
Holistic Query Transformations for Dynamic Web Applications

Amit Manjhi∗, Charles Garrod†,

Bruce M. Maggs†‡, Todd C. Mowry†, Anthony Tomasic†

∗Google, Inc. †Carnegie Mellon University ‡Akamai Technologies

Abstract

A promising approach to scaling Web applications is to

distribute the server infrastructure on which they run. This

approach, unfortunately, can introduce latency between the

application and database servers, which in turn increases

the network latency of Web interactions for the clients (end

users). In this paper we introduce the concept of source-to-

source holistic transformations—transformations that seek to

optimize both the application code and the database requests

made by it, to reduce client latency. As examples of our con-

cept, we propose and evaluate two source-to-source holistic

transformations that focus on hiding the latencies of database

queries. We argue that opportunities for applying these trans-

formations will continue to exist in Web applications. We then

present algorithms for automating these transformations in a

source-to-source compiler. Finally, we evaluate the effect of

these two transformations on three realistic Web benchmark

applications, both in the traditional centralized setting and a

distributed setting.

1. Introduction

Anyone on the Internet can access a Web application. As

a result, Web applications suffer from unpredictable load,

particularly due to breaking news (e.g., Hurricane Katrina)

or popularity spikes (e.g., the Slashdot effect). To address

the scalability challenge, Web applications increasingly use

a distributed infrastructure. The distributed infrastructure in-

evitably introduces latency between the different tiers of the

application, which in turn increases the latency experienced

by users. User studies [1, 2] have shown that high user laten-

cies drive customers away. Therefore user latencies must be

kept low even when using a distributed architecture.

To ensure low user latencies, it is important to understand

how this latency arises. A Web application is a collection

of programs. On an HTTP request, an application server

runs one or more of these programs to generate the response.

These programs, in turn, issue database queries to obtain the

data needed for generating the response. Frequently, the pro-

grams issue multiple database queries for each HTTP inter-

action: e.g., for the benchmark applications we study, the av-

erage number of queries per dynamic HTTP response varies

between 1.8 and 9.1.

In a traditional centralized setting, these database queries

are answered by a database server that is in the same adminis-

trative domain and connected to the application server(s) by a

high bandwidth, low latency link. As a result, these multiple

(a) Latency in a traditional centralized architecture.

(b) Latency in a distributed architecture.

Figure 1: Latency in traditional vs. distributed architectures.

round-trips have little impact on the overall latency a user ex-

periences. The user latency is dominated by the high latency

of reaching the web server of the application. Figure 1(a)

shows the different latency components in a traditional cen-

tralized setting.

In a distributed setting, an application may use geograph-

ically distributed Content Delivery Network (CDN) nodes to

scale its web and application servers and geographically dis-

tributed Database Scalability Service (DBSS) nodes to scale

its database [5, 7]. The database queries issued by an appli-

cation server are handled by a DBSS node, which attempts

to answer these queries from its query-result cache. If the

request hits in the DBSS cache, the delay in obtaining the

query result is minimal. However, if the request misses in the

cache, the user must endure the delay in getting the response

back from the home server database. This delay is typically

long because the scalability service nodes are geographically

distributed. Figure 1(b) shows the different latency compo-

nents in a scalability service setting. Even after methods to

boost the cache hit rate are employed by scalability service

nodes, users are likely to experience high latency if multiple

database requests miss the cache on an HTTP request.

To reduce the client latency, it is desirable to either elimi-

nate database requests or hide their latencies. There are sev-

eral reasons why opportunities to do so appear in current Web

applications. First, these applications are typically written

for a traditional centralized setting, in which there is mini-

mal overhead in issuing multiple database requests. Not ex-

pecting a distributed environment, application developers fre-

quently do not optimize for the number of database requests

the application issues. Second, application developers often

abstract database values as objects in the program, a paradigm

that is also adopted by Object Relational Mapping tools [3, 9].

If they need multiple values, they just issue multiple queries.

Third, there are instances where it is easier for developers to

express their main logic in the procedural language because it

is closer to how the data is actually presented to the user.

In this work we propose two transformations that rewrite

the application code to either eliminate database requests or

hide their latencies. Our first transformation, the MERG-

ING transformation, eliminates queries by clustering related

queries. Our second transformation, the NONBLOCKING

transformation, hides the long latency in fetching query re-

sults, by overlapping the execution of queries.

Web applications are commonly written in a procedu-

ral language like Java or PHP whereas they issue database

queries in a declarative language, typically SQL. Both trans-

formations that we propose change the database queries as

well as the application code surrounding them. They af-

fect the program as a whole. Therefore we call them holis-

tic transformations. To evaluate their effectiveness, we have

applied it to three benchmark applications. While we cur-

rently applied them manually, we believe that the algorithms

(described in the extended technical report version of this pa-

per [6]) should be straightforward to automate in a source-to-

source compiler [4, 8]. We also defer the detailed discussion

of these two transformations and the related work to the tech-

nical report [6].

2. The MERGING Transformation: Clustering
Related Queries

We explain the MERGING transformation using an illus-

trative example. Consider the code fragment in Figure 2(a),

which is taken from the AUCTION benchmark. The program

issues several short related queries and then combines their re-

sults. In a DBSS setting, for each query that results in a cache

miss at the DBSS node, the user must endure the long delay

of accessing the home server database. Assuming a constant

hit rate at the DBSS cache, the client latency is proportional

to the number of queries issued in an HTTP interaction. The

MERGING transformation transforms the code to the equiva-

lent code in Figure 2(b), merging all of the short inter-related

queries into one join query. The program then needs to issue

just one query instead of the previous N+1 queries, assuming

the loop is repeated N times.

In the technical report [6], we discuss the effect we ex-

pect the MERGING transformation to have on the total work

done by the system, identify the code patterns to which we

can apply the transformation, and describe our algorithms for

implementing the transformation.

3. The NONBLOCKING Transformation:
Prefetching Query Results

$template:=SELECT from user id

FROM comments

WHERE to user id = ?;

$query:=set params ($template, $to id);

$result:=execute ($query);

foreach ($row in $result) {

$from id:=get user id ($row);

$template:=SELECT user name

FROM users

WHERE user id = ?;

$query:=set params ($template, $from id);

$result2:=execute ($query);

}

(a) Original code

$template:=SELECT from user id, user name

FROM comments, users

WHERE from user id = user id

AND to user id = ?;

$query:=set params ($template, $to id);

$result:=execute ($query)

(b) After the MERGING transformation

Figure 2: A code fragment from the AUCTION application, be-

fore and after applying the MERGING transformation. The code,

an example of the Loop-to-join pattern, finds the names of users

who have posted comments about a particular user. We fo-

cus on two base relations: users with attributes user id and

user name, and comments with attributes from user id

and to user id.

After issuing a database query, a Web application waits for

the query result. In some cases this wait is unnecessary be-

cause the next database query does not depend on the answer

to the current query. In such cases, the client latency can be

greatly reduced by overlapping the query executions. In this

section we present the NONBLOCKING transformation, which

can overlap executions of multiple queries that do not depend

on each other by “prefetching” query results.

To illustrate how this transformation can be applied to

a code fragment, consider Figure 3, which shows two

functionally equivalent code fragments from the BOOK-

STORE application. Figure 3b shows the code after ap-

plying the NONBLOCKING transformation. The method

execute non blocking does not block and only serves to

populate the cache with the query result. If the latency of

the first database request is ta and the latency of the second

request is tb, this transformation reduces the overall latency

from ta + tb to max{ta, tb}.

Ideally, whenever the program that dynamically generates

the HTTP response starts running, we would like to issue

prefetch requests for all queries that the program will issue

during its execution. However, issuing a prefetch request for

each query, at the start of the program’s execution, is not al-

ways possible because: (1) one of the parameters of the query

may be the result of a previous query, (2) the query may be

conditionally issued and the condition uses the result of a pre-

$template1:=SELECT item name

FROM items i1, items i2

WHERE i1.id = i2.related

AND i2.id = ?;

$query1:=set params ($template1, $id);

$result1:=execute ($query1);

$template2:=SELECT user name FROM users

WHERE user id = ?;

$query2:=set params ($template1, $user id);

$result2 := execute ($query2);

(a) Original code

$template2:=SELECT user name FROM users

WHERE user id = ?;

$query2:=set params ($template2, $user id);

execute non blocking ($query2);

$template1:=SELECT item name

FROM items i1, items i2

WHERE i1.id = i2.related

AND i2.id = ?;

$query1:=set params ($template1, $id);

$result1:=execute ($query1);

$result2:=execute ($query2);

(b) After the NONBLOCKING transformation

Figure 3: A simplified code fragment from the BOOKSTORE ap-

plication, which finds the name of an item related to the item the

user is viewing and the name of the user, given her id. We fo-

cus on two base relations: users with attributes user id and

user name, and items with attributes item id, item name,

and related.

vious query, and (3) there may be an update statement before

the query that may affect the query result.

Formally, each program of a Web application can be rep-

resented as a directed acyclic graph, where the nodes are

database accesses, and there is an edge between two nodes if

one node has to be executed after the other node for correct-

ness. Given this directed acyclic graph, a database access can

be issued as soon as all database accesses that are its ances-

tors in the directed acyclic graph have completed. With this

formulation, the client latency can be reduced significantly.

This transformation normally does not change the amount

of work that must be done, it just improves the scheduling of

the work. However, if a prefetch is issued for a query that

is conditionally executed, the result of the prefetch will not

always be used. While issuing such “speculative” prefetches

increases the total work in the system, it allows trading off

reduced latency for extra work. For our evaluation, we is-

sued speculative prefetches whenever possible because more

often than not, the result of the prefetches would be useful.

The prefetches were wasted only when an error occurred in

the execution of a query – an infrequent occurrence for the

applications we studied.

In the technical report [6], we outline an algorithm for ap-

plying this transformation automatically and discuss imple-

mentation issues relating to this transformation.

��

��

�
�
�
�

��

 No Transformations
 MERGING
 NONBLOCKING
 Both Transformations

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

 0

 700

 1,400

 2,100

 2,800

ViewStory BrowseStoriesByCategory

A
v
er

ag
e

la
te

n
cy

 i
n
 m

s

Figure 4: Impact of the MERGING and NONBLOCKING trans-

formations on latency. We show the average latency for two dy-

namic interactions in the BBOARD benchmark. The graph shows

that the MERGING transformation has a significant impact on the

average latency.

����

����

��
��
��
��

����
����

 Database
 Latency DBSS−Database
 DBSS
 Latency CDN−DBSS
 Client latency

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
�� ������ 0

 200

 400

 600

 800

 1,000

No_Transformations Both_Transformations

A
v
er

ag
e

la
te

n
cy

 i
n
 m

s

Figure 5: Impact of the two transformations on the average

latency of a dynamic interaction in the BBOARD application, ex-

ecuting in a DBSS setting.

4. Evaluation

Due to space constraints, we provide only partial re-

sults here (detailed results are in [6]). We evaluate the

two transformations–MERGING and NONBLOCKING–by ap-

plying them to three publicly available benchmark applica-

tions, which we refer to as AUCTION, BBOARD, and BOOK-

STORE. In Section 4.1 we evaluate the effects of these trans-

formations on latency, both in the traditional centralized set-

ting as well as the DBSS setting. In Section 4.2 we list the

frequencies with which the two transformations apply to our

benchmark applications. We defer detailed “coverage” results

of the transformations and their impact on “scalability” to [6].

4.1 Latency Impact of the Transformations

For our experiments, we used the setup of Figure 1(b). The

latency between the client and the CDN node was 5ms, be-

tween the CDN node and the DBSS node was 5ms, and be-

tween the DBSS node and the home server was 100ms.

Figure 5 evaluates the impact of the two transformations on

the average latency of a dynamic interaction in the BBOARD

application, executing in a DBSS setting. (We chose BBOARD

because the latency effects of the transformations on BBOARD

is the highest.) The latency consists of five components: the

client latency including the execution time at the CDN, the

network latency from the CDN to the DBSS, the time spent

Table 1: Runtime HTTP interactions in which the MERGING

and NONBLOCKING transformation apply. The “either” column

represents interactions in which at least one of the two transfor-

mations apply. The “static” column represents interactions in

which a static HTML file is returned (clearly, neither transfor-

mation can apply to such interactions).

% of runtime HTTP interactions

MERGING NONBLOCKING

Application Static applied applied Either

AUCTION 15.9% 15.2% 3.8% 15.7%

BBOARD 7.4% 69.8% 28.5% 70.1%

BOOKSTORE 0.0% 0.8% 58.6% 59.4%

at the DBSS, the latency from the DBSS to the database, and

the time spent at the database. Almost all the latency decrease

is due to a reduction in the network latency from the CDN to

the DBSS.

Figure 4 shows the effect of the transformations on the av-

erage latency, for two popular interactions in the BBOARD ap-

plication, executing in a DBSS setting. Applying both trans-

formations reduces latency by over 50%. Of the two trans-

formations, the MERGING transformation causes a greater re-

duction in latency. The two transformations: MERGING and

NONBLOCKING, are complementary. While the MERGING

transformation can be applied only when the queries are re-

lated, the NONBLOCKING transformation can be applied only

when the queries are not related. Consequently, we expect

that applying both transformations results in the lowest la-

tency, a hypothesis Figure 4 confirms.

4.2 Applicability of the Transformations

Table 1 lists the percentage of runtime HTTP interactions

in which these transformations apply. The “either” column

represents interactions in which at least one of the two trans-

formations apply. The “static” column represents interactions

in which a static HTML page is returned. Clearly, neither

transformation can apply to such interactions. Even after in-

cluding the static interactions (interactions which return an

HTML file), one of these transformations applied to over

15%, 70%, and 59% of all runtime HTTP interactions for

the AUCTION, BBOARD, and the BOOKSTORE benchmarks,

respectively. For the BBOARD application, the MERGING

transformation applies to over 69% of all HTTP interactions;

this high percentage is one of the reasons why the MERG-

ING transformation is particularly effective in reducing la-

tency (Figure 4) of the BBOARD application. A similar ar-

gument can be made for the NONBLOCKING transformation

and the BOOKSTORE application.

5. Summary

To meet their scalability needs, Web applications increas-

ingly use a distributed server infrastructure. Inevitably, the

network latency between the application and database servers

increases in such settings. Two examples of such settings

are: (i) a DBSS setting [5, 7] where different third party ser-

vices may manage the application server(s) and the database

server(s), (ii) a shared Web-service hosting scenario where

the application and the database server typically run on sep-

arate clusters of machines, and typical latencies are between

16ms and 20ms [10]. Since a single HTTP request of a dy-

namic Web application typically results in multiple database

queries, even a slight increase in the latency between the

application and database server(s) increases the client la-

tency significantly. In this work we proposed two holis-

tic transformations—MERGING and NONBLOCKING—which

can be implemented in a source-to-source compiler [4, 8].

These transformations reduce the latency by either clustering

related queries or overlapping query execution. By manually

inspecting our application code, we found opportunities to ap-

ply these transformations in 18.7%, 75.7%, and 59.4% of all

dynamic interactions at runtime for the AUCTION, BBOARD,

and the BOOKSTORE, respectively. These two transforma-

tions will continue to be useful as the two trends— using

distributed infrastructures and issuing more database requests

per HTTP requests—continue.

References

[1] Akamai Technologies Inc. and Jupiter Research Inc. Aka-

mai and Jupiter Research identify ‘4 seconds’ as the new

threshold of acceptability for retail web page response times.

http://www.akamai.com/html/about/press/

releases/2006/press_110606.html.

[2] Akamai Technologies Inc. and Quocirca. Akamai

and Quocirca identify ’4 second’ performance thresh-

old for European web-based enterprise applications.

http://www.edgejava.net/html/about/press/

releases/2007/press_110707.html.

[3] Hibernate. Relational persistence for Java and .NET. http:

//www.hibernate.org.

[4] L. J. Hendren et al. Soot: a Java optimization framework.

http://www.sable.mcgill.ca/soot/.

[5] A. Manjhi, A. Ailamaki, B. M. Maggs, T. C. Mowry, C. Olston,

and A. Tomasic. Simultaneous scalability and security for data-

intensive web applications. In Proc. SIGMOD, 2006.

[6] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and

A. Tomasic. Holistic query transformations for dynamic web

applications. Technical Report CMU-CS-08-160, Carnegie

Mellon University, 2008.

[7] A. Manjhi, P. B. Gibbons, A. Ailamaki, C. Garrod, B. M.

Maggs, T. C. Mowry, C. Olston, and A. Tomasic. Invalidation

clues for database scalability services. In Proc. ICDE, 2007.

[8] ObjectWeb Consortium. ASM. http://asm.

objectweb.org.

[9] Ruby on Rails. Active Records. http://www.

rubyonrails.org.

[10] Simple measurements on the infrastructure of Dreamhost,

a leading Web-hosting company. http://www.

dreamhost.com/.

