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ABSTRACT
The Domain Name System (DNS) is a critical part of the Internet’s
infrastructure, and is one of the few examples of a robust, highly-
scalable, and operational distributed system. Although a few stud-
ies have been devoted to characterizing its properties, such as its
workload and the stability of the top-level servers, many key com-
ponents of DNS have not yet been examined. Based on large-scale
measurements taken from servers in a large content distribution net-
work, we present a detailed study of key characteristics of the DNS
infrastructure, such as load distribution, availability, and deploy-
ment patterns of DNS servers. Our analysis includes both local
DNS servers and servers in the authoritative hierarchy. We find
that (1) the vast majority of users use a small fraction of deployed
name servers, (2) the availability of most name servers is high, and
(3) there exists a larger degree of diversity in local DNS server de-
ployment and usage than for authoritative servers. Furthermore,
we use our DNS measurements to draw conclusions about feder-
ated infrastructures in general. We evaluate and discuss the impact
of federated deployment models on future systems, such as Dis-
tributed Hash Tables.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems
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1. INTRODUCTION
The Domain Name System (DNS) is an important part of the

Internet’s infrastructure and has grown to be one of the largest dis-
tributed systems in existence. DNS is also fairly complex, consist-
ing of many different components ranging from the root and top-
level nameservers to authoritative servers, local name servers, and
client resolvers. Despite its complexity and importance to the func-
tionality of nearly all network applications today, in-depth stud-
ies of its characteristics have only been carried out in the past few
years. However, no attempt has yet been made to characterize the
properties of the DNS infrastructure itself: How available is it?
How are servers deployed? And which servers are used the most?

In this paper we present a large scale measurement study of the
DNS infrastructure currently deployed in the Internet, focusing on
characteristics that are indicative of how DNS servers are deployed
and managed. In particular, we analyze availability and load char-
acteristics of DNS servers, as well as deployment styles within dif-
ferent organizations.

Understanding these properties is important not only for the
study of DNS, but also for the study of federated infrastructures
in general — that is, the study of infrastructures that are man-
aged independently by multiple organizations. For example, the
DNS infrastructure gives us insight into how well infrastructure
deployed primarily by publishers (authoritative name servers) is
managed, versus infrastructure deployed by organizations primar-
ily for the benefit of their users (local nameservers). Several recent
studies [18, 28, 35] propose wide-area infrastructures to provide
scalable, automated, and fault-tolerant lookup services, and some
advocate or suggest deployment in a federated manner. Like DNS,
future global-scale Internet infrastructures may be managed by a
multitude of large and small organizations, rather than by a single
entity. Hence, it is important to understand the characteristics of
current federated deployment styles.

Our results indicate that a large fraction of all end-users use a
small number of local DNS servers. We find that the majority of
local and authoritative DNS servers are highly available, without a



Figure 1: DNS Infrastructure Components: DNS infrastruc-
ture is comprises 3 types of components: client resolvers, local
DNS (LDNS) servers, and authoritative DNS (ADNS) servers,
of which the Root and Top Level Domain (gTLD) servers are
special cases. To perform a lookup, client resolvers make
a request to their configured LDNS server, which iteratively
queries the ADNS servers required to resolve the requested
name-to-address mapping.

single observed failure. The remainder have consistent availability
periods lasting days, weeks, or longer, and recovery rarely requires
more than a few hours. However there exists a fraction with only
“one 9” (or less) of availability. In addition, we find that there is a
slight positive correlation between usage and availability for both
local and authoritative servers. Authoritative servers tend to have
higher availability than local servers, especially if they have high
usage, though the difference is not substantial. We also observe
that there is a larger degree of diversity in local DNS server deploy-
ment and usage, with many behind dynamic IP addresses and some
with diurnal availability patterns. Finally, we observe that local
DNS server deployments within organizations range from a very
few highly used servers to a very large number of lightly loaded
ones, suggesting different levels of partitioning of administrative
domains within different organizations.

The remainder of this paper is organized as follows: Section 2
provides a brief overview of the different types of DNS servers
and the infrastructure deployment styles that they exemplify. Sec-
tion 3 describes our data collection methodology, our measure-
ment testbed, and the data sets used in our analysis. Section 4
describes our measurement results and analyzes the load charac-
teristics, availability, and deployment styles of DNS servers. To
demonstrate the utility of our measurements, Section 5 presents
an evaluation of a Distributed Hash Table (DHT) having DNS-
like availability characteristics. Section 6 lists previous and related
work. Section 7 concludes.

2. BACKGROUND
In this section we provide an overview of the different compo-

nents that make up the DNS infrastructure and explain how their
characteristics may be representative of other federated infrastruc-
ture deployments. In addition, we define the characteristics we
measure and explain their significance.

2.1 DNS Infrastructure
The Domain Name System is a distributed database responsi-

ble for translating names to addresses of network locations, and its
functionality is a critical component to almost all network appli-
cations including web browsing and email. Despite its simplicity
of purpose, the implementation of DNS comprises many different
components.

Figure 1 shows an example of the interaction between the var-
ious components [25] in DNS during a name lookup. A lookup
is made by a client resolver, a software library implementing the
DNS protocol on an end-user machine. These requests are for-
warded to a local DNS (LDNS) server, which is usually deployed
by the client’s organization (for example, its university department
or ISP). LDNS servers are important to DNS scalability because
they cache DNS records. LDNS servers iteratively query the au-
thoritative DNS servers (described next) to satisfy lookup requests
on behalf of their clients. First the root servers are queried, then the
gTLD servers, and then one or more additional authoritative DNS
servers (though caching of DNS records usually makes the first few
queries unnecessary).

The DNS database itself is distributed across the hierarchy of
authoritative DNS (ADNS) servers. At the top of this hierarchy are
the root and top-level domain nameservers. These servers do not
generally maintain name-to-address records for Internet hosts (A
records), but instead maintain records for locating ADNS servers
at lower levels of the hierarchy (NS records), which contain the
actual name-to-address records. ADNS servers at lower levels are
deployed by a litany of organizations and store name-to-address
records for resources associated with a particular organization (e.g.,
a university or company’s web site).

Hence, LDNS and ADNS servers are two examples of feder-
ated service deployments. However, the motivations for maintain-
ing each class of DNS server differ. LDNS servers are typically
deployed within an organization to serve its own user population,
while ADNS servers are typically deployed by publishers (or by
enterprises that service publishers) in order to advertise a service
or location to potential clients. One question we seek to answer is
whether these different motivations and constraints on server de-
ployment are correlated with observable characteristics, such as
availability.

Answering this and related questions about availability, usage,
and deployment characteristics may be important for future fed-
erated services, since such services could have deployment and
management models similar to DNS. Indeed, several recent pro-
posals [9, 28] have suggested moving DNS itself to a more de-
centralized lookup architecture due to the administrative problems
and vulnerabilities associated with the existing hierarchical model.
Other Internet naming layers have also been proposed [4, 35] to
supplement or replace it.

2.2 Infrastructure Characteristics
We seek to understand three particular attributes about DNS in-

frastructure, listed below:

1. Load Distribution: The amount of load on each nameserver,
which we define as the number of queries that it receives, is
indicative of the number of users that access it.

2. Availability: The availability of a server determines how of-
ten it will be able to service requests. We define availability
as the fraction of time during which the server machine is
online when its local network can be reached. Both these
conditions are usually necessary in order for the service to
be available; nameservers and other services often require
connectivity to regions of the network other than their own.

3. Deployment Styles: A final area of interest in this study is the
style in which individual organizations deploy sets of name-
servers. For example, we are interested in whether an organi-
zation partitions its users equally among several local name
servers, or if there is more diversity in the load among differ-
ent nameservers within the same organization. These styles



indicate the degree of locality that might exist in federated
deployments and the number of servers that may be located
within each administrative domain.

We next describe how we infer these characteristics from cur-
rently deployed DNS servers. We then explain the salient obser-
vations we made about these characteristics for DNS. Finally, we
evaluate and discuss how our observations can be used in the de-
velopment of future distributed systems.

3. MEASUREMENT SETUP
To infer the characteristics of interest, we collected and corre-

lated several data sets concerning DNS servers. To infer relative
load characteristics about DNS servers, we examined DNS access
logs from Akamai, a large content distribution network (CDN), and
correlated HTTP request logs from a set of Web caches over a pe-
riod of a week. To infer availability, we performed active probes to
a large number of servers over a two week period. Finally, to study
deployment patterns, we examined the relative load characteristics
of servers located within the same organization.

The remainder of this section describes how we obtained our
DNS server sample sets and relative load estimates, the methodol-
ogy behind our active measurement study of availability, and sev-
eral steps we used to filter and reduce the data we collected to elim-
inate outliers and observed anomalies.

Figure 2 summarizes the data sets we used in our measurement
results and analysis.

3.1 Sample Sets and Load Estimation
Here we describe our collection of logs to obtain samples of

LDNS and ADNS servers and estimations of their relative loads.

3.1.1 LDNS Servers
The sample of LDNS servers we use in our relative load estima-

tions and active probing measurements were obtained through the
collection of DNS logs from Akamai’s “low-level” servers, which
should be close to the LDNS servers that access them. For each
DNS record requested, the logs contain the time of access, the IP
of the requester, and the name and type of the DNS record accessed.

Akamai operates the authoritative DNS for parts of a large num-
ber of popular websites (in particular, the parts of websites for
which Akamai also hosts the contents, such as images), and we
expect that the volume of requests a single LDNS server makes
to this Akamai service is a good relative estimator of the actual
load or client population behind it. For example, in a set of HTTP
logs collected from a number of Web caches (described in Sec-
tion 3.1.2), we observed that 14% of all HTTP requests made went
to this Akamai service, and this Akamai service served the DNS for
26 of the top 100 most popular web site domains. Moreover, the
DNS records returned by Akamai to LDNS servers have a TTL of
only 20 seconds, so it is more likely that we will see a DNS request
for each HTTP request than if examining ADNS logs with longer
TTL records (though TTLs are not always respected).

Due to constraints in our log collection infrastructures, we could
only collect DNS logs for approximately one eighth of the 8,500
active servers in Akamai. We ensured that we collected logs from
all the servers in a particular region (e.g., ISP X in Chicago, IL) so
that we would observe all the requests coming from LDNS servers
in that region (Akamai’s top-level DNS servers try to direct LDNS
servers to the low-level server that yields the best performance,
which is typically also close geographically). This portion of Aka-
mai included regions from 49 different countries; 60% of the re-
gions were in the U.S, and many were in Europe and Southeast

Data Set Sec. Description

DNS Server Sample Sets
ldns-all 3.1.1 All the LDNS servers that accessed the por-

tion of Akamai for which we collected logs
during the period from March 17 to March
24, 2004. (823,694 distinct IPs)

ldns-probed 3.1.1 A set of LDNS servers that were used when
gathering the ldns-avail measurements.
These servers were obtained by randomly
sampling LDNS arrivals to Akamai servers
during the period from March 17 to March
24, 2004. (273,541 distinct IPs)

ldns-nondynamic 3.3.2 A conservatively chosen subset of ldns-
probed, which we determined were un-
likely to be using dynamic IP addresses, and
we use for the majority of our availability
analysis. (164,040 distinct IPs)

adns-all 3.1.2 All the ADNS servers that we observed
during a “reverse-crawl” of the .in-
addr.arpa authoritative hierarchy during
December 2003. (87,111 distinct IPs)

adns-probed 3.1.2 The subset of adns-all that mapped to a
valid IP address and were still responsive to
DNS requests in the middle of April 2004.
(68,155 distinct IPs)

adns-web 3.1.2 All the ADNS servers that were authorita-
tive for at least one website (ignoring those
that were served by Akamai) in logs collected
from several Web caches collected from May
3, 2004 to May 9, 2004. (85,719 distinct IPs)

DNS Server Measurements
ldns-load 3.1.1 Relative load on ldns-all, estimated

based on the number of requests each made
to Akamai during the 1-week period from
March 17 to March 24, 2004.

adns-load 3.1.2 Relative load on adns-web, estimated
based on the number of requests made to
websites they are authoritative for, as seen
from several Web caches during a 1-week pe-
riod from May 3, 2004 to May 9, 2004.

ldns-avail 3.2 A set of exponentially (mean 1 hour) spaced
DNS and/or ICMP ping probes to each server
in ldns-probed made during a three week
period (two weeks of probes for each LDNS
site) from March 18 to April 11, 2004. Sec-
tion 3.3 describes steps taken to filter this
data.

adns-avail 3.2 A set of exponentially (mean 1 hour) spaced
DNS and/or ICMP ping probes to each server
in adns-probed made during a two week
period from April 15 to May 1, 2004. Sec-
tion 3.3 describes steps taken to filter this
data.

Figure 2: Measurement Data Set Summary: This table
presents a summary of the sample sets of DNS servers we used
for each of our measurement experiments (top) and the mea-
surement data sets we collected (bottom).

Asia, in addition to other regions. Hence, our sample included
LDNS servers deployed around the entire world. Moreover, the
relative load distribution of LDNS servers observed in this sample
set is nearly identical to the relative load distribution across LDNS
servers seen by a larger (60%) fraction of Akamai servers during a
shorter time interval, so we believe that any bias introduced by only
having observed this subset of regions is unlikely to be significant.

We collected two sample sets over a one-week period from March
17 to March 24, 2004:
ldns-all: This data set includes all 823,694 distinct LDNS IPs
seen in the logs collected from the subset of Akamai servers. We
define the relative load on these LDNS servers as number of valid
A-requests they made to Akamai during the week, calling this data
set ldns-load. We only examined A-requests because those are
the only records that properly behaving LDNS servers access from



Akamai’s low-level servers (higher level DNS servers in Akamai
serve NS records). Erroneous A-requests constituted less than 1%
of the DNS logs .
ldns-probed: This data set includes all the LDNS IPs we in-
cluded in our active probing experiment, described in Section 3.2.
To collect this sample, we continually downloaded the most recent
2 minutes of a log on a random server in Akamai (not restricted
to the regions for which we collected full logs). We then immedi-
ately (within 3 minutes of the LDNS having made the DNS request
to Akamai) probed the server with a DNS request for A.ROOT-
SERVERS.NET and an ICMP ping (retrying each request 3 times
over 30 seconds). We did this to ensure that we only tracked LDNS
servers that were responsive to our probes. We collected 374,334
distinct IPs in this manner, of which 273,541 (74%) were respon-
sive to DNS or ping, and we tracked them in our active measure-
ment study described in Section 3.2.

We find it interesting that only 35% responded both to DNS and
ping, while 21% responded only to ping and 20% responded only
to DNS. We did not notice a difference in the relative load distri-
bution among the servers that were responsive and those that were
not (when looking at the LDNS servers that we also had load in-
formation for in ldns-load). However, we note that our sam-
pling method is biased in favor of LDNS servers that make a large
number of requests. In Section 4.2.2, we find that there exists a
slight positive correlation between relative load and availability, so
we may slightly overestimate the fraction of samples with higher
availability when we use our samples to draw conclusions about
availability properties.

3.1.2 ADNS Servers
We obtained two ADNS sample sets: adns-all and adns-

web.
To obtain adns-all, we performed a “reverse-crawl” of the

.in-addr.arpa domain, which reverse maps IP addresses to
domain names. We use a methodology similar to the ISC Inter-
net Survey [16]: first, we look up the nameservers responsible for
each of {0,...,255}.in-addr.arpa. For each domain in
which we discover an ADNS, we recursively look up its “children”
(e.g., to recurse on 128.in-addr.arpa, we examined each of
{0,...,255}.128.in-addr.arpa), etc.

We note that we only performed a single sequence of lookups for
a given domain, so if we did not receive a response, we missed the
entire address block that made up its subtree (we received success-
ful lookups for 2,711,632 domains). In addition, some domains in
.in-addr.arpa may not map to an ADNS server, even though
there exists one responsible for that domain (perhaps due to con-
figuration errors). Hence, our sample is probably an underestimate
of the number of ADNS servers in operation, though it is sufficient
for the purposes of our study.

We found 87,111 distinct IPs this way, of which 68,155 were
responsive to DNS (and possibly ping) in mid-April 2004. We used
these 68,155 in our active probing measurements (see Section 3.2).
We call this smaller set adns-probed.

To get adns-web, we obtained one week of Web cache logs
(May 3 to May 9, 2004) from the NLANR IRCache project [15]1,
which maintains a set of top-level Squid caches serving various re-
gions in the U.S. From this data set, we obtained a set of 85,719
ADNS servers responsible for the websites accessed by clients in
the trace. 20,086 of these servers were also in adns-probed. We
estimated the relative load on these servers by summing the num-

1The NLANR IRCache project is supported by National Science
Foundation (grants NCR-9616602 and NCR-9521745), and the Na-
tional Laboratory for Applied Network Research.

ber of HTTP requests in the Web cache trace made to websites for
which each ADNS server is responsible.2 Although the actual load
will be impacted by factors such as the TTL of the DNS records re-
turned to clients, we hypothesize that this gives us an estimate good
enough to make the correlations in our analysis (e.g., between load
and availability). We call this data set adns-load.

3.2 Active Availability Measurements
After obtaining the ldns-probed and adns-probed sam-

ples described above, we began active probes to measure their avail-
ability characteristics. For LDNS servers, we began the measure-
ments immediately after we verified that they were responsive.3 For
ADNS servers, we began all measurements at the same time. We
tracked each DNS server for approximately two weeks, as follows.

During the experiment we sent DNS and ICMP ping probes to
each DNS server we tracked, with an exponentially distributed in-
terval between probes, with a mean of 1 hour. Probes were origi-
nated from a well-connected machine at Carnegie Mellon Univer-
sity and were made by a custom event-driven application for effi-
ciency. DNS probes to both LDNS and ADNS servers consisted of
a query for the A record of A.ROOT-SERVERS.NET, and each
probe was tried 3 times over a period of 30 seconds before we
marked it as failed. We probed a given DNS server with whatever
queries to which it was originally responsive (e.g., if it originally
did not respond to ping we only used the DNS query). Although
we could also have used TCP RST packets to track servers, due to
the volume of servers we planned to track, we decided to use less
invasive methods that were unlikely to trigger firewall alarms, etc.

We use exponentially distributed sampling intervals for reasons
explained by Paxson [27]. Such sampling is unbiased because it
samples all instantaneous signal values with equal probability. In
addition, it obeys the “PASTA” principal, which says that the pro-
portion of our measurements that observe a given state is (asymp-
totically) equal to the amount of time spent in that state [36]. To
verify that our sample granularity was fine enough to apply this
property to our limited measurement interval, we performed active
probes to a random subset of 900 LDNS and 900 ADNS servers at
a much higher fixed-rate of 1 probe per 5 minutes for 3 days and
obtained nearly identical availability distributions to those obtained
from our experiments with larger intervals.4

The most significant drawback in our measurement setup is that
we are only observing the DNS servers from a single vantage point,
so our probes will observe network failures along the path from our
probe machine to the target server site as well. However, we take
steps to reduce the impact of these, as described in the following
section. There is trade-off between logistical difficulty and sample
size (which is proportional to resource expenditure) when setting
up a measurement study at multiple sites (e.g., synchronization,
administrative policies, maintenance); we opted for a much larger
sample size in order to observe the peculiarities of DNS servers.

We call the data set for LDNS and ADNS servers obtained from
these experiments ldns-avail and adns-avail respectively.

3.3 Data Reduction
We took several steps to filter the data to reduce the impact of

network failures on our measurements. In addition, we reduced

2If there were multiple ADNS servers authoritative for a website,
we split the load evenly between the servers.
3This allowed us to estimate the impact of network failures on our
measurements by correlating probes with accesses at Akamai, as
described at the end of Section 3.3.
4These measurements were performed between July 27 and July
30, 2004.



our LDNS sample set because of the presence of dynamic IPs ad-
dresses.

3.3.1 Network Failures
First, we tried to identify periods during which network failures

occurred close to our probing site or in the “middle” of the net-
work, hence affecting a large number of measurements. To do this,
we examined our aggregate probing log (containing the probe re-
sults to all sites combined) and removed all probes that fell within a
30-second window in which the fraction of failed probes exceeded
3 standard deviations of the failure rate of the preceding hour. This
removed periods where a larger than normal number of probes ex-
perience correlated failures, which could indicate significant net-
work failures in the middle of the network or close to our probing
site. This removed 5.1 hours of data from our LDNS experiment
(of 560 total) and 7.8 hours from our ADNS experiment (of 388 to-
tal), the longest period of which was about 1.5 hours, during which
CMU had a confirmed network outage.

Next, we clustered IPs according to autonomous systems (ASs)
and network aware clusters (NACs) [19]. A NAC is the set of IP
addresses sharing the longest common routing prefix advertised via
BGP (which are derived using BGP routing table snapshots from
several vantage points, such as RouteViews [2]). Hence, the IP
addresses in a NAC are likely to have access links in common and
are likely to be operated under the same administrative domain.

We examined our combined traces for ASs with a particularly
high rate of correlated failures by looking for related probe pairs
— that is, closely spaced (within 2 minutes) probe pairs to servers
within the same AS but within different NACs.5 We proceeded as
follows: First, we counted the number of related probe pairs that
observed at least one failure — the total number of failure pairs.
Second, we counted the number of related probe pairs that were
both failures — the number of correlated pairs. The ratio of cor-
related failure pairs to total failure pairs gave us an estimate of the
number of correlated failures in a particular AS. In the LDNS sam-
ple set we found that 70 ASes were responsible for abnormally high
ratios (above 0.3), so we eliminated the 800 sites in these ASes.
In the majority of the other ASes (in which we observed closely
spaced failures), there were 0 correlated failures.

We note that we did not expect these steps to completely elim-
inate network failure observations in our data, but merely to limit
their impact on our analysis. To estimate how well our filtering
heuristics worked, we checked if any of the LDNS servers gen-
erated requests to Akamai within 1 minute of an observed failure
during the one week for which log collection and active probing
overlapped. Limiting ourselves to the 6,000 servers that generated
the most requests to Akamai (since each of these servers had an av-
erage request rate to Akamai greater than 1.5 per minute), we found
that about 15% of the failed probes during this period were within
1 minute of an observed request from the corresponding LDNS.
Hence, if we excluded all network outages from our definition of
availability, then our measurements would underestimate the actual
availability of nameservers. Nonetheless, we believe our measure-
ments would still be correct to within an order of magnitude. In
our analysis of this data, which might still be sensitive to network
failure observations (such as in Section 4.3), we take further pre-
cautions.

3.3.2 Dynamic IP Addresses
For the sample of LDNS servers, we performed one final filtering

step before proceeding to measurement analysis. We discovered
5We count network failure within a NAC as an actual failure since
service is unlikely to be available to anyone outside the NAC.

that in a fair number of cases, the LDNS servers we sampled used
dynamic IP addresses (e.g., DHCP). Bhagwan et al. [5] found that
the aliasing effects introduced by dynamic IPs result in significant
underestimates in availability when measuring peer-to-peer clients,
and we have observed the same effect with LDNS servers. In par-
ticular, when examining a database of 300,878 class C address
blocks known to be dynamic IP pools obtained from a spam Real-
time Black Hole List (RBL) [1], we found that 17,163 (6%) LDNS
servers in ldns-probed were classified as dynamic. Moreover,
27,237 of the domain names obtained by reverse mapping LDNS
IPs in ldns-probed contained a string like dsl or dialup (in
the host portion), suggesting that they are behind DSL, cable, or
dial-up links (though this does not necessarily imply they are dy-
namic). Because identifying dynamic IP addresses is difficult and
to our knowledge there is no passive technique with any reasonable
degree of accuracy, we choose to be conservative and only analyze
LDNS servers that we were reasonably confident were not using
dynamic IPs. We used the following three heuristics to do this clas-
sification. We keep an LDNS IP if it satisfied at least one of the
heuristics:

1. If the domain name obtained by reverse mapping the IP con-
tained the string dns or ns in an obvious fashion in the host
part of the domain name, it is very likely a DNS server with
a fixed address, so we keep it (local name servers usually
require static addresses because clients must locate them in
order to perform name resolution to begin with).

2. For the IPs that we were able to reverse map to domain names,
we also reverse mapped the IP just above and just below
it (e.g., for 128.2.0.10, we reverse mapped 128.2.0.9 and
128.2.0.11). We define the difference between two host names
as the ratio of the number of different characters and the to-
tal number of characters, treating consecutive numeric char-
acters (i.e. numbers) as single characters. If the difference
between the host portion of the IP’s domain name and the
domain name just above and just below it was greater than
25%, then we keep it. Dynamic IPs are almost always from a
block of addresses to which administrators assign very sim-
ilar names (usually only alternating some digit for each ad-
dress in the block). For example, when examining one IP in
each of the 233,413 distinct class C address blocks that were
in the spam RBL’s list of dynamic IP pools and that reversed-
mapped to a name, at least 98% were detected as dynamic
using this heuristic (some of the remaining 2% appeared to
be static IPs that just happened to fall within a class C net-
work partially assigned to a dynamic IP pool; e.g., some had
recognizable names like mail or ns).

3. Finally, we examined the actual sequence of probe responses
from each LDNS server. If they were responsive to DNS and
ping, then we know when one fails and the other succeeds.
We hypothesize that if an LDNS server was using a dynamic
IP, gave up the IP, and the IP was reused by another client
in the pool, it is unlikely that the new client would happen
to also be running a DNS server since client machines are
rarely configured to serve DNS. Hence, for the servers that
were responsive to both DNS and ping, we keep them if their
DNS and ping response patterns were consistent during the
entire period of the trace. In this case, even if the host was
using a dynamic IP address, it is unlikely to have given it up
during our measurement period.

We call this conservative estimate of “non-dynamic” LDNS servers
ldns-nondynamic. This is the sample set that we use for the
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Figure 3: Relative Load Distribution: These figures show the
CDF of the relative load of LDNS and ADNS servers (using
ldns-nondynamic and adns-web, respectively).

majority of our LDNS availability analysis, though we reexamine
the dynamic IP issue in Section 4.4.

4. MEASUREMENT RESULTS
This section enumerates our measurement results and analyzes

their significance. We first examine the relative load distribution on
different nameservers, then perform an in-depth analysis of name
server availability, failure and recovery times, and finally enumer-
ate several common “deployment styles” that we observed in dif-
ferent types of organizations.

4.1 Relative Load Distribution
Figure 3 (a) and (b) show the cumulative distribution of relative

load among LDNS and ADNS servers, respectively. Not surpris-
ingly, the distribution is very skewed, with the majority of name-
servers lightly loaded (i.e., generating or receiving less than 100
requests to Akamai or from the Web caches in a week’s period),
but a few that are much more heavily loaded (i.e., generating or re-
ceiving over 1 million requests). This is indicative of the diversity
in the size of organizations behind individual LDNS servers (e.g.,
small businesses to large residential ISPs). It also suggests that the
vast majority of nameservers have few users.

However, as Figure 4 (a) and (b) demonstrate, the “small” name-
servers make up a very small fraction of the total load in the system.
In the LDNS case, over 95% of servers made fewer than 10,000
requests to Akamai each, and their aggregate request count was
only about 10% of the total number of requests generated by all
the servers in the system. In the ADNS case, over 80% of servers
received fewer than 100 requests from the web cache, and those
requests constituted fewer than 5% of all requests sent. Hence, al-
though most name servers are lightly loaded, most users are likely
behind the smaller number of highly loaded nameservers. The dis-
tribution for LDNS servers does not quite obey a power law; highly
ranked servers have relative loads within the same order of magni-

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  100  10000  1e+06  1e+08

Fr
ac

. l
oa

d 
on

 s
er

ve
rs

 w
ith

 <
 x

 re
qs

Relative Load

LDNS

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  100  10000  1e+06  1e+08

Fr
ac

. l
oa

d 
on

 s
er

ve
rs

 w
ith

 <
 x

 re
qs

Relative Load

ADNS

Figure 4: Aggregate Load Distribution: These figures show
the fraction of total load that is accounted for by LDNS and
ADNS servers with relative load less than x (using ldns-
nondynamic and adns-web, respectively). For example,
consider all LDNS servers that generated less than 10,000 re-
quests each. Their aggregated load makes up about 10% of the
total load seen by Akamai.

tude, possibly due to capacity limitations of the server machines, or
due to more effective caching of low TTL records with extremely
high request rates.

4.2 Availability
This section describe and analyze our measurements from the

active probing experiment. Recall that during this experiment, we
actively probed our set of LDNS and ADNS servers for a two-week
period and recorded their responsiveness throughout the period. We
begin by showing the overall availability numbers for LDNS and
ADNS servers. Second, we discuss the correlation between avail-
ability and relative load. Third, we briefly describe the impact of
the time of day on availability, and examine the extent to which
failures are locally correlated. Then, we present a rough estimate
of the time to failure and time to recovery of DNS servers. Finally,
we revisit LDNS servers using dynamic IPs and estimate the arrival
rate of new IPs they use in the system.

4.2.1 Overall Availability
We define the availability of a DNS server to be the ratio of

the number of probes that it responded to and the total number
of probes sent to it. Because the intervals between our probes
were exponentially distributed, the PASTA principal dictates that
we should see approximately the average fraction of time that a
given server was available and unavailable.

Figure 5 summarizes the overall availability of LDNS and ADNS
servers and plots the cumulative distribution of servers with a given
availability. As is visible, the vast majority of both ADNS and
LDNS servers are available for almost the entire duration of our ex-
periment. In fact, 62% of LDNS servers and 64% of ADNS servers



Statistic LDNS ADNS

Mean Availability 0.9785 0.9864
Standard Deviation 0.0939 0.0701
Median 1.0000 1.0000
5th Percentile 0.9194 0.9532
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Figure 5: DNS Server Availability: The figure shows the distri-
bution of availability of LDNS and ADNS servers (using ldns-
avail and adns-avail). The table above it summarizes the
availability statistics.

had 0 probe failures. Only 5% of LDNS servers (ADNS servers)
were available for less than 92% (95%) of the time. As noted ear-
lier, a few of these may be attributed to network failures, so the
actual availability may be even higher. This should not be very sur-
prising since these DNS servers are actively serving DNS requests
and downtime may mean lack of service for an LDNS server’s or-
ganization or an ADNS server’s customers. However, we note that
a non-trivial number of individual servers only have “one 9” (or
less) of availability, a far cry from the “five 9s” usually desired for
critical services.

We observe that ADNS servers have a slightly higher availability
than LDNS servers in general. Keeping in mind that we are ignor-
ing LDNS servers that may be behind dynamic IPs, the difference
is probably higher in reality. In fact, when examining only ADNS
servers in adns-web (that is, the ADNS servers authoritative for
at least one website accessed by the web cache), the average avail-
ability is even higher, as the next section shows. This might indicate
that content providers may be better equipped to keep DNS servers
running (or that they have a greater incentive) than network admin-
istrators managing servers that only serve the internal population of
an organization. Nonetheless, both ADNS and LDNS servers are
supposed to be replicated [25], so a single DNS server failure does
not necessarily imply that the service itself is unavailable.

4.2.2 Load vs. Availability
Next, we investigate whether the nameservers that are used more

(i.e., are serving a larger population of clients) are more likely to
have high availability than those that are used less. Recall that we
defined the relative load on an LDNS server to be the number of
A-requests that it sent to Akamai during a one week period. We de-
fined the relative load on an ADNS server as the number of HTTP
requests sent to websites it served that we observed in a one-week
log trace of several web caches. We take load to be an approxima-
tion of server usage.

For our analysis, we only use LDNS servers that appear in both
ldns-nondynamic and ldns-load, and ADNS servers that
appear in both adns-all and adns-load, since we have both
availability and relative load estimates for only these servers. Al-

Relative Load Mean LDNS Avail. Mean ADNS Avail.
0-100 0.978050 0.993850
100-1000 0.978989 0.996262
1000-10000 0.986182 0.996966
10000-100000 0.992636 0.998188
100000-1000000 0.995020 0.998639
≥1000000 0.998795 NA

Correlation LDNS ADNS
corr(load, avail) 0.017224 0.007867
corr(log load, avail) 0.041212 0.043248

Figure 7: Relative Load vs. Availability Summary: The top
half of this table shows the average availability of LDNS and
ADNS servers with given ranges of relative loads. The bottom
half shows the correlation coefficient for relative load and avail-
ability and that for the log of the load and availability. Note that
the load on LDNS and ADNS servers are estimates of different
characteristics.

though the availability distribution of this subset of LDNS servers
was not significantly different than that of all LDNS servers, the
average availability of the ADNS servers examined in this analysis
was higher than when examining the availability distribution for all
ADNS servers in adns-all, as presented in the previous section
(0.994 vs. 0.986). This observation is in line with our general con-
clusions, since presumably the DNS servers that did not appear in
the web cache logs were rarely used.

Figure 6 (a) and (b) show scatter plots comparing the relative
load and availability of LDNS and ADNS servers, respectively.
Clearly, there is a positive correlation between load and availabil-
ity, especially in the region between 80% and 100% availability
(we omit the 0% to 80% region in the ADNS case because there
are very few points in that region). Figure 7 summarizes the results
with the average availability of servers falling within a load range.
Although the positive trend is readily apparent, the correlation is
actually very minor; for example, an LDNS server that sent over
1 million requests to Akamai is only 1.02 times more likely to be
available than an LDNS server that sent under 100.

The bottom half of Figure 7 shows the correlation coefficient
computed for relative load and availability over LDNS and ADNS
servers. Here we see that the correlation is indeed very slight (0.017
for LDNS, and 0.008 for ADNS).6 The correlation is more sig-
nificant when we compute the coefficient using the logarithm of
the relative load, indicating that the relationship between load and
availability may be better described as log-linear than linear.

4.2.3 Time-of-Day Effects
Now we explore whether the time of day is related to when fail-

ures occur. We attempt to discern the degree of time-of-day im-
pact on each server by comparing the availability during the hour
in which it is most likely to be available to that during the hour
in which it is least likely to be available. The ratio of the former
and the latter gives us an indication about how much more likely a
server will be available during an hour of the day. In this analysis,
we only consider the fraction of servers with availability less than
1.

Figure 8(a) shows the cumulative distribution of servers with this
statistic. About 70% of the servers are not more than 1.2 times as
likely to be available in one hour than any other. Hence, for the
majority of servers, time of day is unlikely to be related to when
failures are observed. However, 2.1% (0.7%) of the LDNS (ADNS)

6Despite the small correlation coefficient, Pearson’s product-
moment correlation test indicates that the correlation is still sta-
tistically significant, given the number of sample points we have.



(a) LDNS Servers (b) ADNS Servers

Figure 6: Relative Load vs. Availability: These scatter plots show the relationship between the relative load on LDNS and ADNS
servers and their availability (using the samples in the intersection of ldns-all and ldns-avail, and the intersection of adns-
web and adns-avail, respectively). Note that the ranges of the x-axes on these graphs are different and the load on LDNS and
ADNS servers are estimates of different values.
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Figure 8: Time-of-Day Effects: (a) Shows a distribution of the
degree to which time of day impacts availability. The degree of
impact is defined as the ratio of the maximum average availabil-
ity during a particular hour to the minimum, and indicates how
much more likely a server will be available during one hour
over another. (b) Shows the average availability during each
10 minute bucket in a day (adjusted to the server’s local time)
for all servers (the top two “All Failed” lines) and for servers
with an infinite degree of impact (i.e., minimum availability is
0 for some hour). (These figures only use samples with < 1
availability in ldns-avail and adns-avail.)

servers had at least 1 hour with 0% availability (excluded from Fig-
ure 8(a)).

Figure 8(b) plots the average availability of servers during each
10 minute bucket in a day (adjusted to the server’s local time7). The
top two lines show the variation of the averages for all nameservers
(that had availability < 1), and the bottom two show the variation
of the averages for nameservers that had at least one hour with 0%
availability. There is almost no variation in the average availability
when looking at all nameservers. However, when looking only at
those that are very likely to be unavailable during some hour of the
day, we observe a clear diurnal pattern. In addition, these servers
have much lower overall availability. We believe it is likely that
these LDNS “servers” may be on end-user machines (though this
would not explain the small number of ADNS servers that behave
this way). This observation also lends evidence to our hypothesis
that many LDNS “servers” are behind DSL and dialup addresses.

4.2.4 Locally Correlated Failures
Next we examine the degree to which failure periods are corre-

lated within particular domains. Here we define a domain to be
a NAC [19] to capture events correlated with network location.
Hence, correlated failures suggest common network outages that
prevent reachability or other related events within a NAC (power
outage, network-wide maintenance, etc.).

We estimated the fraction of failure probes that are correlated
within a NAC as follows: first we examined all locally-related
probe pairs — closely spaced probe pairs (within 2 minutes) that
contained at least 1 failure, and were sent to different servers within
the same NAC. Of the NACs formed by the servers in ldns-
avail (adns-avail), 20% (11%) had at least one such pair.
We call the pair correlated if both probes were failures. The ratio
of correlated pairs and total locally-related pairs gives an estimate
of the fraction of failures within the NAC that are correlated. The
cumulative distribution of this fraction (over all NACs) is shown in
Figure 9.

We observe that about 40% (50%) of LDNS (ADNS) NACs have
no failures correlated in this manner. However, on average 11.5%
(12.2%) of failures were correlated in a given NAC. This roughly

7We used Edgescape [3], a commercial tool, to classify the location
of IPs and their timezone. We ignored IPs that it could not classify
in our analysis.
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Figure 9: Correlated Failures within NACs: This figure shows
the estimated fraction of failure probes to different servers
within each NAC that were “correlated;” i.e., they occurred
within 2 minutes of each other (using ldns-avail and adns-
avail; see text).

corresponds to the fraction of probes to LDNS servers that we es-
timated may have been affected by network failures in Section 3.3
(about 15%). In addition, there are only a few NACs (less than
10%) that have a large fraction (> 20%) of failures that are corre-
lated. Thus, most unavailability to DNS servers is unlikely to be
correlated within a NAC.

4.3 Time to Failure and Recovery
So far we have explored the availability of DNS servers — the

probability that a given DNS server is available during a point in
time. In this section, we give a very rough characterization of how
long we expect a DNS server to be available before it fails and
how long we expect it to take until it recovers. This information
is difficult to extract from our measurements directly because we
might miss failure or availability periods due to the granularity of
our probes. In particular, we note that a large fraction of the failures
we observed only occurred for a single probe. Further complicating
the analysis is the fact that we cannot distinguish network failures
(which may still be present in our data despite our filtering heuris-
tics) and actual DNS server failures.

Thus, in this analysis, we present two sets of results: one that
ignores any failure that we cannot determine to be longer than 20
minutes (“short failures”), and one that includes all failures. Feam-
ster et al. [12] found that more than 90% of all network failures
lasted less than 15 minutes, so server failures can be accurately es-
timated from probe failures in our former set of results because net-
work failures are almost always of short duration. Moreover, during
our high-frequency probing of a small subset of servers (one probe
per 5 minutes; see Section 3.2), we found that more than 60% of all
observed failures periods encompassing more than a single probe
lasted longer than 20 minutes (for both ADNS and LDNS servers);
hence, most failures we observed that were longer than 5 minutes
were also longer than 20 minutes. However, the results ignoring
short failures will tend to overestimate the time to failure and over-
estimate the time until recovery. The results including all failures
present a more pessimistic estimate of the time to failure.

We estimated the time to failure as the length of time from when
we first probed a DNS server until we observed the first probe that
fails (possibly ignoring short failures as described above). We es-
timated the time to recovery as the length of time from the start of
the first probe failure until the last consecutive probe failure. Since
we optimistically assume that the failure does not begin until the

probe failure, our results may underestimate failure lengths by an
amount within an order of magnitude of the mean probing interval
(1 hour), on average. One issue with this analysis is that we may
have missed failure or availability periods if they are likely to last
shorter than our average probing interval.

To investigate the degree to which short failures might affect our
results, we examine “closely spaced” probe triples that we made to
DNS servers. Suppose S represents a probe success and F repre-
sents a probe failure in a sequence of consecutive probes. Then,
when looking at probe triples made within a 2 minute period to
LDNS servers, 0 triples had a pattern of F S F, and 14 of 40,322
(0.03%) triples had a pattern of S F S; hence, it is unlikely that
failure or availability periods last less than 2 minutes. When look-
ing at 30 minute intervals, 1,401 and 6,634 of 7,041,334 (0.02%
and 0.09%) triple samples had a pattern of F S F or S F S, re-
spectively; however, the short availability periods were primarily
isolated to 934 servers (i.e., only these servers had a number of
short availability periods much greater than the mean). Closely
spaced samples at ADNS servers had similar characteristics.

Examining longer periods yields similar fractions that are short
failure periods, but not larger fractions that are short availability
periods. Hence, since the probability of short availability periods
is low, we are at worst likely to overestimate the length of very
long consecutive availability periods (due to short failures that our
probes missed). Nonetheless, we caution that our estimates should
be taken as very coarse approximations.

Statistic Ignoring Short Failures With Short Failures
LDNS ADNS LDNS ADNS

≥1 Failure 12.6% 10.8% 37.8% 35.7%
For fraction with at least 1 failure (ignoring the 5% with the highest values)
Mean Time to Failure 125.9 h 143.1 h 132.4 h 148.7 h
Standard Deviation 99.1 h 100.0 h 98.3 h 99.1 h
Median 106.6 h 134.0 h 117.3 h 138.0 h
Mean Time to Recovery 7.2 h 6.3 h NA NA
Standard Deviation 9.5 h 8.7 h
Median 3.3 h 2.6 h

Figure 10: Failure and Recovery Summary: This table shows
failure and recovery statistics for the fraction of LDNS and
ADNS servers for which we observed at least one failure, with
and without heeding failures that we could not determine were
longer than 20 minutes (statistics are taken using ldns-avail
and adns-avail, ignoring the 5% with the highest values).

Figure 10 presents summary statistics about the time to failure
and recovery for when we ignore short failures and when we don’t.
Clearly, the number of servers where we observe at least one failure
is much larger when we do not ignore the short failures (37.8% vs.
12.6% for LDNS servers; 35.7% vs. 10.8% for ADNS servers).
However, we note that including all failures drives up the mean
time to failure among those that did fail by several hours in both
cases (hence, servers that we observed short failures at tended to
fail later than those that we observed longer failures at), and well
more than the majority never fail at all during the two-week period
in both cases. We omit statistics for recovery times when including
all failures, since many of these failures lasted for only a single
probe, and we cannot conclude much about how long the failure
lasted.

Figure 11 plots the cumulative distribution of time to the first
failure for those servers that were unavailable at least once (ignor-
ing the 5% with the highest values to limit outliers). Whether or
not we take into account “short” failures, the majority of servers
are available uninterrupted for longer than two weeks. Our mea-
surement period was not long enough to make longer term conclu-
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Figure 11: Time To Failure: This figure shows the distribu-
tion of times until the first failure for the fraction of LDNS and
ADNS servers that failed at least once during the 2 week obser-
vation period (ignoring the 5% with the highest values). The
plot shows the time to failure with and without heeding fail-
ures that we could not determine were longer than 20 minutes.
(Our measurement period lasted 2 weeks so the figure ends at
14 days.)
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Figure 12: Time to Recovery: This figure shows the distribu-
tion of times until the first recovery for the fraction of LDNS
and ADNS servers that failed at least once and then recovered
during our 2 week period (ignoring the 5% with the highest
values).

sions, except that the time to failure for DNS servers is (at least)
on the order of days or weeks. ADNS servers are likely to live a
little longer than LDNS servers, which is expected given that they
are more highly available.

Figure 12 plots the cumulative distribution of the time between
the first server failure and when the server recovers, for all servers
that failed and recovered during our two-week period (again, ignor-
ing the 5% with the highest values). We observe that the majority
of failures last less than 5 hours. Considering that we are ignoring
failures that we could not determine lasted more than 20 minutes,
that fraction is likely to be larger. Less than 7% of the observed
failures last longer than 1 day. Hence, recovery times are likely
to be on the order of hours, and very unlikely to last more than 2
days. Again, ADNS servers have slightly shorter recovery times
than LDNS servers.
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Figure 13: LDNS Arrival Rate: This figure shows the number
of unique LDNS IPs that accessed a portion of Akamai (upper
curve), and the estimated number of unique non-dynamic IPs
that accessed Akamai (lower curve) during a one-week period
on a subset of Akamai nodes (using ldns-all). The overlaid
dashed lines approximates the arrival rate of new IPs after 1.5
days.

4.4 Dynamic IP LDNS Arrival Rate
We now revisit the LDNS servers that we believe may be behind

dynamic IP addresses. In particular, based on reverse DNS lookups
and by cross-checking IPs with a spam RBL database, we noticed
that a fair number of LDNS servers appear to be on DSL or di-
alup links. Due to the transient nature of machines behind dynamic
IP addresses, we cannot derive much about them from our active
probes. Instead we attempt to infer their attributes by characteriz-
ing their time of appearance at Akamai.

Figure 13 shows the arrival rate of new unique IP addresses to the
subset of Akamai regions for which we collected logs. After 1.5 or
2 days, it appears that the rate of new arrivals becomes roughly
linear. Measurements of LDNS servers accessing the root name-
servers have also exhibited this pattern [8]. It is highly unlikely that
a large number of new LDNS servers are continually being added
to the DNS system, so we suspect the majority of these arrivals are
from DNS servers that change their IP addresses. We also plot the
arrival rate of LDNS servers that we conservatively classify as non-
dynamic (using the first two heuristics described in Section 3.3).
We used linear regression to fit lines to the new arrivals after 1.5
days, which is shown as the dashed and dotted lines in the figure.
The the total arrival rate line has a slope of 51,666, while the slope
of non-dynamic arrival rate line has a slope of 6,572 (a factor of
8 smaller!), suggesting that the arrival rate of new dynamic IPs to
this subset of Akamai regions is roughly 31 per minute. Since this
subset is composed of roughly one eighth of Akamai’s regions, the
global arrival rate of LDNS servers on dynamic IPs may be much
higher.

This arrival rate is an overestimate, since our non-dynamic clas-
sification heuristics are conservative (observe that if most servers
that appear during the first 1.5 days are using non-dynamic IPs,
then our estimate may be off by a factor of 4). However, arrival
rates differ by a factor of 8, so we can still conclude that the the
actual arrival rate of new dynamic IPs is still very high (though
eventually the dynamic IP pools will be exhausted). Unless explic-
itly guarded against, future federated services may have to manage
these “servers” in addition to the aliasing effects of dynamic IPs.
The LDNS deployment model allows anyone to establish their own
local nameserver, and it appears that “anyone” will, whether inten-
tionally or not.



4.5 Deployment Styles
We conclude our measurement results by providing a prelimi-

nary examination of how particular organizations deploy and con-
figure their various DNS servers to respond to local queries – i.e.,
how many DNS servers do they deploy and how the load distributed
across these servers. We refer to this as the LDNS deployment style.
For example, some organizations may just deploy a single local
DNS server to answer all local queries. Other organizations could
deploy a collection of local DNS servers each serving a fraction
of the request volume. For this analysis, we used a trace of DNS
requests made to 80% of active Akamai servers during one day in
December 2003, similar to that used to derive ldns-load (the
larger coverage of Akamai sites in this trace allows us to obtain a
more complete view of organizations that access Akamai).
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Figure 14: Number of LDNS servers: A CDF of the number of
LDNS servers observed within each organization. The x-axis is
in log-scale. Note that the all servers, .net, and .com lines extend
beyond the right-edge of the graph; in particular, the .net line
does not reach 1 until about 11,000.
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Figure 15: Deployment examples: A CDF of the relative load
on LDNS servers (i.e., number of requests made by the server)
for three different organizations. The x-axis is in log-scale. The
number of LDNS servers in A1.edu, B1.net and C1.com are 84,
1710 and 27, respectively.

Figure 14 shows a CDF of the number of LDNS servers we ob-
served in all organizations. Although most organizations appear to
have only a single LDNS server deployed, .edu organizations are
clearly more likely to have multiple servers. However, .net organi-
zations, which are typically ISPs, are the most likely to have a very
large number of LDNS servers (more than 50). Note that we can

not distinguish multiple LDNS servers behind a firewall or NAT de-
vice; this limitation may contribute to the smaller number of LDNS
servers observed in .com organizations, since presumably they are
more likely to employ such devices.

Figure 15 shows the relative load distributions across LDNS
servers (including dynamic ones) in three different organizations,
a .com, a .net, and a .edu. We use the domain name of an LDNS
to identify the organization that it “belongs to”. For a .edu (uni-
versities) or .com (enterprises) site, this approach will only iden-
tify LDNS servers that are deployed and maintained by the site.
However, this does not hold true for .net organizations, which
are typically ISPs and backbone carriers. For example, an LDNS
server dynip-1-2-3-4.B1.net will be classified as “belong-
ing” to B1.net, while it probably belongs to a small customer of
B1.net. In the case of .net organizations, therefore, our approach
identifies nameservers whose traffic is carried by the ISP and which
are still dependent on the ISP for connectivity and persistent avail-
ability.

As Figure 15 shows, a large number of LDNS servers in B1.net
generate very few requests (80% of servers generate less than 100
requests to Akamai during the course of the day). Also, a very small
fraction of LDNSs generate a large number of requests (2% of
LDNSs each generate 100,000 requests to Akamai during the day).
At the other extreme, a much smaller fraction of LDNS servers in
C1.com are lightly loaded (only about 15% of LDNS servers gen-
erate less than 100 requests to Akamai each). Also, there exist a
few servers that generate intermediate and very high request vol-
umes. Finally, the curve for servers in A1.edu is in between these
two extremes with a much wider variety of relative loads across the
servers.

In Figure 16, we show other examples of relative LDNS loads for
well known .edu (Figure 16(a)), .net (Figure 16(b)) and .com (Fig-
ure 16(c)) sites. Notice that, with the exception of A2.edu, all
.edu sites in Figure 16(a) roughly follow the same trend as A1.edu
in Figure 15. A2.edu likely shows different behavior because it
shares DNS servers with a local ISP. The trend among the differ-
ent .net sites (Figure 16(b)) is again similar to that of B1.net in
Figure 15. However we do not observe as clear a common pat-
tern among the different .com sites (Figure 16(c)). For example,
while C2.com and C1.com have similar characteristics, C3.com
is more similar to the style we observe for .edu sites.

In general, the load distribution among an organization’s de-
ployed LDNS servers seems to belong to one of three broad va-
rieties as we show in Figure 15. In the future, we plan to further
investigate the underlying trade-offs that lead to these classes of
deployment.

4.6 Summary of Measurements
What conclusions can we draw from our observations about DNS

server characteristics? First, we conclude that the majority of users
are likely to be using only a small number of the LDNS servers
deployed. The majority of DNS requests sent over the wide area are
for a small number of ADNS servers. These results imply that the
distribution of user populations behind particular servers in DNS is
highly skewed.

Second, we observe from our results that the majority of both
LDNS and ADNS servers are highly available: most were always
available during our two week observation. For those that had un-
availability periods, time to failure typically lasted days, weeks, or
longer, and recovery times typically lasted less than a few hours.
A non-trivial fraction had “one 9” or less of availability, but with
replication at independent points in the network, we believe DNS
service is almost always available. Moreover, servers that are used
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Figure 16: DNS server deployment styles: The figures show the CDF of the relative load on LDNS servers (i.e., number of requests
made by the server) for three different types of organizations: .edu sites (universities, (a)), .net sites (Internet service providers and
backbone carriers, (b)) and .com sites (commercial enterprises, (c)).

more frequently are more likely to be available for a larger fraction
of time. Although the correlation between frequency of use and
availability is probably not large enough to make predictive esti-
mates, it does bode well considering the significant skew in usage
across nameservers.

Third, we find that there is significant diversity in deployment
styles within different organizations. Some organizations, such
as ISPs, are comprised of both very highly used and very lightly
used nameservers, while others, such as commercial enterprises,
only have several medium and highly used servers. The deploy-
ment style may reflect the departmentalization within organiza-
tional boundaries or load balancing among multiple servers.

Finally, we make the observation that LDNS servers have much
more diversity in their attributes than ADNS servers. For example,
we found that about 2% of the LDNS servers that had less than per-
fect availability exhibited diurnal patterns of availability and that a
large number of “new” LDNS servers appeared to be arriving over
time, as it appears that many are using dynamic IP addresses, many
of which are behind DSL, cable, or dial-up links. This diversity
probably contributes to the higher availability that we observe in
ADNS servers and suggests that unless guarded against, infrastruc-
tures deployed in a manner similar to LDNS servers will face more
heterogeneity than those deployed like ADNS servers.

5. APPLICATION TO DHTS
As an example of applying DNS measurements to the design of

a federated distributed system, we model the effect of dedicated
infrastructure with similar availability characteristics as DNS on a
Distributed Hash Table (DHT).8 A DHT is a fundamental building
block in several proposed Internet-scale infrastructures [18, 20,
28, 33, 35]. In such DHT-based systems, availability governs the
degree of churn, which impacts stability and performance [21, 29].
Figure 17 shows the setup of our simulation, which is similar to
that of the study conducted by Li et al. [21]. Infrastructure servers
could be deployed in a federated manner similar to LDNS — for
example, an infrastructure node could be used as a “well-known
node” that directs initial queries, thus serving a role similar to an
LDNS server.

8Note that we do not propose that DNS should be run on a DHT
(though others have proposed so), only that other services imple-
mented using a DHT might deploy infrastructure in a similar fash-
ion to that of DNS.

Parameter Setting and Description

Environment 1024 nodes simulated in p2psim [26].
Network topology Pairwise latencies of 1024 DNS servers collected using the

King method [14] by Li et al. [21].
DHT algorithm Chord [34] with proximity neighbor selection.
Lookup rate 1 per node using exponentially distributed arrival intervals

with mean 2 minutes.

Time to Failure and Recovery
Client nodes Modeled after clients seen in an operational peer-to-peer

file-sharing network [13]: Exponentially distributed time
to failure with mean 2.4 minutes. Time to recovery is also
exponentially distributed with mean 2.4 minutes.

Server nodes Modeled after LDNS servers measured in our study:
37.8% use the empirical LDNS time to failure distribution
(see LDNS with short failures data in Figure 10); the rest
of the servers were never seen to fail, so we pessimistically
model them as failing with an exponentially distributed
mean time to failure of two weeks. All use the empirical
LDNS time to recovery distribution.

Figure 17: DHT simulation setup: Parameters used in our
DHT simulations.

Using parameters derived from our DNS measurements, we show
how dedicated infrastructure nodes can significantly reduce the over-
head bandwidth in a DHT. Overhead bandwidth comes in two forms:
lookup traffic and maintenance traffic. Lookup traffic scales pro-
portionally to the lookup rate and to the log of the size of the net-
work in Chord. Maintenance traffic depends on the maintenance
interval, the inverse of how often a node checks that all of its neigh-
bors are still alive and repairs broken overlay links — longer inter-
vals incur less maintenance traffic. If nodes leave frequently, the
maintenance interval must be shorter in order to prune stale routing
data. Likewise, if some nodes are part of a dedicated infrastruc-
ture, the interval can be longer. Efficiency mandates a maintenance
interval inversely proportional to the lookup rate or longer. But
reliability requires the maintenance interval to be proportional to
the average lifetime or shorter. Hence, when the lookup rate and
lifetime are inversely proportional, extending the lifetime will sub-
stantially decrease maintenance traffic.

Figure 18 shows our simulation results, varying the fraction of
dedicated infrastructure nodes (servers) and end-user nodes (clients)
in the DHT. With a portion of nodes acting as dedicated infrastruc-
ture, we can achieve similar reliability while decreasing bandwidth
(or maintain bandwidth and improve reliability). For example, if
a quarter of the nodes are servers rather than clients, the network
requires roughly half the bandwidth to achieve similar reliabilities.
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Figure 18: Simulation results: This figure shows how vary-
ing the maintenance interval impacts the amount of overhead
traffic incurred by each node in the DHT (dashed lines), and
the rate of failed lookups (solid lines). We vary the fraction
of dedicated infrastructure nodes (servers) and end-user nodes
(clients) in the DHT. Results from a DHT composed completely
of server nodes (1024 servers, 0 clients) are omitted for clarity,
but would have less than 0.2% lookups fail even with a main-
tenance interval of 12 hours and would follow the downward
trend of overhead traffic.

Our simulation results show that having infrastructure with fail-
ure properties no better than that of LDNS servers allows DHT
maintenance to be performed much less frequently while still
achieving a high rate of successful lookups. Other observations
from our measurement study may also have implications for DHTs.
For example, we saw that the number of requests generated by
LDNS servers was highly skewed; hence in a federated DHT, there
may a few nodes that generate the majority of the lookups. In such
a scenario, measures might need to be taken in order to more fairly
balance the load required to route these lookups. In addition, cer-
tain deployment styles within organizations may be amenable to
more hierarchical overlay construction. We leave this for future
work.

6. RELATED WORK
In this section, we provide brief surveys of related work on DNS

characterization, availability measurements, and the impact of churn
on DHT performance.

6.1 DNS
Danzig et al. [11] presented the first comprehensive study of

DNS traffic in the wide area. Using measurements at a root name
server, they found a large number of misbehaving local DNS re-
solvers and analyzed the characteristics of DNS traffic. Brownlee
et al. [6, 7] discuss more recent measurements taken at the root
name servers and continue to find a large number of illegitimate
queries in DNS traffic. Liston et al. [22] studies DNS traffic from
the client vantage point and analyzes their diversity across sites.
Jung et al. [17] also examined DNS traces from two local DNS
servers and analyzed the impact of caching of A-records in DNS
as well as the setting of TTLs on client performance. Our study, in
contrast, looks primarily at the characteristics of the DNS infras-
tructure instead of the particular traffic characteristics. Ramasub-
ramanian and Sirer [28] also examined characteristics of the au-
thoritative DNS hierarchy, such as the prevalence of bottlenecks in
name resolution and the number of nameservers containing known
security vulnerabilities.

Both Shaikh et al. [32] and Mao et al. [24] analyzed the prox-
imity of clients to their local DNS servers. They found that a fair
number of clients were not close to their local DNS server and their
performance could be improved by using a more proximal server,
such as one in their network aware cluster. Cranor et al. [10] looked
at the distribution of ADNS and LDNS servers found by looking at
DNS traffic and grouped them using network aware clustering. We
performed a similar analysis by clustering based on domain names,
which are likely to reflect administrative domains.

6.2 Availability
Several recent studies [30, 5, 31] have analyzed the availability

of participants of peer-to-peer file-sharing systems. Long et al. [23]
studied the availability of hosts on the Internet, and their study is
perhaps the most similar to ours; however, we focus on the avail-
ability of dedicated infrastructure and our measurements are much
more recent (their study was conducted in 1995).

6.3 DHTs and Churn
Li et al. [21] and Rhea et al. [29] have examined the impact of

churn on DHTs and devise mechanisms for managing extremely
low mean time to failures. Our evaluation suggests that such mech-
anisms are unnecessary in an infrastructure based system because
the infrastructure allows for very low maintenance traffic exchange
rates.

7. SUMMARY
In this paper, we presented measurements of a large number of

local and authoritative DNS servers and analyzed their load, avail-
ability, and deployment characteristics.

Our key findings are that a large fraction of all end-users use
a small number of local DNS servers. We found that a signifi-
cant fraction of local DNS servers are highly available, without a
single observed failure, with authoritative servers generally having
higher availability. We found evidence that there is a slight pos-
itive correlation between usage and availability of DNS servers.
We also observed a large degree of diversity in local DNS server
deployment and usage: many servers originated from dynamic IP
addresses pools. Also, some servers exhibited diurnal availability
patterns. Finally, we observed that local DNS server deployments
within organizations also tend to be diverse, ranging from a very
few highly used servers to a very large number of lightly loaded
ones.

Our observations shed new light on characteristics of DNS in-
frastructure. They are are also important to the study of future in-
frastructure services deployed in a federated manner. For example,
we simulated a Distributed Hash Table using availability character-
istics similar to DNS and showed how much infrastructure support
improves reliability and decreases overhead.
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