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Abstract

In this paper, we prove that there exists a schedule for routing any
set of packets with edge-simple paths, on any network, in O(c+d) steps,
where c is the congestion of the paths in the network, and d is the length
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parallel machines, network emulations, and job-shop scheduling.
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1 Introduction

Packet routing plays a central role in the design of large-scale parallel com-
puters. Simply stated, packet routing consists of moving packets of data
from one location to another in a network. The goal is to move all of the
packets to their desired locations as quickly as possible, and with as lit-
tle queuing as possible. The packet routing problem has been extensively
studied, and we refer the reader to [5] for a broader coverage of the topic.

The method of packet routing considered in this paper is known as store-

and-forward routing. In a store-and-forward routing algorithm, packets are
viewed as atomic objects. At each step, a packet can either wait in a queue
or jump from one queue to another.

Figure 1 shows a graph model for store-and-forward routing. The shaded
nodes labeled 1 through 5 in the figure represent processors or switches, and
the edges between the nodes represent wires. A packet is depicted by a
square box containing the label of its destination. The goal is to route the
packets from their origins to their destinations via a series of synchronized
time steps, where at each step at most one packet can traverse each edge.

Packets wait in three different kinds of queues. Before the routing begins,
packets are stored at their origins in special initial queues. For example,
packets 4 and 5 are stored in the initial queue at node 1. When a packet
traverses an edge, it enters the edge queue at the end of that edge. A
packet can traverse an edge only if at the beginning of the step the edge
queue at the end of that edge is not full. In the example of Figure 1 the
edge queues can hold two packets. Upon traversing the last edge on its
path, a packet is removed from the edge queue and placed in a special final

queue at its destination. For simplicity, the final queues are not shown in
Figure 1. Independent of the routing algorithm used, the size of the initial
and final queues are determined by the particular packet routing problem
to be solved. Thus, any bound on the maximum queue size required by a
routing algorithm refers only to the edge queues.

This paper focuses on the problem of timing the movements of the pack-
ets along their paths. A schedule for a set of packets specifies which move
and which wait at each time step. Given any underlying network, and any
selection of paths for the packets, our goal is to produce a schedule for the
packets that minimizes the total time and the maximum queue size needed
to route all the packets to their destinations.

Of course, there is a strong correlation between the time required to
route the packets and the selection of the paths. In particular, the maximum
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Figure 1: A graph model for packet routing.
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Figure 2: A set of paths for the packets with dilation d = 3 and congestion
c = 3.

distance, d, traveled by any packet is always a lower bound on the time. We
call this distance the dilation of the paths. Similarly, the largest number
of packets that must traverse a single edge during the entire course of the
routing is a lower bound. We call this number the congestion, c, of the
paths. For example, see Figure 2.

Given any set of paths with congestion c and dilation d in any network,
it is straightforward to route all of the packets to their destinations in cd
steps using queues of size c at each edge. Each packet can be delayed at
most c − 1 steps at each of at most d edges on the way to its destination
(since the queues are big enough so that packets can never be delayed by a
full queue in front.)

In this paper, we show that there are much better schedules. We begin
in Section 2 with a randomized on-line algorithm that produces a schedule
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of length O(c + d log(Nd)) using queues of size O(log(Nd)), where N is
the total number of packets. This algorithm is close to optimal when c is
large. Our main result appears in Section 3. It establishes the existence
of a schedule using O(c + d) steps and constant-size queues at every edge,
thereby achieving the naive lower bounds for any routing problem.

The proof of the main result is nonconstructive. However, the result
still has several applications, as described below. In addition, the result is
highly robust in the sense that it works for any set of edge-simple paths and
any underlying network. (Ā priori, it would be easy to imagine that there
might be some set of paths on some network that required more than Ω(c+d)
steps or nonconstant queues to route all the packets.) Furthermore, the main
result can be made constructive using the recently discovered algorithmic
version of the Lovász Local Lemma [1, 2]. A manuscript describing the
algorithm is in preparation [7].

If a particular routing problem is to be performed many times over,
then the time required to compute the optimal schedule once becomes less
important. This situation arises in network emulation problems. Typically,
a guest network G is emulated by a host network H by embedding G into H.
(For a more complete discussion of emulations and embeddings, see [3].) An
embedding maps nodes of G to nodes of H, and edges of G to paths in H.
There are three important measures of an embedding: the load, congestion,
and dilation. The load of an embedding is the maximum number of nodes of
G that are mapped to any one node of H. The congestion is the maximum
number of paths corresponding to edges of G that use any one edge of H.
The dilation is the length of the longest path. Let l, c, and d denote the load,
congestion, and dilation of the embedding. Once G has been embedded in
H, H can emulate G in a step-by-step fashion. Each node of H first emulates
the local computations performed by the l (or fewer) nodes mapped to it.
This takes O(l) time. Then for each packet sent along an edge of G, H sends
a packet along the corresponding path in the embedding. Using the main
result of this paper, routing the packets to their destinations takes O(c + d)
steps. Thus, H can emulate each step of G in O(l + c + d) steps.

In a related paper, Leighton, Maggs, Ranade, and Rao [6] show how to
route packets in O(c+L+log N) steps using a simple randomized algorithm
provided that the underlying network is leveled and has depth L. As a
consequence, optimal routing algorithms can be derived for most of the
networks that are commonly used for parallel computation. Unfortunately,
it seems to be difficult to extend this result to hold for all networks. In fact,
we have considered many simple on-line algorithms (including the algorithm
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presented in [6]), and found routing problems for each algorithm that result
in schedules that use asymptotically more than Ω(c+d+log N) steps. Several
of these examples are included in Section 4.

The results of this paper also have applications to job-shop scheduling. In
particular, consider a scheduling problem with jobs j1, . . . , jr, and machines
m1, . . . , ms, for which each job must be performed on a specified sequence
of machines. In our application, we assume that each job occupies each
machine that works on it for a unit of time, and that no machine has to
work on any job more than once. Of course, the jobs correspond to packets,
and the machines correspond to edges in the packet routing problem. Hence,
we can define the dilation of the scheduling problem to be the maximum
number of machines that must work on any job, and the congestion to be
the maximum number of jobs that have to be run on any machine. As
a consequence of our packet routing result, we show that any scheduling
problem can be solved in O(c + d) steps. In addition, we will prove that
there is a schedule for which each job waits at most O(c + d) steps before
it starts running, and that each job waits at most a constant number of
steps in between consecutive machines. The queue of jobs waiting for any
machine will also always be at most a constant. These results are optimal,
and are substantially better than previously known bounds for this problem
[4, 10].

Recently some results were proved in [11] for the more general problem
of job-shop scheduling where jobs are not assumed to be unit length and
a machine may have to work on the same job more than once. They give
randomized and deterministic algorithms that produce schedules that are
within a polylogarithmic factor of the optimal length for the more general
job-shop problem. However, it is not known whether there exist schedules
of length O(c + d) for this problem.

This paper also leaves open the question of whether or not there is an
on-line algorithm that can schedule any set of paths in O(c + d) steps using
constant-size queues. We suspect that finding such an algorithm (if one
exists) will be a challenging task. Our negative suspicions are derived from
the fact that we can construct counterexamples to most of the simplest
on-line algorithms. In other words, for several natural on-line algorithms
we can find paths for N packets for which the algorithm will construct a
schedule using asymptotically more than Ω(c + d + log N) steps. Several of
the counterexamples are included in Section 4.
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2 An on-line algorithm

There is a simple randomized on-line algorithm for producing a schedule
of length O(c + d log(Nd)) using queues of size O(log(Nd)), where c is the
congestion, d is the dilation, and N is the number of packets.

First, each packet is assigned a delay chosen randomly, independently,
and uniformly from the interval [1, αc

log(Nd) ], where α is a constant that will
be specified later. A packet that is assigned a delay of x waits in its initial
queue for x time steps, and then moves on to its final destination without
ever stopping.

The trouble with this schedule is that several packets may traverse the
same edge in a single step. However, we can bound the number of packets
that are likely to do so. The probability that more than log(Nd) packets
use a particular edge g at a particular time step t is at most

c
∑

k=log(Nd)+1

(

c

k

)

(

log(Nd)

αc

)k (

1 − log(Nd)

αc

)c−k

,

since at most c different packets pass through g, and for each of these, at
most one of the αc

log(Nd) possible delays sends it through g at step t. This sum

is at most
( c
log(Nd)

)

(log(Nd)/αc)log(Nd). To bound the probability that more

than log(Nd) packets pass through any edge at any time step, we multiply
this quantity by the number of choices for g, at most Nd, and the number
of choices for t, at most d + αc

log(Nd) . Using the inequality
(a
b

)

≤ (ae/b)b for
0 < b < a, and noting that c ≤ N , we see that for large enough, but fixed,
α, the product is at most 1/(Nd). Thus, with high probability, no more
than O(log(Nd)) packets will want to traverse any edge at any step of this
unconstrained schedule.

Each step of the unconstrained schedule can be simulated by O(log(Nd))
steps of a legitimate schedule. The final schedule requires O(c + d log(Nd))
steps to complete the routing, and uses queues of size O(log(Nd)).

3 An O(c + d)-step schedule

In this section, we prove that for any set of packets whose paths are edge-
simple1 and have congestion c and dilation d, there is a schedule of length
O(c + d) in which at most one packet traverses each edge of the network

1An edge-simple path uses no edge more than once.

7



at each step, and at most a constant number of packets wait in each queue
at each step. Note that there are no restrictions on the size, topology, or
degree of the network or on the number of packets.

Our strategy for constructing an efficient schedule is to make a succession
of refinements to the “greedy” schedule, S0, in which each packet moves at
every step until it reaches its final destination. This initial schedule is as
short as possible; its length is only d. Unfortunately, as many as c packets
may have to use an edge at a single time step in S0, whereas in the final
schedule at most one packet is allowed to use an edge at each step. Each
refinement will bring us closer to meeting this requirement by bounding the
congestion within smaller and smaller frames of time.

The proof uses the Lovász Local Lemma [12, pp. 57–58] at each refine-
ment step. Given a set of “bad” events in a probability space, the lemma
provides a simple inequality which, when satisfied, guarantees that with
probability greater than zero, no bad event occurs. The inequality relates
the probability that each bad event occurs with the dependence among them.
A set of events A1, . . . , Am in a probability space has dependence at most b
if every event is mutually independent of some set of m − b − 1 other bad
events. The lemma is nonconstructive; for a discrete probability space, it
shows only that there exists some elementary outcome that is not in any
bad event.

Lemma 3.1 (Lovász) Let A1, . . . , Am be a set of “bad” events each occur-

ring with probability p with dependence at most b. If 4pb < 1, then with

probability greater than zero, no bad event occurs.

3.1 A preliminary result

Before proving the main result of this section, we show that there is a sched-
ule of length (c+d)2O(log∗(c+d)) that uses queues of size log(c+d)2O(log∗(c+d)).
This preliminary result is substantially simpler to prove because of the re-
laxed bounds on the schedule length and queue size. Nevertheless, it il-
lustrates the basic ideas necessary to prove the main result. We begin by
proving a lemma that is used in the proofs of both the preliminary result
and the main result.

Before proceeding, we need to introduce some notation. A T -frame is a
sequence of T consecutive time steps. The frame congestion, C, in a T -frame
is the largest number of packets that traverse any edge in the frame. The
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relative congestion, R, in a T -frame is the ratio C/T of the congestion in
the frame to the size of the frame.

Lemma 3.2 For any set of packets whose paths are edge-simple and have

congestion c and dilation d, there is a schedule of length O(c + d) in which

packets never wait in edge queues and in which the relative congestion in

any frame of size log d or greater is at most 1.

Proof: The proof uses the Lovász Local Lemma. The first step is to assign
an initial delay to each packet. Without loss of generality, we assume that
c = d. The delays are chosen from the range [1, αd], where α is a fixed
constant that will be determined later. In the resulting schedule, S1, a
packet that is assigned a delay of x waits in its initial queue for x steps,
then moves on to its destination without waiting again until it enters its
final queue. The length of S1 is at most (1 + α)d. We use the Lovász Local
Lemma to show that if the delays are chosen randomly, independently, and
uniformly, then with nonzero probability the relative congestion in any frame
of size log d or greater is at most 1. Thus, such a set of delays must exist.

To apply the Lovász Local Lemma, we associate a bad event with each
edge. The bad event for edge g is that more than T packets use g in some
T -frame, for T ≥ log d. To show that there is a way of choosing the delays so
that no bad event occurs, we need to bound the dependence, b, among the
bad events and the probability, p, of each individual bad event occurring.

The dependence calculation is straightforward. Whether or not a bad
event occurs depends solely on the delays assigned to the packets that pass
through the corresponding edge. Thus, two bad events are independent
unless some packet passes through both of the corresponding edges. Since
at most c packets pass through an edge, and each of these packets passes
through at most d other edges, the dependence, b, of the bad events is at
most cd = d2.

Computing the probability of each bad event is a little trickier. Let p be
the probability of the bad event corresponding to edge g. Then

p ≤
d

∑

T=log d

(1 + α)d

(

d

T

)

(

T

αd

)T

.

This expression is derived as follows. Frames of size greater than d cannot
have relative congestion greater than 1, since the total congestion is only d.
Thus, we can ignore them. We bound the probability that any frame has
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relative congestion greater than 1 by summing, over all frame sizes T from
log d to d, the probability that some T -frame has relative congestion greater
than 1. Furthermore, for any T , there are at most (1+α)d different T -frames
and we bound the probability that any one of them has relative congestion
greater than 1 by summing their individual probabilities. The number of
packets passing through g in any T -frame has a binomial distribution. There
are d independent Bernoulli trials, one for each packet that uses g. Since
at most T of the possible αd delays will actually send a packet through g
in the frame, each trial succeeds with probability T/αd. (Here we use the
assumption that the paths are edge-simple.) The probability of more than
T successes is at most

(d
T

)

(T/αd)T .
For sufficiently large, but fixed, α the product 4pb is less than 1, and

thus, by the Lovász Local Lemma, there is some assignment of delays such
that the relative congestion in any frame of size log d or greater is at most
1.

Theorem 3.3 For any set of packets whose paths are edge-simple and have

congestion c and dilation d, there is a schedule having length (c+d)2O(log∗(c+d))

and maximum queue size log(c+ d)2O(log∗(c+d)) in which at most one packet

traverses each edge at each step.

Proof: For simplicity, we shall assume without loss of generality that
c = d, so that the bounds on the length and queue size are d2O(log∗ d) and
(log d)2O(log∗ d), respectively.

The proof has the following outline. We begin by using Lemma 3.2 to
produce a schedule S1 in which the number of packets that use an edge
in any log d-frame is at most log d. Next we break the schedule into (1 +
α)d/ log d log d-frames, as shown in Figure 3. Finally, we view each log d-
frame as a routing problem with dilation log d and congestion log d, and
solve it recursively.

Each log d-frame in S1 can be viewed as a separate scheduling problem
where the origin of a packet is its location at the beginning of the frame,
and its destination is its location at the end of the frame. If at most log d
packets use each edge in a log d-frame, then the congestion of the problem is
log d. The dilation is also log d because in log d time steps a packet can move
a distance of at most log d. In order to schedule each frame independently, a
packet that arrives at its destination before the last step in the rescheduled
frame is forced to wait there until the next frame begins.

All that remains is to bound the length of the schedule and the size of
the queues. The recursion proceeds to a depth of O(log∗ d) at which point
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Figure 3: Schedule S1. The schedule is derived from the greedy schedule,
S0, by assigning an initial delay in the range [1, αd] to each packet. We use
the Lovász Local Lemma to show that within each log d-frame, at most log d
packets pass through each edge.

the frames have constant size, and at most a constant number of packets
use each edge in each frame. The resulting schedule can be converted to one
in which at most one packet uses each edge in each time step by slowing it
down by a constant factor. Since the length of the schedule increases by a
constant factor during each recursive step, the length of the final schedule is
d2O(log∗ d). The bound on the queue size follows from the observation that
no packet waits at any one spot (other than its origin or destination) for
more than (log d)2O(log∗ d) consecutive time steps, and in the final schedule
at most one packet traverses each edge at each time step.

3.2 The main result

Proving that there is a schedule of length O(c+d) using constant-size queues
is more difficult. Removing the 2O(log∗(c+d)) factor in the length of the
schedule seems to require delving into second-order terms in the probability
calculations, and reducing the queue size to a constant mandates greater
care in spreading delays out over the schedule.

Theorem 3.4 For any set of packets with edge-simple paths having conges-

tion c and dilation d, there is a schedule having length O(c+d) and constant

maximum queue size in which at most one packet traverses each edge of the

network at each step.

Proof: To make the proof more modular, we bound the frame size and
relative congestion after each step of the construction in lemmas. These
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Figure 4: A refinement step. Each refinement transforms a schedule Si into
a slightly longer schedule Si+1. The frame size is greatly reduced in Si+1,
yet the relative congestion within a frame remains about the same, i.e.,
I(i+1) ¿ I(i) and r(i+1) ≈ r(i).

lemmas and their proofs are included within the proof of the theorem. We
assume without loss of generality that c = d, so that the bound on the length
of the schedule is O(d).

As before, the strategy is to make a succession of refinements to the
greedy schedule, S0. The first refinement is special. It transforms S0 into
a schedule S1 in which the relative congestion in each frame of size log d
or more is at most 1. Thereafter, each refinement transforms a schedule
Si with relative congestion at most r(i) in any frame of size I(i) or greater
into a schedule Si+1 with relative congestion at most r(i+1) in any frame
of size I(i+1) or greater, where r(i+1) ≈ r(i) and I(i+1) ¿ I(i), as shown in
Figure 4. As well shall see, after j refinements, where j = O(log∗ d), we
obtain a schedule Sj with constant relative congestion in every frame of size
k0 or greater, where k0 is some constant. From Sj it is straightforward to
construct a schedule of length O(c+d) in which at most one packet traverses
each edge of the network at each step, and at most a constant number of
packets wait in each queue at each step.

At the start, the relative congestion in a d-frame of S0 is at most 1. We
begin by using Lemma 3.2 to produce a schedule S1 of length O(d) in which
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the relative congestion is at most r(1) = 1 in any frame of size I(1) = log d
or greater.

Next, we repeatedly refine the schedule to reduce the frame size. As we
shall see, the relative congestion r(i+1) and frame size I(i+1) for schedule
Si+1 are given by the recurrences

r(i+1) =

{

1 i = 0

r(i)(1 + O(1)/
√

log I(i)) i > 0

and

I(i+1) =

{

log d i = 0

log5 I(i) i > 0

which have solutions I(j) = O(1) and r(j) = O(1) for some j, where j =
O(log∗ d).

We have not explicitly defined the values of r(i) and I(i) for which the
recursion terminates. However, in several places in the proof that follows
we implicitly use the fact that I(i) is sufficiently large that some inequality
holds. The recursion terminates when the first of these inequalities fails
to hold. When this happens, I(i) is bounded from above by some constant.
Furthermore, independent of the depth of the recursion, r(i) is bounded from
above by a constant.

Throughout the following lemmas we make references to quantities such
as rI packets or log4 I time steps, when in fact rI and log4 I may not be
integral. Rounding these quantities to integer values when necessary does
not affect the correctness of the proof. For ease of exposition, we shall
henceforth cease to consider the issue.

An important invariant that we maintain throughout the construction is
that in schedule Si+1 every packet waits at most once every I(i) steps. As
a consequence, there is a constant k1 such that a packet waits at most once
every k1 steps in Sj , which implies both that the queues in Sj cannot grow
larger than a constant and that the total length of Sj is O(d). Schedule Sj

almost satisfies the requirement that at most one packet traverses each edge
in each step. By simulating each step of Sj in a constant number of steps
we can meet this requirement with only a factor of 2 increase in the queue
size and a constant factor increase in the running time.

The rest of the proof describes the refinement step in detail. For ease of
notation, we use I and r in place of I(i) and r(i).
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The first step in the ith refinement is to break schedule Si into blocks of
2I3+2I2−I consecutive time steps. Each block is rescheduled independently.

For each block, each packet is assigned a delay chosen from 1 to I. We
will use the Lovász Local Lemma to show that if the delays are chosen
randomly, uniformly, and independently, then with non-zero probability the
resulting schedule will have the properties that we want.

A packet that is assigned a delay of x must wait for x steps at the
beginning of the block. In order maintain the invariant that in schedule
Si+1 every packet waits at most once every I(i) steps, the packet is not
delayed for x consecutive steps at the beginning of the block, but instead a
delay is inserted every I steps in the first xI steps of the block. A packet
that is delayed x steps reaches its destination at the end of the block by step
2I3 + 2I2 − I + x.

In order to independently reschedule the next block, the packets must
reside in exactly the same queues at the end of the rescheduled block that
they did at the end of the block of Si. Since some packets arrive early, they
must be slowed down. Thus, if a packet is assigned delay x, then I−x delays
are inserted in the last I(I − x) steps of the block, one every I steps. Since
every packet experiences a total delay of I, the rescheduled block must have
length 2I3 + 2I2.

Before the delays for schedule Si+1 have been inserted, a packet is delayed
at most once in each block of Si, provided that 2I3 +2I2−I < I(i−1), which
holds as long as I is larger than some constant. Prior to inserting each new
delay into a block, we check if it is within I steps of the single old delay.
If the new delay would be too close to the old delay, then it is simply not
inserted. The loss of a single delay in a block has a negligible effect on the
probability calculations in the lemmas that follow.

The following two lemmas are used several times in the proof of the
theorem. Lemma 3.5 shows that if we can bound the relative congestion in
frames of size T to 2T − 1, then we can bound the relative congestion in
all frames of size T or greater. Lemma 3.6 bounds the probability that too
many packets use any particular edge g in any small frame in the center of
a block after every packet has been delayed for a random number of steps
at the beginning of the block.

Lemma 3.5 In any schedule, if the number of packets that use a particular

edge g in any y-frame is at most Ry, for all y between T and 2T − 1, then

the number of packets that use g in any y-frame is at most Ry for all y ≥ T .
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Proof: Consider a frame of size T ′, where T ′ > 2T −1. The first (bT ′/T c−
1)T steps of the frame can be broken into T -frames. In each of these frames,
at most RT packets use g. The remainder of the T ′-frame consists of a single
y-frame, where T ≤ y ≤ 2T − 1, in which at most Ry packets use g.

Lemma 3.6 Suppose that there are positive constants ρ, α1, and α2, such

that in a block of size Iα1 or smaller the relative congestion is at most ρ
in frames of size Iα2 or larger. Furthermore, suppose that each packet is

assigned a delay chosen randomly, independently, and uniformly from the

range [1, Iα2 ] and that if a packet is assigned a delay of x, then x delays are

inserted in the first Iα3 steps of the block and Iα2 − x delays are inserted

in the last Iα3 steps, where α3 is also a positive constant. Then for any

constant α4 there is a σ such that the probability that more than ρ1T packets

use any one edge g in any frame of size T ≥ I1 in-between the first and last

Iα3 steps in the new block is at most 1/Iα4, where I1 = log2 I, ρ1 = ρ(1+σ),
and σ = O(1)/

√
log I.

Proof: We begin by computing an upper bound on the probability, p1, that
more than ρ1I1 packets use an edge g in a particular I1-frame. Since a packet
may be delayed up to Iα2 steps before the frame, any packet that used g
in the I1-frame spanning the same steps in the block before the delays were
inserted or in the Iα2 steps before that frame may use g after the delays are
inserted. Thus, there are at most ρ(Iα2 + I1) packets that can use g in the
frame. For each of these, the probability that the packet uses g in the frame
after being delayed is at most (I1/Iα2), provided that the packet’s path uses
g at most once. Thus, the probability p1 that more than ρ1I1 packets use g
in the frame is bounded by

p1 ≤
ρ(Iα2+I1)

∑

k=ρ1I1

(

ρ(Iα2 + I1)

k

)

(I1/Iα2)k(1 − I1/Iα2)ρ(Iα2+I1)−k.

Let ρ1 = ρ(1 + σ). We bound the series as follows. The expected number
of packets that use g in the frame is ρI1(1 + I1/Iα2). For I1 = log2 I and
σ = O(1)/

√
log I, ρI1(1 + σ) is larger than the expectation, so the first

term in the series is the largest, and there are at most ρ(Iα2 + I1) terms.
Applying the inequalities (1 + x) ≤ ex, ln(1 + x) ≥ x − x2/2 for 0 ≤ x ≤ 1,
and

(a
b

)

≤ (ae/b)b for 0 < b < a to this term, we have

p1 ≤ ρ(Iα2 + I1)e
−ρI1σ2(1/2−σ/2−I1/σ2Iα2−2I1/σIα2 ).
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For I1 = log2 I and σ = k1/
√

log I, we can ensure that p1 ≤ 1/Ik2 , for any
constant k2 > 0 by making constant k1 large enough.

Next we need to bound the probability p2 that more than ρ1I1 packets
use g in any I1-frame of the block. There are at most Iα1 + Iα2 I1-frames.
Thus p2 ≤ (Iα1 + Iα2)p1. By making the constant k2 large enough, we can
ensure that p2 ≤ 1/Ik3 , for any constant k3 > 0.

To bound the relative congestion in frames of size greater than I1, we
appeal to Lemma 3.5. The calculations for frames of size I1 + 1 through
2I1−1 are similar to those for frames of size I1. There are at most Iα1 +Iα2

frames of any one size, and I1 frame sizes between I1 and 2I1 − 1. By
adjusting the constants as before, we can guarantee that the probability p
that more than ρ1T packets use g in any T -frame for T between I1 and
2I1 − 1 is at most 1/Iα4 for any constant α4 > 0.

Lemma 3.7 shows that by inserting delays at the beginning and end of
the block we can reduce the frame size in the center of the block while only
slightly increasing the relative congestion. The bounds proved in Lemma 3.7
are shown in Figure 5.

Lemma 3.7 There is some way of assigning delays to the packets so that

in-between the first and last I2 steps of a block, the relative congestion in

any frame of size I1 = log2 I or greater is at most r1 = r(1 + ε1), where

ε1 = O(1)/
√

log I.

Proof: The proof uses the Lovász Local Lemma. With each edge we as-
sociate a bad event. For edge g, a bad event occurs when more than r1T
packets use g in any T -frame for T ≥ I1. To show that no bad event occurs,
we need to bound both the dependence of the bad events and the probability
that an individual bad event occurs.

We first bound the dependence, b. At most r(2I3 + 2I2 − I) packets
use an edge in the block. Each of these packets travels through at most
2I3 +2I2 − I other edges in the block. Furthermore, r = r(i) = O(1). Thus,
a bad event depends on b = O(I6) other bad events.

For any constant α4, we can bound the probability that a bad event
occurs by 1/Iα4 by applying Lemma 3.6 with ρ = r, Iα1 ≥ 2I3 + 2I2 − I,
Iα2 = I, Iα3 = I2, ε1 = σ = O(1)/

√
log I, and r1 = ρ1 = r(1+σ) = r(1+ε3).

Since a bad event depends on only b = O(I6) other bad events, we can
make 4pb < 1 by making α4 large enough. By the Lovász Local Lemma,
there is some way of choosing the packet delays so that no bad event occurs.
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Figure 5: Bounds on frame size and relative congestion after inserting delays
into Si. Here I1 = log2 I and r1 = r(1 + O(1)/

√
log I).

Inserting delays into the schedule may increase the relative congestion
in I-frames (or smaller frames) in the I2 steps at the beginning and end
of each block. In order to bound the relative congestion in small frames
in these regions, we first move the block boundaries to the centers of the
blocks, as shown in Figure 6. Now each block of size 2I3 +2I2 has a “fuzzy”
region of size 2I2 in its center. Lemma 3.8 shows that after moving the
block boundaries, the relative congestion in any frame of size I2 or larger in
the block is at most r(1 + 2/I). We will later insert more delays into the
schedule and uses Lemmas 3.6 and 3.8 to help bound the relative congestion
in small frames in the fuzzy region.

Lemma 3.8 For any choice of delays, after the delays are inserted and the

block boundaries are moved the relative congestion in any frame of size I2

or greater is at most r(1 + 2/I).

Proof: There are two cases to consider. First, consider a T -frame that lies
entirely in the first half of a block, or entirely in the second half of a block.
After the delays are inserted, a packet can use an edge in the T -frame only
if it used the edge in some (T + I)-frame in Si. Thus, at most r(T + I)
packets can use an edge in the T -frame. For T ≥ I2, the relative congestion
is at most r(1 + 1/I). Second, consider a T -frame that spans the center of
the block. Suppose that the frame consists of T1 steps before the center and
T2 after, so that T = T1 +T2. Then a packet can use an edge in the T1 steps
before the center only if it used the edge in one of the last T1 steps before
the end of a block in Si. Since T1 may be less than I, we can’t bound the
relative congestion in the last T1 steps at the end of a block. But we know
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Figure 6: A block after recentering. The “fuzzy region” in the center of
the block is shaded. The line bisecting the shaded region denotes the block
boundary before recentering.

that at most r(T1 + I) packets used the edge in the last T1 + I steps, and
hence in the last T1 steps. Similarly, a packet can use an edge in the T2

steps after the center only if it used an edge in one of the first T2 steps of a
block in Si. Hence, at most r(T2 + I) packets use the edge in the T2 steps
after the center. Since a total of at most r(T1 +T2 +2I) = r(T +2I) packets
use the edge, for T ≥ I2 the relative congestion is at most r(1 + 2/I).

To reduce the frame size in the fuzzy region, we assign a delay from 1 to
I2 to each packet. As before, we will use the Lovász Local Lemma to show
that if the delays are chosen randomly, independently, and uniformly then
with non-zero probability the resulting schedule has the properties we want.
A packet with delay x waits once every I3/x steps in the I3 steps before the
fuzzy region. In addition, a packet with delay x waits once every I3/(I2−x)
steps in the last I3 steps of the rescheduled block. Thus, every packet waits
for a total of I2 steps (except we do not insert a delay if it is within I steps
of an old delay), and the rescheduled block now has size 2I3 + 3I2. Note
that in the rescheduled block the width of the fuzzy region grows by I2 time
steps; it spans steps I3 through I3 + 3I2.

We now show that there is some way of inserting delays into the schedule
before the fuzzy region that both reduces the frame size in the fuzzy region
and does not increase either the frame size or the relative congestion before
or after the fuzzy region by much.

Lemma 3.9 There is some way of choosing the packet delays so that be-

tween steps I log3 I and I3 and between steps I3+3I2 and 2I3+3I2−I log3 I,
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the relative congestion in any frame of size I1 or greater is at most r2 =
r(1 + ε2), where ε2 = O(1)/

√
log I, and so that in the fuzzy region the rela-

tive congestion in any frame of size I1 or greater is at most r3 = r(1 + ε3),
where ε3 = O(1)/

√
log I.

Proof: The proof uses the Lovász Local Lemma as before. With each edge
we associate a bad event. For edge g, a bad event occurs

1. if more than r3T packets use g in any T -frame between steps I3 and
I3 + 3I2 (i.e., in the fuzzy region), for any T ≥ I1, or

2. if more than r2T packets use g in any T -frame between steps I log3 I
and I3, for any T ≥ I1, or

3. if more than r2T packets use g in any T -frame between steps 2I3 +
3I2 − I log3 I and 2I3 + 3I2, for any T ≥ I1.

The calculation for the dependence b is the same as in Lemma 3.7. At
most O(I3) packets pass through each edge g, and each of these packets
passes through at most O(I3) other edges. Hence, b = O(I6).

To bound the probability that a bad event occurs, we consider the three
cases separately, and sum their individual probabilities of occurrence.

Since no delays are inserted into the fuzzy region, we can use Lemma 3.6
to prove that for any constant k5, there is an ε3 = O(1)/

√
log I such that

the probability that more than r(1 + ε3)T packets use g in any T -frame
between steps I3 and I3 + 3I2, for any T ≥ I1, is at most 1/Ik5 . We apply
Lemma 3.6 with ρ = r(1 + 2/I), Iα1 ≥ 2I3 + 3I2, Iα2 = I2, Iα3 = I3,
ε3 = σ +2(1+σ)/I = O(1)/

√
log I, r3 = ρ1 = r(1+2/I)(1+σ) = r(1+ ε3),

and α4 = k5.
Before the fuzzy region, the situation is more complex. By the kth step,

0 ≤ k ≤ I3, a packet with delay x has waited xk/I3 times. Thus, the delay
of a packet at the kth step varies essentially uniformly from 0 to u = k/I.
For u ≥ log3 I, or equivalently, k ≥ I log3 I, we can show that the relative
congestion in any frame of size I1 or greater has not increased much.

The probability p2 that more than r2I1 packets use an edge g in a par-
ticular I1-frame is given by

p2 ≤
r1(I1+u)

∑

s=r2I1

(

r1(I1 + u)

s

)

(I1/u)s(1 − I1/u)r1(I1+u)−s.
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Using the same inequalities as in the proof of Lemma 3.6, we have

p2 ≤ r1(I1 + u)e−r1I1ε2

2
(1/2−ε2/2−I1/ε2

2
u−2I1/ε2u).

The calculations for frame of size I1 + 1 through 2I1 − 1 are similar.
Thus for any constant k6, for I1 = log2 I, u ≥ log3 I, and ε2 = O(1)/

√
log I,

the probability p4 that more than r(1 + ε2)T packets use g in any T -frame
between steps I log3 I and I3, for any T ≥ I1, is at most 1/Ik6 .

By symmetry, the probability that more than r2T packets use g between
steps 2I3+3I2−I log3 I and 2I3+3I2, for any T ≥ I1, is also at most 1/Ik6 .

Thus, the probability that a bad event occurs for edge g is at most
1/Ik5 + 2/Ik6 . Since the dependence is at most O(I6), by adjusting the
constants k5 and k6 we can apply the Lovász Local Lemma.

For steps 0 to I log3 I, we use the following lemma to bound the frame
size and relative congestion.

Lemma 3.10 The relative congestion in any frame of size I2 or greater

between steps 0 and I log3 I is at most r4, where I2 = log4 I and r4 =
r1(1 + 1/ log I).

Proof: The proof is similar to that of Lemma 3.8.

We have now completed our transformation of schedule Si into schedule
Si+1. Let us review the relative congestion and frame sizes in the different
parts of a block. Between steps 0 and I log3 I, the relative congestion in any
frame of size I2 or greater is at most r4. Between this region and the fuzzy
region, the relative congestion in any frame of size I1 or greater is at most r2.
In the fuzzy region, the relative congestion in any frame of size I1 or greater
is at most r3. After the fuzzy region, the relative congestion in any frame of
size I1 or greater is again r2, until step 2I3+3I2−I log3 I, where the relative
congestion in any frame of size I2 or greater is r4. These bounds are shown
in Figure 7. Finally we must bound the relative congestion in frames that
span the different parts of a block (or two different blocks). Since we have
bound the relative congestion in blocks of size log4 I or greater, it is safe to
say that in the the entire schedule Si+1 the relative congestion in any frame
of size I(i+1) = log5 I or greater is at most r(i+1) = r(1 + O(1)/

√
log I).

4 Counterexamples to on-line algorithms

This section presents examples where several natural on-line scheduling
strategies do poorly. Based on these examples, we suspect that finding
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Figure 7: Final bounds on frame size and relative congestion. To reduce
the frame size in the fuzzy regions, delays are inserted only outside the
shaded region. Here I1 = log2 I, I2 = log4 I, r2 = r(1 + O(1)/

√
log I),

r3 = r(1 + O(1)/
√

log I), and r4 = r1(1 + 1/ log I) ≤ r(1 + O(1)/
√

log I).

an on-line algorithm that can schedule any set of paths in O(c + d) steps
using constant-size queues will be a challenging task.

4.1 Counterexample for routing on leveled networks

In the first example, we examine a routing strategy for scheduling packets
on leveled networks from [6, 8, 9]. A leveled network is a network whose
switches can be partitioned into sets or levels labeled with integers so that
every edge goes from a switch in some level i to a switch in the next level
i + 1. The depth of the network is the maximum distance between two
switches.

The routing strategy consists of randomly choosing ranks for the packets
to be routed and using this value as a priority in a very strong manner; all
the packets that use a switch must use it in order of rank. That is, the lowest
ranked packet that uses the switch passes through the switch first, then the
second lowest ranked packet passes through the switch and so on. Notice
that at some point a packet with some rank may reach a switch before a
packet with a lower rank reaches the switch through a different edge. In
this case the packet must wait for the lower ranked packet to reach and
use the switch before it can use the switch. So in order for a packet to
decide if it can use a switch or not it must somehow know what the highest
ranked packet that is going to enter the switch through some other edge
is. This is achieved through the use of ghost messages. When a packet
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uses an outgoing edge of a switch it sends a ghost message consisting only
of the packet’s rank down all the other edges. These messages serve as a
lower bound to each of these switches for the rank of any packet coming
through this incoming edge, and are appropriately forwarded. Finally, end-
of-stream(EOS) messages are used to indicate that no more packets will
come from a switch. Thus, a packet is allowed to go if it is the lowest ranked
packet on any incoming edge and it has a lower rank than the last ghost that
arrived on incoming edges that do not have a packet and have not recieved
an EOS message. This strategy is described in more detail in each of [6, 8, 9].
With high probability, it produces a schedule of length O(c+L+log N) using
constant-size queues for any set of N packets whose paths have congestion
c on any bounded-degree leveled network with depth L. For a wide variety
of networks (both leveled and non-leveled), this algorithm can be used as
a subroutine to derive a routing algorithm that delivers all the packets to
their destinations in O(c + d + log N) time, with high probability.

In our first example, however, we show that this is not always the case.
We describe an N -node leveled network in which a set of packets with con-
gestion and dilation O(1) requires Ω(log2 N/ log log N) steps to be delivered
using the strategy for scheduling packets on leveled networks from [6, 8, 9].
Our example does not contradict the previous analysis of the algorithm,
since the network has L = Θ(log2 N) levels. However, it shows that reduc-
ing the congestion and dilation below the depth of the network does not
necessarily improve the running time.

Observation 4.1 For the leveled network scheduling strategy there is an

N -node directed acyclic network of degree 3 and a set of paths with conges-

tion c = 3 and dilation d = 3 where the expected length of the schedule is

Ω(log2 N/ log log N).

Proof: The network consists of many disjoint copies of the subnetwork
pictured in Figure 8. For simplicity, we dispense with the initial queues; the
packets originate in edge queues. The subnetwork is composed of k/ log k
linear chains of length k, where k shall later be shown to be Θ(log N). The
second node of each linear chain is connected to the second to last node
of the previous chain by a diagonal edge. We assume that at the end of
each edge there is a queue that can store 2 packets. Initially, the queue
into the first node of each chain contains an end-of-stream (EOS) signal
and one packet, and the queue into the second node contains two packets.
A packet’s destination is the last node in the previous chain. Each packet
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Figure 8: Example 1.

takes the diagonal edge to the previous chain and then the last edge in the
chain. Thus, the length of the longest path is d = 3. However, the depth
of this subnetwork or any number of disjoint copies of this subnetwork is
Θ(k2/ log k). That is, there are at least Ω(k2/ log k) levels in this network.
We now proceed by showing that the time for routing can be Ω(k2/ log k).

When the ranks r1, . . . , r3k/ log k of the packets p1, . . . , p3k/ log k are chosen
so that ri < ri+1 for 1 ≤ i < 3k/ log k, packet p3k/ log k requires Ω(k2/ log k)
steps to reach its destination. The scenario unfolds as follows. Packets p1

and p2 take a diagonal edge in the first two steps. These packets cannot
advance until the EOS reaches the end of the first chain, in step k. Thus p3

remains in the previous queue until step k. In the meantime, ghosts with
ranks r1, r2, and r3, travel down the second chain, but packet p3 blocks an
EOS signal from traveling down the chain. Packets p4 and p5 move out of
their chain and must wait for this EOS signal. They cannot advance until
step 2k. So p6 cannot move out of its chain and let the EOS signal behind
it through until this step, so p9 cannot move out of its chain until step 3k
and so on. In this fashion, a delay of k2/ log k is propagated down to packet
p3k/ log k.

A simple calculation reveals that the probability that ri < ri+1 for 1 ≤
i ≤ 3k/ log k is 1/2Θ(k). Thus, if we have 2Θ(k) copies of the subnetwork, we
expect the ranks of the packets to be sorted in one of them. For the total
number of nodes in the network to be N , we need k = Θ(log N). In this
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case, we expect some packet to be delayed Ω(log2 N/ log log N) steps in one
copy of the subnetwork.

It is somewhat unfair to say that the optimal schedule for this example
has length O(c + d) = O(1), since ghosts and EOS signals must travel a
distance of Θ(log N). However, even if the EOS signals are replaced by
packets with equivalent ranks, the dilation is only O(log N), and thus the
optimum schedule has length O(log N).

4.2 Counterexample for various deterministic strategies

The second example is quite general. It shows that for any deterministic
strategy that chooses the order in which packets pass through a switch
independent of the future paths of the packets, there is a network and a set
of paths with congestion c and dilation d for which the schedule produced
has length at least c(d− 1)/ log c. This observation covers strategies such as
giving priority to the packet that has spent the most (or least) time waiting
in queues, and giving priority to the packet that arrives first at a switch.
The network is a complete binary tree of height d− 1 with an auxiliary edge

from the root to an auxiliary node.

Observation 4.2 For any deterministic strategy that chooses the order in

which packets pass through a switch independent of the paths that the packets

take after they pass through the switch, there is a network and a set of paths

with congestion c and dilation d for which the schedule produced has length

c(d − 1)/ log c.

Proof: We construct the example for congestion c and dilation d, E(c, d),
recursively. The base case is the example E(c, log c + 1). Each of the c
leaves sends a packet to the auxiliary node, causing congestion c in the
auxiliary edge. The network for E(c, d) contains c copies of the network for
E(c, d − log c), as shown in Figure 9. First, the auxiliary nodes for these
copies are paired up and merged so that there are c/2 auxiliary nodes each
with two auxiliary edges into it. Next, the auxiliary nodes become the leaves
of a complete binary tree of height log c− 1 with its own auxiliary node and
edge. For each copy of E(c, d− log c), the deterministic scheduling strategy
chooses some packet to cross its auxiliary edge last. We extend the path of
this packet so that it traverses the auxiliary edge in E(c, d). The dilation of
the new set of paths is d and the congestion c. The length of the schedule,
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T (c, d), is given by the recurrence

T (c, d) ≥
{

T (c, d − log c) + log c − 1 + c d > log c + 1
log c + c d = log c + 1

and has solution T (c, d) ≥ c(d − 1)/ log c. Setting c = d = log N in this
example gives a routing time of Θ(log2 N/ log log N).

The previous example can be modified to show that the strategies of
sending the packet with the farthest distance left to go or the packet with
the farthest total initial distance to go first can also be made to require
Ω(cd/ log c) time. We simply extend the paths of the packets winning at
each switch so that they have total (or remaining) distance equal to or
greater than the packets that lose at a switch.

4.3 Counterexample to a randomized strategy

The third example shows that the natural strategy of assigning priorities to
the packets at random is not effective either.

Observation 4.3 For the strategy of assigning each packet a random rank

and giving priority to the packet with the lowest rank, there is an N -node

network with diameter O(log N/ log log N) and a set of paths with dilation
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Figure 10: Example 3.

d = O(log N/ log log N) and congestion c = O(log N/ log log N) where the

expected length of the schedule is Ω((log N/ log log N)3/2).

Proof: As in Example 1, the network consists of many copies of a sub-
network. Each subnetwork is constructed so that d = c = k/ log k. A
subnetwork consists of a linear chain of length d, with loops of length

√
d

between adjacent nodes (see Figure 10). The packets are broken into
√

d
groups numbered 0 through

√
d − 1 of

√
d packets each. The packets in

group i use the linear chain for i
√

d steps and then use
√

d− i loops as their
path. As in the previous example, we assume that queues have unlimited
capacity and that at each step a node can send a single packet.

If the random ranks are assigned so that the packets in group i have
smaller ranks than the packets in groups with larger numbers, then the
packets in group i delay the packets in group i+1 by d− (i+1)

√
d+ i steps.

Thus the last packet experiences an Ω(d
√

d) = O((k/ log k)3/2) delay.
Once again the ranks of the packets must have a specific order, which

can be shown to happen with high probability given enough copies of the
subnetwork. As in Observation 4.1, it is not hard to show this requires
k = Θ(log N).
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