With Lemma 4.3, it is straightforward to prove our two main re
sults. Note that the Portcullis sending policy does not ireqiine
sender to know the adversary’s strategy, nor the number ef ma
chines employed by the adversary.

Proof of Theorem 4.1: After k = O(lognm) attempts (for some
k), the sender will try a request packet carrying a proof @f 2=
2xnm/y computation. Applying Lemma 4.3 with = ¢/y, this
request has probability at least2L of arriving successfully. To
compute the expected time until a request succeeds, we fmate t
the time spent solving the puzzle for atterkpti is (2¢/y)2'. Fur-
thermore, the probability that attemipt- j fails for any j (which
is relevant only if attemptk throughk + j — 1 also fail) is at most
1/2!. Hence, the probability that attempkghroughk +i — 1 fail
andk+i succeeds is at mosy2 (1), Thus the series for the ex-
pected time converges @(¢/y) = O(XNm/Y). |

Proof of Theorem 4.2: Divide the compromised machines evenly
into T = nyn/2y groups, each of sizey2 Starting at time 0, théh
group is activated during th&' time slot. Each compromised ma-
chine follows the legitimate sender’s algorithm for sejtup a con-
nection. Regardless of whether a compromised machineéstabl
set up a connection, it stops aftetime slots and restarts the legit-
imate sender’s algorithm. Because the bottleneck routeoody

5.2 Attacks by Malicious Routers

Clearly no DoC-prevention scheme can prevent a maliciautgro
from dropping capability request packets forwarded thiotirat
router. As a result, we only consider attacks where a maigcio
router seeks to flood or help malicious endhosts flood theesiqu
channel of a remote network link. For instance, the malicious
router can fail to enforce rate regulation in the requeshobg or

outputy requests per time unit, the expected time for each com- jt can use its own packets to attack the request channel. a/yitir-

promised machine to set up a connection is at leg@y — 7/2 =

tial deployment, the malicious router can potentially cestgthe

nm/4y. Since a router cannot independently distinguish a legiti- request channel of a downstream legacy link. However, as aso
mate request from a malicious request, and a compromised ma-the request packets traverse a legitimate Portcullisiedabuter

chine uses the exact same algorithm as a legitimate serydgmb
metry, a legitimate sender requir@¢nny) time slots to establish a
new capability.

|

5. POTENTIAL ATTACKS

In this section, we analyze other potential attacks anda@xpl
how Portcullis defends against them.

5.1 Attacks by Malicious Endhosts

Sharing Puzzle Solutions. Itis possible for a malicious endhost
to compute a puzzle solution and share it with many otheudoib
nodes. Perhaps counter-intuitively, sharing puzzle smistis not
very effective at increasing attack power, because thelatehas
no more power to congest any single link in the network thaiitiit
before.

Even if all colluding endhosts that share puzzle solutiars t
get a bottleneck link, they cannot break our basic fairnessan-
tee (Section 4), because the Portcullis router on that lis&adds
duplicate puzzle solutions. Hence, no matter how many tiames
adversary sends a puzzle solution on the same link, she mhll o
receive prioritized bandwidth proportional to the amouhtam-
putational effort she performed.

However, the attacker can now use the same puzzle to attack

different linkssimultaneously. Yet this has little effect on our cal-
culated amount of work per-client, which was based solelyhen
combined CPU capacity of all malicious hosts and the capad€it
the bottleneck link on the path between the client and thérdes
tion. Essentially, for any particular client the puzzleashg sce-
nario is no different than if all attacking hosts had compuoa
behalf of a single host that was capable of flooding that tien
bottleneck link to the destination. Since we already inocaje
this case into our analysis, the guarantees provided byt
still hold. However, an adversary with well-positioned tsosapa-
ble of saturating specific links within the core of the netkoray
be able to reuse puzzle solutions over subdivisions of tlzelpu
seed validity windowt to attack different links along a path leading
away from the victim, such that some portion of the path isston
tently congested. With precise timing, this technique maypli#y
the attacker’s power by a constant factor, but this addidipower
diminishes as the attacker targets more links.

Timing Amplification. Sections 4 and 6.2 describe an opti-
mal attacker strategy, assuming the attacker wishes tq ddla
senders equally. However, an attacker can also spend nmoee ti
(than strictly optimal) computing, and hence send requaskets
with higher-level puzzles during short periods of time. Nire-
less, these bursts of packets do not affect the averagedinaaiser
to establish a capability, since the extra computation teages a
window in which the adversary is not sending packets, atlgwi
some legitimate senders to quickly establish capabilitigls very
low-level puzzles.

downstream, the attack traffic is subject to regulation baseper-
computation fairness. Hence Portcullis achieves graqafufor-
mance degradation in the face of such a partial deployméatkat

6. EVALUATION

In this section, we describe the details of our simulatiove
evaluate both simple flooding DoC attacks and Portculliaraw
DoC attacks. We also compare Portcullis with previous &echi
tures, in both full and partial deployments.

6.1 Internet Scale Simulation

We simulate the benefits of the per-computation fairness pro
vided by Portcullis using an Internet-scale simulatione Topol-
ogy for this simulation is derived from CAIDA Skitter probe-r
sults [7], which record router-level topology. The Skitteaip forms
a tree rooted at the trace source (a root DNS server) and spans
to over 174000 networks scattered largely uniformly across the In-
ternet. We use the identical topology, but reverse the timeof
packet flow such that packets from clients (both legitimaig at-
tackers) flow up the branches of the tree to the root, whichuin o
scenario is the victim. We make the conservative assumptian
a single link connects the victim to the rest of the networlultV
ple links would increase the difficulty of a DDoS attack, sirean
attacker would have to flood all of the links to deny servicéeto
gitimate clients. This realistic topology is essential valaate the
performance of TVA [32], which depends on topology to help it
differentiate legitimate traffic from attack traffic.

Since the Skitter map does not include bandwidth measursmen
our simulations employ a simple bandwidth model in which the
senders’ uplinks have one tenth the capacity of the victivatsvork
connection, while the rest of the network links have 10 tirties
of the victim’s network connection. Thus, each host has allsma
link connecting it to a well provisioned core that narrowsvdao
reach the victim. Experiments using a uniform bandwidth etod
produced similar results, though Portcullis performecdnebetter;
space constraints prevent us from including these results.

To make these values concrete, sender’s uplinks have actotal
pacity of 20 Mbps, the victim’s link to the rest of the netwdrks a
total capacity of 200 Mbps, and the core links are 2 Gbps. #ssu
ing each request packet is approximately 1000 bits, and la@ch
reserves 5% of its capacity for request traffic, an attacaerflood
its uplink’s request capacity by sending requests at 1 Mbps.

In our experiments, we measure the time each of 1,000 legiti-
mate clients requires to establish a capability. We varyntimaber
of attackers from 1,000 up to 20,000 (thus allowing the &testo
significantly outnumber the legitimate senders). For thadean,
TVA, speak-up, and Portcullis-Flooder scenarios, atteckend re-
quests at the full request capacity of their uplink. Bothtletate
clients and attackers are placed randomly in destinatibmarks.

3Flooding a link controlled by the router itself is esseryiahe
same as dropping packets; hence it is out of the scope ofdpirp

=

2.5 Mbps
- ——- 5.0 Mbps
— —— 7.5 Mbps
——— 10 Mbps

20 Mbps
-—--—= 30 Mbps
——— Flooding

P

5

N

.-
Le—-
-
fe—-

O 5000 10000 15000
Number of Attackers

Avg Time [s] to Establish a Capability
(@)

Figure 3: Portcullis Attacker Strategies. The ideal strategy is
indicated by the top line, representing an attacker who sgsrall

of her CPU resources to create just enough packets to saterrat
the victim’s 10 Mbps link to the network. The Flooding attaek
represents a traditional attacker who simply floods the netiw
with legacy packets. Both the Flooding attacker and the atta
that fail to fill the victim’s link (i.e., collectively sendig requests
at 2.5, 5.0 or 7.5 Mbps), have virtually no effect on capabili
establishment time, even for large numbers of attackers.

The exact strategies used by both attackers and clientaeeslv
in the course of the experiments, and are explained in degail
low. For experiments involving puzzle computation, we assall
client machines have equal computational resources. Thelgu
difficulty levels are adjusted such that solving a puzzleel/ re-
quires the sender to spend-26~1 milliseconds computing. When
testing Portcullis, legitimate senders employ the Poalitcsénding
policy from Section 4.1. In other words, a legitimate send#r
compute for 10 ms, and send a request at puzzle level 1. Iféhat
quest fails, the sender will compute for 20 ms and send a stgtie
level 2, etc., until she receives a capability. In all expenits, we
delay the time at which legitimate senders begin sendingestg
until after the traffic from the attackers reaches a stealg-sThus,
legitimate senders face the full brunt of the DoC attack.

6.2 Portcullis Attacker Strategies

The optimal attacker strategy in network DDoS attacks tdday
simply to target bottleneck links near the victim with as jmpack-
ets as possible in order to decrease the probability of &resfie
packet finding space in a router’'s queue. However, with Rbisc
the choice of attacker strategies is more subtle, as thekattanust
decide whether it is better to send many low priority packets
fewer packets each with higher priority.

requests. To send more than 10 Mbps, an attacker must degste |
CPU power to each puzzle, lowering the computational tholesh
for legitimate senders. Sending requests with higher pueziels
means that the attacker does not have the CPU resourcesratsat
the link. Thus, legitimate packets reach the victim evenmiey
are of lower priority than attack traffic.

This graph powerfully demonstrates results presentedytnal
cally earlier in the paper: even when attackers cooperateno
pute puzzles, a legitimate client can quickly increaseeatll of
puzzle difficultly until the collective CPU power of the adsary
is insufficient to keep the link saturated with equally difficouz-
zles. Wait times are approximately 8 seconds, even witQD
attackers using an optimal strategy.

6.3 Comparative Simulations

Our second set of simulations compare Portcullis, TVA [32],
speak-up [26], and a simple random-drop “legacy” forwagdinoheme
on the same Internet-scale topology. For the Portcullisigitions,
we show both an attacker who employs the optimal puzzleirsplv
strategy discussed above, as well as an attacker that sfloptis
packets without solving puzzles.

With TVA, each router performs queuing based on the ingress
point of the packet into the current AS. Because the Skittpsn
do not include AS information, we use the Team Cymru “IP to
ASN” service [9], which creates mappings based on a divezse s
of BGP feeds. For the less than 2% of router IPs that did not suc
cessfully map to an AS, we consider that router to be a member
of the most recent known AS in the path. These mappings result
in an average AS-path length of approximately 4.1, whichniy o
slightly less than the average length of 4.5 determined byipus
measurement work [2]. Since TVA does not specify a value for
source retransmission rates of request packets, we usélg higy
gressive retransmission rate of one packet/10ms for T\é@tdi. In
practice, such a high rate for legitimate senders may caursges-
tion for traffic to alternate destinations, but in this siatidn the
higher transmission rate is strictly better for TVA.

For speak-up, both legitimate and malicious senders sattimair
uplinks with request packets. In the randomized droppiagaty
router) scheme, each router simply chooses packets rapdiam
its incoming queue until its outgoing queue reaches capabidp-
ping all remaining packets.

Figure 4 compares the speed with whicldO legitimate clients
acquire a capability when using various defense mechanistres
graphs represent different numbers of attackei@qQ@ and 20000),
which are representative of our results for different nuralue at-
tackers in between. Note that the x-axis uses a logarithogiles

The two lowest lines represent TVA and the randomized-drop
router strategy. With both strategies, many clients faad¢quire a
capability within the simulation period of 100 seconds wifezed
with 20,000 attackers. A full Internet topology greatly reduces
the benefits of TVA, because with each AS hop, legitimatditraf
“mixes” and becomes indistinguishable from attack traffithwe-

We assume that attackers can pool their CPU resources to col-spect to TVA's priority mechanism. In fact, if each AS hasgress

lectively solve puzzles in order to maximize the power ofrtlag-
tack. As we discussed in Section 5, sharing puzzle solutioes
not significantly impact legitimate senders, so our simofaas-
sumes that all puzzle solutions are unique. As our analygsalts
demonstrate, the ideal attacker strategy is to send the$tigiri-
ority puzzles possible while still saturating the victinbsttleneck
link(s). Figure 3 illustrates this, where the ideal strgtégp line)
is for the attackers to collectively send requests at 10 Mthyesre-
quest capacity of the victim’s network link) and devote tipeioled
CPU resources to computing the hardest puzzles possibiledse

points, and there ard AS hops, the likelihood of a packet suc-
cessfully reaching the destination scales with the invefsé —1
when the number of attackers is large. That is, loss ratds T\
are heavily topology-dependent because they are expahamtihe
number of AS-hops contained in the network path. On realisti
topologies, this mixing of traffic results in performancattts sim-
ilar to the randomized best-effort transmission of reqpeskets.
The original analysis of TVA [32] did not show this effect beise
their simple topology contained only a single hop beforebibitle-
neck link, meaning that no mixing of good and bad traffic ooedr

100~ Pt Gans T T
o s
() t / o i
e 1 /-’
K] 80- I K _
o ! R
S [II R ,I.)
W 60- .
E [/I ."..’I 1
5 40- | . :
S !]==="-Portcullis - Flooder
) T -~|—— Portcullis - Puzzle Solver
O 20k ! o Speak-up
X / SN CEERE Random
¥ ' - -- TVA
Ok [l Ll il L
0.1 1 10 100
Time (s)

=
o

L T T T T T

to) 1
g r " —-_———- Portcu”is - Floocfer | 1
Portcullis - Puzzle Solver

2 80+ I Speak-up B

Q Fhoonn Random

o) r I—.—= TvA 1

7] ! .

w 60- !]

é‘ = I/ ot ~’—

a Lo . -"-',"J |

© 40 I Rt

o Lo _"-“f’ 4

© ! e

O 20k 1 s _

< 1 3 20

S|y T 1
le T Ll L

0.1 1_ 10 100
Time (s)

Figure 4: Capability Setup Time. Cumulative distribution functions of the time required foa legitimate sender to acquire a capability

when faced withl,000 attackers (left) and20,000 attackers (right).
discussed in Section 6.2. Note that the x-axis uses a lodpaic scale.

Speak-up hosts gradually establish capabilities, butrafgignt
portion (20%) take half a minute or more to succeed. Spe&k-up
performance declines as the number of attackers incresises,
the attackers have more bandwidth relative to the legigreanders.

The Portcullis-Flooder line in Figure 4 demonstrates ttoatdllis
provides clear benefits if the attacker naively uses the Skoe-
ing strategy used against TVA. But what happens when thekatta
is smart and harnesses all of its computational power to atenp
puzzles using an optimal strategy?

As we see in Figure 4, Portcullis guarantees legitimatentdie
the ability to achieve fairness regardless of topologyneifehe
attacker uses the ideal puzzle computation strategy. ltrasn
TVA cannot offer a legitimate client real fairness once rtsfic
mixes with the higher-rate attack traffic. Portcullis’s feemance
illustrates the benefits of a scheme that is orthogonal tolbgyy.

The threshold-style shape of the line for the puzzle-sghat
tacker scenario illustrates the puzzle scheme’s operati@yiti-
mate senders start with low-level puzzles that cannot ctenpith
the attacker’s high-level puzzles. However, legitimatedsgs con-
tinue to increase their puzzle levels until they receive abdity.
When legitimate senders reach the puzzle level employedéy t
attacker, some portion of their packets are randomly sedeahd
reach the victim, creating the first jump in the percentageap@-
bilities established. If a legitimate sender’s packet doasmake
it through, the sender must spend time computing a new patzle
a higher puzzle level. The higher puzzle level of this nextkea
guarantees that it receives priority over the attackerske@s, and
hence the rest of the legitimate senders can establish itiipab
Thus, the distance between the two “surges” representdrttee t
spent computing the higher-level puzzle.

6.4 Partial Deployment

While the previous experiments assume a complete depldymen
scenario, we also run simulations to evaluate the effentiss of
Portcullis in partial deployment. We focus on the perforoefor
an early adopter, so in our simulations, only the victim'® I$p-
grades its routers. We define the victim's ISP to encompass th
victim’s link to the network, plus the next three hops on gd#ad-
ing out from the victim. The remaining routers simply randpm
choose among incoming packets.

10

The Portcullis Puzzle Solver attackeses the optimal strategy

100 S S—
] — — — = Portcullis - Flooder
(O] F Portcullis - Puzzle Solver 9
ey Speak-up = —
L2 80H - Random JEEE |
= —.—— TVA r
p—
© 3 _’ 1
w 60r K P
g
2 / R
= / e
Q 40+ o |
[0 ! .
o L] "' 1
© 1 r'“"
O 20 ¢ | .
o L
> H II e 1
/ A
O PSR R | L

01 _ 10 10
Time (s)

Figure 5: Partial Deployment. Time to establish a capability
versus 20,000 attackers when only the victim’s ISP upgradtss
routers. Again, the x-axis employs a logarithmic scale.

Figure 5 summarizes our results for 20,000 attackers (the re
sults look similar for 1,000 attackers). The speak-up and-Ra
dom results remain the same as in Figure 4, since neitherfene a
fects the forwarding algorithm. TVA performs slightly wetssince
fewer attack packets are filtered early in the network; h@rev
even with full deployment, TVA has difficulty distinguislgnat-
tack packets, so partial deployment has a relatively snftdte
Portcullis’s results versus the puzzle-solving attackerains unaf-
fected, since the puzzle-solving attacker does not gemeraiugh
packets to congest the core of the network (where the legatgns
reside); congestion only occurs near the victim, where ¢igétit
mate senders’ increasing puzzle levels quickly break ginou

Against the flooding attacker, Portcullis performs somewlase
than before, since about 15% of legitimate senders do netvec
a capability. However, the vast majority of legitimate sersdthat
do receive a capability do so extremely quickly (note theatdh-
mic x-axis). Senders fail to receive a capability when thef-
fic is swamped by attack traffic early in the core of the network

SHA-1 Normalized
Platform ‘ hashes/minutel to Nokia 6620
Nokia 6620 25K 1.00x
Nokia N70 36 K 1.44x
Sharp Zaurus PD 56 K 2.24x
Xeon 3.20GHz 956 K 38.24x

Table 1: Computational Capabilities. This table summarize

the rate at which various platforms can perform the SHA-1

hashes needed to solve and verify puzzles (averaged over fi0 t
als, with negligible deviations).

at a legacy router, before reaching the victim's ISP. Nogleds,

this experiment demonstrates that even if a single ISP dpgrto

use Portcullis, more than 85% of legitimate senders will ble a
to quickly establish a capability in the face of a DDoS attagk
20,000 attackers.

7. DISCUSSION

7.1 Asymmetric Computational Power
Computational puzzles give an advantage to endhosts vetérfa

fected. Second, if the link's request capacity is entiralgsumed
by packets with high-level puzzles, then bystander sencherst
send high-level puzzles as well, since the link is effetyivender

a DDoS attack, even though it has not necessarily been syadlgifi
targeted. Finally, the link's request capacity may be estediby

a mixture of high-level and bystander packets. As a reshé, t
bystander packets essentially compete for the capacitycommt
sumed by the high-level packets. The bystander packetsotes s
puzzles to improve their odds against other bystander pschet
the puzzle-level need not be the same as the high-level gaizzI
While the bystander packets are competing for less tharirkis |
full request capacity, the senders of the high-level puzatgually
use less bandwidth than they otherwise would, since the stemp
tational time required to solve high-level puzzles fordesn to
send at a much lower rate than they could at lower puzzledevel
Thus, Portcullis only cause limited, “local” increases uzple lev-
els which will not cascade across the network.

8. RELATED WORK

Below, we review related work not already discussed, fowsi
particularly on the areas of capability-based systems angbatation-
based systems for DoS defense.

Capability-Based Systems. Early capability systems require

CPUs. Because the typical life-time of a PC is 3 to 5 years, and significant state within the network, as well as trust relahips

according to Moore’s Law, computing power available for a&dix

(i.e., secure keys) between infrastructure nodes and st=lffi®,

cost doubles every 18 months, the oldest endhosts would -be ex 20]. Later schemes provide improved efficiency but do notuief

pected to be at most 4 to 10 times slower than the newest etisdhos

against request channel flooding. For example, Machirajal.et

To take an extreme case, our experiments show that a desktop P propose a secure Quality-of-Service (QoS) architectu2g [Phey

with a Hyper-Threaded Intel Xeon 3.20GHz processor and 3GB o

use lightweight certificates to enable routers to desighated-

RAM has an approximately 38x computational advantage over a width reservations, and they propose a stateless recursive-

Nokia 6620 cellphone. On the cellphone, we used an unoptiz
C++ implementation of SHA-1 based directly on the FIPS dpeci
cation [19]. We also employed the same code on a slightly newe

toring algorithm for routers to throttle flows that attempetxceed
their allotted bandwidth. Yaar et al. propose SIFF, a cdipgbi
based system that allows a receiver to enforce flow-basedsadm

phone, the Nokia N70, as well as on the Sharp Zaurus, a PDA thatsion control but makes no effort to defend against DoC ast{@X].

uses an Intel PXA255 CPU operating at 400MHz. On the PC, we Computation-Based Systems.

used the OpenSSL implementation of SHA-1.

Table 1 summarizes our results. The Nokia 6620 performs ap-

proximately 25K hashes/second on average, while the PGrpesf
approximately 956K hashes/second, indicating a dispafignly
38x (with even smaller disparities for the newer N70 and thAR
as opposed to the 1,500x disparity for per-bandwidth fasne

Several researchers have pro-
posed computational puzzles for DDoS defense; howevere non
of these schemes defend against network flooding attackerkDw
et al. propose puzzles to discourage spammers from sendiikg |
email [12]. Juels et al. use puzzles to prevent SYN floodirg.[1
Aura et al. [5], Dean and Stubblefield [10], and Wang and Re-
iter [27] propose puzzles to defend against DoS attacks plicagion-

To help mask differences in CPU speed, researchers have studlevel client authentication mechanisms. These systemsreethe

ied memory-bound functions [1, 11, 12]. Because memorysacce
latencies exhibit smaller variations across classes atdgsyon the
order of 5-10x), using memory bound puzzles is an intergstipic
for our future research.

Alternately, providers of mobile Internet services mayeotheir
clients access to a proxy that computes a rate-limited nurobe
puzzles on behalf of each client. Such an arrangement may als
address power concerns for mobile devices. However, sire@s
only employ Portcullis when the site they wish to contactaavily
congested, we expect puzzle solving to be sufficiently qient
that it should not significantly impact battery life.

7.2 Puzzle Inflation

When senders (legitimate or malicious) send high-levekjasz
to a destination under attack, their packets will shareslinkth
“innocent bystander” packets intended for other destmati \We
show that these high-level puzzle solutions will not “indfathe
puzzle level required of the bystander packets.

We can analyze the situation by considering three possiie ¢
ditions for the link in question. First, if the link's requespacity is
not exhausted, then the bystander packets will be completelf-

11

server under attack to provide and verify the puzzle andtisolu
and are generally inappropriate for attacks that requimeirvork
prioritization. Gligor [14] analyzes the wait-time guatees that
different puzzle and client-challenge techniques pravidieargues
that application-level mechanisms are necessary to preeevice-
level flooding and proposes a scheme that provides perseque
maximum-waiting-time guarantees for clients under theumgs
tion that lower-layer, anti-flooding countermeasurestexis

The approach of Waters et al. [29] comes closest to the proof-
of-work mechanism used by Portcullis. They utilize a disition
mechanism for puzzle challenges based on a trusted anchlizedr
bastion host. Unfortunately, this approach allows attexke re-
use puzzle solutions for multiple destinations. In additio verify
puzzle solutions, the verifier must generate a large lookbfetby
performing many public-key operations, which would impese
excessive burden on routers since puzzle seeds changeritsqu

Adopting an economic approach in “Proof of Work’ Proves Not
to Work”, Laurie and Clayton analyze the effectiveness ahais
computational puzzles to fight spam [21]. However, Wobber di
covered an arithmetic error in a profit margin calculatioat thn-
dermines one of the key results [8]. Thus, the correct camiuof

their argument is that computational puzzles are a viallgiea
at current spam response rates. Also, their arguments onkider
a simple fixed-rate payment system that differs signifigafitim
the proof-of-work scheme used by Portcullis.

9. CONCLUSION

The Denial-of-Capability (DoC) attack is a serious impeglirn
for capability-based DDoS defense mechanisms. Portaitiistly
bounds the amount of delay a collection of attacking nodes ca
create for any client. With realistic Internet-scale siatidns, we
show the strong fairness Portcullis's computational pegziro-
vide. Portcullis introduces a powerful mechanism for pdawj
DDoS resistance, but that benefit requires additional cexityl
Only time will tell if the Internet will need the strict avaibility
guarantees originally proposed by past capability schemésow
made robust against DoC by Portcullis. In the mean time, we be
lieve Portcullis provides an important design point to mfiothe
debate on highly available network architectures.

Acknowledgements

The authors would like to thank Jonathan McCune for his teethn
assistance, Diana Parno for her extensive editorial dmritans,
and David Maltz and our anonymous reviewers for their helpfu
comments and suggestions.

This research was supported in part by CyLab at Carnegie Mel-
lon under grant DAAD19-02-1-0389 from the Army Research Of-
fice, and grants CNF-0433540 and CNF-0435382 from the Na-
tional Science Foundation. Bryan Parno is supported intpaan
NDSEG Fellowship, which is sponsored by the Department of De
fense. The views and conclusions contained here are thdase of
authors and should not be interpreted as necessarily esyiileg
the official policies or endorsements, either express otigdpof
ARO, CMU, NSF, or the U.S. Government or any of its agencies.

10. REFERENCES
[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.

Moderately hard, memory-bound functions.Rroceedings

of ISOC NDSSFebruary 2003.

Lisa Amini and Henning Schulzrinne. Issues with infagi

Internet topological attributes. Broceedings of the Internet

Statistics and Metrics Analysis Worksh@pctober 2004.

[3] Tom Anderson, Timothy Roscoe, and David Wetherall.

Preventing Internet denial-of-service with capabilitikes

Proceedings of Hotnets;INovember 2003.

Katerina Argyraki and David Cheriton. Network capatids:

The good, the bad and the ugly.Pmoceedings of Workshop

on Hot Topics in Networks (HotNets-IMyovember 2005.

[5] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant
authentication with client puzzles. Proceedings of Security
Protocols Workshop2001.

[6] A.Broder and M. Mitzenmacher. Network applications of
Bloom filters: A surveyJournal of Internet Mathematics
1(4), 2005.

[7] CAIDA. Skitter. http:
//www.caida.org/tools/measurement/skitter/.

[8] Richard Claytonhttp://www.cl.cam.ac.uk/~rncl/
Accessed May, 2007.

[9] Team Cymru. The team cymru ip to asn lookup page.
http://www.cymru.com/BGP/asnlookup.html.

[10] Drew Dean and Adam Stubblefield. Using client puzzles to
protect TLS. InProceedings of USENIX Security
Symposium2001.

[11] C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. IRroceedings of CRYPTO
2003.

(2]

[4]

12

[12] C. Dwork and M. Naor. Pricing via processing or combyaiti
junk mail. InProceedings of CRYPTQ@993.

[13] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP source
address spoofing. RFC 2267, January 1998.

[14] V. Gligor. Guaranteeing access in spite of serviceding

attacks. InProceedings of the Security Protocols Workshop

April 2003.

Helion Technology Limited. Fast SHA-1 hash core for &SI

Cambridge, England. Available at

http://www.heliontech.com/downloads/

shal_asic_fast_helioncore.pdf. November 2005.

Helion Technology Limited. Fast SHA-1 hash core for

Xilinx FPGA. Cambridge, England. Available at

http://www.heliontech.com/downloads/

shal xilinx fast helioncore.pdf. November 2005.

A. Juels and J. Brainard. Client puzzles: A cryptogiaph

countermeasure against connection depletion attacks. In

Proceedings of ISOC NDS$999.

Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert

Morris. DNS performance and the effectiveness of caching.

Transactions on Networkind.0(5), 2002.

[19] National Institute of Standards and Technology (NIST)
Computer Systems Laboratory. Secure hash standard. 180-1,
April 1995.

[20] K. Lakshminarayanan, D. Adkins, A. Perrig, and |. Stoic
Taming IP Packet Flooding Attacks. KCM HotNets-1)
November 2003.

[21] Ben Laurie and Richard Clayton. “Proof-of-work” pre/eot
to work. InProceedings of WE|3ay 2004.

[22] S. Machiraju, M. Seshadri, and I. Stoica. A scalable and

robust solution for bandwidth allocation. International

Workshop on QoMay 2002.

Jeffrey Pang, James Hendricks, Aditya Akella, Bruceglyg

Roberto De Prisco, and Srinivasan Seshan. Availability,

usage, and deployment characteristics of the domain name

system. InProceedings of the Internet Measurement

ConferenceOctober 2004.

Lindsey Poole and Vivek S. Pai. ConfiDNS: Leveraging

scale and history to improve DNS security.Rroceedings of

USENIX WORLDSNovember 2006.

Elaine Shi, Bryan Parno, Adrian Perrig, Yih-Chun Hudan

Bruce Maggs. FANFARE for the common flow. Technical

Report CMU-CS-05-148, Carnegie Mellon, February 2005.

Michael Walfish, Mythili Vutukuru, Hari Balakrishnan,

David Karger, and Scott Shenker. DDoS defense by offense.

In Proceedings of ACM SIGCOMNbeptember 2006.

X. Wang and M. Reiter. Defending against denial-ofvier

attacks with puzzle auctions. Proceedings of IEEE

Symposium on Security and Privadjay 2003.

[28] X.Wang and M. Reiter. Mitigating bandwidth-exhaustio
attacks using congestion puzzlesA@M CCS October
2004.

[29] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W
Felten. New client puzzle outsourcing techniques for DoS
resistance. IfProceedings of ACM CC8lovember 2004.

[30] A. Yaar, A. Perrig, and D. Song. Pi: A path identification
mechanism to defend against DDoS attack$?foceedings
of IEEE Symposium on Security and Privakjay 2003.

[31] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Inegrn
flow filter to mitigate DDoS flooding attacks. Proceedings
of IEEE Symposium on Security and Privalkjay 2004.

[32] X.Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. IRroceedings of ACM SIGCOMM
August 2005.

[15]

[16]

[17]

[18]

(23]

[24]

[25]

[26]

[27]

