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ABSTRACT U such that any two subsets i have a non-empty intersection.

A quorum system over a universe of logical elements is a collection E&¢h subset i is called aquorum Quorums are the basic unit

of subsetsquorums of elements, any two of which intersect. In  ©f @ccess in many distributed algorithms; e.g., to ensure data con-
numerous distributed algorithms, the elements of the universe re-S\SteNCY while allowing distributed access, one could use a quorum

side on the nodes of a physical network and the participating nodessyStem_: the copies of the object are |t_s elements, and each_ client
access the system by contacting every element in some quorum,'s_ required to perform each r_ead or wrlte_ on a quorum of objec_ts.
potentially causing the added network congestion induced by these>Nnce E?Ch pair of quorufmhs |r|1tersect, th's er}SlrJ]rest:hat e_ar(;]h client
guorum accesses to play a limiting factor in the performance of the sees at least one copy of t e atest version of the O.JeCt' ere are
algorithm. many other e>_<am_ples of using quorum systems to implement dis-
In this paper we initiate the study of algorithms to place universe tributed coordination of some type, e.9., [2, 5, 9, 13, 15, 16, 18, 23,

elements on the nodes of a physical network so as to minimize the 24 28]. . h b died f 25 d
network congestion that results from quorum accesses, while also Quorum constructions have been studied for over 25 years, an

ensuring that no physical node is overloaded by access request&Uorum systems with many different properties and guarantees have
from clients. We consider two models, one in which communica- ~€€" develo”ped (e._g., |[5’ Sf'j]_)' For example, nhote that quorum sys-
tion routes can be chosen arbitrarily and one in which they are fixed Lems naﬁurahy pr?]w eloa f hspers.lon. since the quorum S|z”es may
in advance. We show that in either model, the optimal congestion P€ smadert akr:d;g %S_'Ze oht e UE'Vgﬁ?equprrlumh_sy;timsba ow
(with respect to the load constraints) cannot be approximated to US O reduce théoad, i.e., the probability with which the busiest
anyfactor (unless P=NP). However, we show that at most doubling serveris accessed in any given quorum invocation. Thrlough careful
the load on nodes allows us to achieve a congestion that is close todest')grt')_?f tl:f ql_Jg)rgms i, and of thea_(;gzss s;[]ra;[]egyl.e;,@the

this optimal value. We also shed some light on the extent to which ProPapility distributionp over quorums in2 such thaiQ € 2 is
element migration can reduce congestion in this context. chosen in any client with probabilitg(Q)—a load ofO(1/1/|U)

. . . can be achieved [22].
Categories and Subject DescriptorsC.2.4 [Computer- Commu-

S T T ~> Despite this research, it is only very recently thatworking is-
nication Networks]: Distributed Systemslistributed applications sueshave also been considered in the study of quorum systems:

General Terms: Algorithms, Performance, Theory. while we may understand the properties of a good quorum system
Keywords: Quorum Systems, Congestion Problems, Approxima- ©Ver some abstract univerkke we do not yet understand how to
tion Algorithms, LP Rounding. map the elements & to the physical nodeg in our network so

as to give uggood network performanceor instance, some very
recent work of the authors and others has proposed algorithms for
1. INTRODUCTION finding placements that minimize theuting delayghat clients in-
Given a universe (set) of elementsaquorum systeng C 2Y cur when accessing quorums [8, 10, 11, 14, 29]. (We discuss this
(where & denotes the power set b) is a collection of subsets of  work in more detail in Section 2.) In this paper, we initiate the
study of an orthogonal issue: that of thetwork congestionaused
by the deployment of quorum systems in networks. Roughly speak-
ing, our goal is to develop algorithms to place quorums in a network
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The Model. Formally, we model the network as an undirected

graphG = (V,E) of sizen=|V|. Each physical nodec V is given
anode capacityrode_cap(v) € R>o, which is an upper bound on
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We assume that the set of clients accessing the quorunds in  f is just a flow problem, and can be optimized in polynomial time.
is just the node s&f. To make the explanations simpler, we will  (Of course, the flow in the fixed-paths model is j&s{.) Hence,
assume that each of the client& V generates requests at some the rest of the paper will focus on finding the placementeshen-
rate ry with 3oy rv = 1. It will be convenient to think of the rate  ever we refer to a “placemeritwith congestiorc” in the arbitrary
ry as the probability that clientmakes a request. routing model, it should be taken to read “placemérior which
there exist flowgg,, } that give congestion”.

We are finally in a position to formally define the problem ad-
dressed in this paper:

The Measures of Goodnes3Ne are concerned with two measures
in this paper: th@etwork congestionaused by routing the requests
from the clients to the nodes hosting the quorum elements, and the

load generated on these nodes due to processing these requests. Let .
us formally define these. Problem 1.1 (Quorum Placement Problem for Congestion (QPPC))

Load. Given a quorum syster® overU and an access strategy ~ CIVEN & quorum syster® over the universe U, an access strategy
p, we can define the load of an element U to be load(u) = p, and an undirected network & (V, E) with capacitiesdge cap:
Yc2:ucq P(Q). (In other words, this is the probability that the E — R>o andnode_cap 1V — R0 on edges and nodes, respec-
elementu is accessed when using the access strafepyGiven tively, and client access rategy}, find a placement fU —V
a placement : U — V, we can extend this notion of load to any  that (&) minimizes the congestiaang; subject to (b)oads (v) <
nodev by definingloadt (V) = ¥ cu:f(u)—vload(u). Ideally, we node-cap(v) for all nodes ve V.
would likeload (V) < node_cap(v) for every noders € V.
Congestion. To access a quoruif, a clientv needs to access
each membef (u) € f(Q) individually, and has to send a request
to f(u). This access fromr to f(u) naturally increases the traffic
on the edges of some path fromto f(u), and we would like to
minimize this. We consider two models for selecting the path.

Since we can scale the capacities on the edges, we will assume (for
simplicity of exposition) that the edge congestiosngs- of the
optimum placement* is precisely 1.

Before we present our results, let us note that all our analyses ap-
ply in theunicastmodel, where an individual request is seneé&zh
element of the quorum being accessed. An alternate model (which

1. In thearbitrary routing model, the path used for routing in ~ We do not consider here) would permitulticastmessages from
the network may be chosen arbitrarily, and hence it is con- the source to the quorum members. Using these multicasts clearly
venient to model traffic between any two nodeg € V as a decreases the congestion incurred: for instance, if two quorum el-
flow g,y : E — Rxg. (Note that each access will use a single €ments are mapped to the same physical nodeese co-located
path, but we magvary the paths used between a pair of nodes€lements could be reached using a single message. (Moreover, the

so that the average traffic on any edge is the same as in thenodev could intelligently process the information reaching these
flow.) co-located elements just once, thereby incurring less load.) We

leave the study of these models and optimizations for future work.
2. In thefixed routing pathsnodel, the path¢R, } are speci- . .
fied as part of the input, and while we can define the figyw 1.1 Our Contributions
as before, all the flow must travel along the p&ily. This As stated, the QPPC problem turns out to be highly intractable:
is motivated by networks like the Internet where senders and

receivers cannot control or select the paths along which their theqrem 1.2 Even determining whether a feasible solution for the
traffic travels. QPPC exists (in either model) is NP hard if we do not allow any

Thus in either model we may define the expected traffic on any N0ode capacities to be violated.

edgee € E due to requests from a fixed nodéo be We go on to show a number of approximation results for the QPPC

> pQ) ngV,f(u) (e problem if we are allowed to violate the node capacities by at most
Qc2 ue a factor of two. We use the following notation: fif is the optimal
solution to a QPPC instance (that satisfies the load constraints),
thenan (¢, B)-approximationis a placement such thakong; <

o - congy: andloads (V) < f-node_cap(v) for all nodesv.

Finally, since the node is responsible for am, fraction of the
requests, we can define theerage trafficon the edge to be

traffics (e) = Z/rv > pQ Z}gv,f(u)(e)~

Qe2 Theorem 1.3 (Approximations for Arbitrary Routing) For
(This can be read thus: we choose the clieniith probabilityry, any instance of QPPC in the arbitrary routing model, we can find
choose a quorun® with probability p(Q), and incur a traffic of an (O(log?nloglogn),2) - approximation in polynomial time. If
Oy, (v (€) for everyu € Q.) the graph G is a tree, we obtain(&, 2)-approximation.

Since we are always considering averages, we will usually just
refer to this as theraffic on the edgee. Finally, given an edge Theorem 1.4 (Approximations for Fixed Paths) Given an
capacityedge_cap(e), thecongestiordue to the placemeritis instance of QPPC in the fixed routing paths model, we can find an
(O(]g—g%)g)-approximation in polynomial time, wherg is the
. . . size of{|log(load(u))] |[u€ U}. For example, if there exists an N
_Idetz_;llly,fthlstguantlty Shl?tum be as low ?I: poss?le. f”t]k?ee(lj‘ the ob- 5;ch thatoad(u) € [1/N, 1] for all u € U, then the algorithm above
jective function we seek to minimize is tkengestiorof the place- ] logNlogn P
mentf, which is defined to be the congestion of the most congested yields an(O( '39'09?‘ ),2)-approximation.
edge, namelyong; = maxecE cong (€).

Before we proceed, note that we used a figwy in the above Our Techniques. The basis of the algorithm for the arbitrary rout-
discussion to model the flow of messages betweandV'. Given ing model QPPC lies in a reduction of the problem to the case in
a placement in the arbitrary routing model, finding a set of flows ~ which the graph is a treand there is only one client in the system
{ovyv } that minimize the congestion (1.1) subject to the placement (i.e., there is a nodewith ry = 1). This reduction uses some of the

cong¢ (€) = traffict (e) /edge_cap(e) (1.1)




properties of quorum systems, combined with the general graph de-ear programming relaxations and randomized rounding was first
composition result of Rcke [25]; however, it costs us a factor of used by Raghavan and Thompson [26] to find unsplittable paths
O(Iogznloglogn) in the congestion. For the single-client tree case, with low congestion. Single-source versions of unsplittable flow
we give an approximation algorithm by first writing an integer pro- were studied by Dinitz, Garg and Goemans [6], who gave constant-
gramming formulation, and then rounding its linear-programming factor approximation algorithms for various versions of the prob-
relaxation: the rounding uses an algorithm for unsplittable flows lem.
from Dinitz et al. [6], and is possibly of independent interest. In a model similar to ours, Maggs et al. [19] consider a data man-
Our results for the fixed paths model use a different set of tools: agement problem for special networks (trees, meshes, and clustered
we first develop an algorithm for instances where all the elements networks). In their work, clients issue read and write requests for
of U have identical (“uniform”) loads. For this we use a different objects, where a read request is serviced by any node holding a
linear programming relaxation, and then round it using a different copy of the object, but a write request must update all copies of the
rounding technique that does not allow node capacities to be vi- object. Just as in this paper, the goal of their work is to place the
olated [27]. We then use this algorithm as a subroutine to solve objects optimally on the nodes of a network to minimize conges-
the non-uniform case by carefully placing down sets of elements in tion. However, while their paper considered the questions behind
decreasing order of their loads. replicating objects and the static and dynamic issues therein (i.e.,
We also show hardness results for QPPC in the fixed paths model,how many copies of an object to maintain at any time? where to
even when the loads are all uniform. Theorem 6.1 states that it is place them?), here we take a fixed quorum system and client re-
NP-hard to approximate the congestion to any constant factor (evenquest rates as input and try to find congestion-optimal placements
if we completely ignore the load constraints); in fact, we can ob- that respect node capacities.
tain stronger inapproximability results under stronger complexity-  The results of Maggs et al. [19] are extended by Westermann [32]
theoretic assumptions. to a model in which objects are allowedragratebetween nodes
Finally, we provide preliminary results regarding the utility of of the network: while migrating an object increases congestion,
migration of universe elements between physical nodes of the net-moving the object closer to a source may eventually decrease traffic
work as a technique to further reduce congestion. The details of in the network. He gives a 3-competitive algorithm for congestion

this analysis are included in Appendix A. for trees, and extends these results to other classes of networks.
Réacke [25] further generalizes these results by giving a general
2. RELATED WORK method to solve a congestion problem in arbitrary graphs. His

method is based on the construction of@ngestion-tree d that
“simulates” the original graph with a polylog/| factor loss in
congestion; more details on this general method are given in Sec-
tion 3.1.

As mentioned above, quorum systems are well-studied; see, e.g.
[1,2,5,9,18, 20, 21, 28] and the references therein. There is much
less work on quorum placement problems that seek to minimize
objectives that capture network performance, which we summarize
here.

To the best of our knowledge, previous work on quorum place- 3, PRELIMINARIES
ment in networks has only considered minimizing various notions
of delaythat a client incurs by accessing a quorum. Specifically,
d(v,V) denote the distance from nodéo V' in a graphG = (V,E),
and let6(v,Q) = maxscqd(v,V) and y(v,Q) = Tyeqd(v,V) be
the delays incurred by a nodewhen accessing a quoru@C V
in parallel and sequentially, respectively (hence the max and the
sum in the two definitions). Previous work has included algorithms
to design quorum systems to minimize objectives (&paverage
delayAvg,cy [minQeg o(V, Q)} for particular classes of graphs [8] 3 1 Congestion Trees
or for arbitrary graphs [14]b) or max-delay to the closest quorum
max.ey Minge 2 6(v, Q) [29].

Furthermore, there has been work on finding placements of a
given quorum systen® on an arbitrary grapl® = (V,E): there
is work on(i) designing bijectiond :U — V andq:V — 2 that
minimize Avg,cy ¥(Vv, f(q(v))) [10], or (ii) designing a placement
f :U — V to (approximately) respect load constraints on nodes and
minimize Avgyey [E[Y(V, f(Q))]] or Avgyey [E[S(v, f(Q))]], where
expectations are taken with respect to the selectid@ atcording
to p [11]. Among these, only the work ifii) considers the load of
the quorum system; however, it does not consider the congestion
incurred by these placements, and indeed may give us fairly poor Definition 3.1 A tree T= (Vr,Et) with edge capacities given by
placements with respect to network congestion. edge_capy : ET — Rxg is a B-approximate congestion tree for a

Minimizing network congestion for both specific and general graph G= (V,E) with edge capacitiesdge_capg : E — Rx>q if:
networks is a problem that has received considerable attention in
the past; given the impossibility of summarizing this work, we 1. The vertices of G are the leaves of T.
mention just some of the most important results here. Early work
in this area included the seminal results of Valiant [30] and Valiant 2. For any multicommodity flow g on paif$s,tj)}i that is fea-
and Brebner [31] who gave randomized routing algorithms in hy- sible on G (i.e.,5igi(e) < edge_capg(e) for each ec E)
percubes and meshes to get small congestion. Leighton, Makedon there is a feasible multicommodity flow of the same value
and Tollis then gave deterministic algorithms for meshes [17]. Lin- on leaved(s,t)}iinT.

In this section, we introduce some concepts and results that will
let be used in developing algorithms for the QPPC problem in the ar-
bitrary routing model. The “congestion preserving” trees atke
mentioned in Section 2 are directly related to the problem at hand,
so we discuss them in more detail in the next section. The results on
unsplittable flows in Section 3.2 will be used in rounding a linear-
programming relaxation of one of the problems we consider here.

Given an instance of a congestion-minimization problem on a
general graplG, one may try to reduce the problem to one on a
simpler graph—for instance, a trde—where it is algorithmically
easier to find a good solution. Of course, we would like that the
tree T “approximates” the grapls well; the following definition
formally states the notion of approximation we will use. Recall
that amulticommodity flovon a graphG = (V,E) is a seig = {g; :

E — R>o}i of flows whereg; carriesd; units froms tot; (st € V);
the vector{d, }; is thevalueof the flow.



3. For any feasible multicommodity flowr @n pairs of leaves
{(s,)}i in T, there exists a multicommodity flow g{(s, ;) }i
in G such that g has the same value asand y;gi(e) <
B x edge_capg(e) for each e E.

In a surprising recent result,&Rke [25] showed that one can
find congestion trees for general networks with- polylogn. His

we consider the special case when thererily one clientin the
system generating the requests. For this case, we show that it is
NP-hard to approximate the congestion withimy factor if we en-
force the node capaciti@®de_cap(v). We then show that if we are
allowed to violate the node capacities by a “small” amount, we can
achieve a “small” congestion as well.

initial result was existential, but subsequent results of [3, 12 made 4.1 A Hardness Result

the construction algorithmic, and also improved the valug o6
give us the following theorem.

Theorem 3.2 Given any undirected graph & (V,E), there exists

an O(lognloglogn) - approximate congestion tree;T further-
more, this congestion tree can be found in time polynomial in n and
the maximum capacity of any edge (assuming edge capacities ar
bounded to within a fixed polynomial factor of each other).

Working in the arbitrary routing model, we will use this result to

Let us begin by proving the following simple theorem that shows
that this problem is NP-hard to approximate withimyfactor. This
hardness result motivates a line of inquiry we will pursue, where we
allow the node capacities to be violated by a small amount, and then
try to minimize the edge congestion incurred.

®rheorem 4.1 Finding any feasible solution to the Single Client

case of QPPC (in either model) is NP-hard if no node capacities
node_cap(v) are violated.

reduce an instance of the Quorum Placement Problem for Conges-

tion on general graphs to an instance on trees, and then we will give : :
algorithms to solve the Quorum Placement Problem for Congestion ©f Which contains a set of numbefay , a5,

on trees.

3.2 Single Source Unsplittable Flow

In general, a flow frons to t could befractional, i.e., the com-
modity travels on multiple paths frostot. In contrast, amnsplit-
table flowis one that is constrained to travel only on a single path.
The Single-Source Unsplittable Flow Problem(SSUFP), then, is
specifically the following: given a directed gragh= (V,E) with
edge capacitiesdge_cap : E — R>, a source nods € V andk
terminals t € V, with eacht; in 1 <i < k having ademand ¢
find a multicommodity flow from the source to the terminals such
that the flowg; : E — R from sto tj (of d; units) is unsplittable
(i.e., travels on @ingle path, and the total flow on any edge
is 3i0i(e) < edge_cap(e). Note that a solution to this problem is
given by a set of path@P.}ik:l, whereR is a path fronstot;.

This problem was studied by Dinitz, Garg and Goemans [6], who
proved the following: given any feasible instance of the single-
source unsplittable flow problem, there is a polynomial time algo-
rithm to obtain a set of path3 (one for each terminaj), such that
the total trafficy..cp di on any edgee is at mostedge_cap(e) +
max {di}. In fact, they prove a slightly stronger result, which we
now state in a form most convenient to us:

Theorem 3.3 Given a fractional multicommodity flow that satisfies
terminal demands and the edge capacities (where the flow of d
units from s tojtis denoted by, the algorithm of Dinitz et al. [6]
converts it into an unsplittable flow; Rhere the total traffic over
anedge eis

. Zp di < edge_cap(e) +max{ d; | gi(e) > 0}.

Note that the maximum on the right hand side is only over the com-
modities using the edge e in the input fractional flow.

In Section 4.2, we will use this theorem to round a fractional
solution of a linear programming relaxation for the QPPC problem
in the arbitrary routing model.

4. THE ARBITRARY ROUTING MODEL:
THE SINGLE CLIENT CASE

In this section, we present our first results for the Quorum Place-

ment Problem for Congestion (QPPC) in the arbitrary routing model:

Proof. The reduction is from theARTITION problem, an instance
a } with 33 =2M,
and the goal is to find a subset of thés that sum to exacti/.

We now construct a quorum systeghon| + 1 nodedJ = {up,
ug, ...,u } with I quorumsQ; = {up,u;}, and the access strategy
p(Qi) =& /2M. Note thatioad(up) = 1 andload(u;) = & /2M oth-
erwise. Finally, let the grapts = (V,E) consist of the complete
graph with 3 node$vp, v1,Vv2}, with node capacitiesode_cap(vg) =
1, andnode_cap(v1) = node_cap(vp) = 0.5. (The edge capacities
are not relevant in this reduction.) Finally, let all the requests orig-
inate from a single client located &j.

Note that any feasible placemeithat respects the node capac-
ities must place the elemeny at the rootvy, and hence the set of
elements placed at node must havey ; = M. Thus it is NP-hard
to find any feasible placemerfior this instance, let alone a place-
ment that approximates the edge congestion. [ ]

4.2 The Algorithm for the Single Client Case

Our result for the special case of a single client works for the
more general case of directed graphs. In fact, we also permit the
presence of the following additional constraints:

o for each edge, we can give a set dbrbidden elementde-
noted byFe C U such that traffic to any elemente Fe is not
allowed to traverse edge and

o for each node, a set of forbidden elemenis C U that can-
not be placed at the node(l.e., forbidden placementsare
those withf (u) = v for someu € R,.)

Let us denote byoadmax, the maximum load of any element that
can be placed om, i.e., loadmaxy = maxgr, load(u). Similarly,
let loadmaxe = maxgr, load(u). We will use these quantities to
parameterize the performance of the following theorem.

Theorem 4.2 Given a directed instance of the Quorum Placement
Problem for Congestion in the arbitrary routing model, with a sin-
gle client \y generating requests, let"fbe the optimal placement
that respects node capacitiesde_cap and achieves a congestion
of cong® on the edges. We can find, in polynomial time, a place-
ment f for which:
e the loadload¢(v) on any node v is at mosiode_cap(v)
+ loadmaxy, and
e the traffic on any edge e is at mgsbng* x edge_cap(e))
+ loadmaxe.



Proof. To prove this theorem, we formulate the Quorum Place- Theorem 3.3 to the flow created in the above construction: the an-
ment Problem for Congestion as an integer linear program (ILP), swer it returns is a set of patf&,},cu, one for eachu € U, such
consider its linear programming (LP) relaxation, and round a (pos- that the flow oreis

sibly fractional) solution to this LP relaxation to an integer solution

to (ILP) while losing at mosO(loadmax(e)) during this rounding. u.;P load(u) < edge-cap(e) +u19rp(2));0{|oad(u)}. (410
Consider the following integer linear programming formulation A
(ILP): Finally, if the pathR, uses the edgév;,t) to reacht, =t, define
f(u) to bev;.
A* = minimize A (4.2) Proving the Claimed Guarantees. Let us first consider the
YXu=1, YueU (4.3) load load (vj), which is equal to the traffic on th_e afg,t). Re-
i call thatedge_cap((vi,t)) = node_cap(vj). Also, if gy((vi,t)) =
S load(u) Xjy < node_cap(Vj), VVv; €V (4.9) > pre, u(P) is non-zero, thew ¢ Ry, by the constraint (4.7), and
u thusloadmaxy, > loady. Plugging these facts into (4.10) implies
Xu=0, Vuek, (4.5) thatload¢ (vi) < node_cap(V;) + loadmaxy,, as claimed.
Y gu(P) = load(u)xy,YueU,¥v eV (4.6) Now for the traffic on an edgec E: this was originally at most
P, edge_cap(e), and now can increase by at mdstdmaxe (due to
5 gu(P)=0, VueFe,VecE (4.7) the constraint (4.5)), thus proving the theorem. ]
Pe 2
oF Bl < 1 xed o) VecE 4.8) 5. THE GENERAL CASE OF QPPC IN THE
UEUV.EVPég,QL*( ) < A x edge cap(e), - ARBITRARY ROUTING MODEL
ec

To obtain the result for an arbitrary number of clients claimed in
Section 1, we use the following strategy:

(A) Reduce the problem to trees.We first translate the QPPC
problem on a general graghto the3-approximate congestion tree
Te with B = O(log?nloglogn), as guaranteed by Theorem 3.2.

It follows from the definition of a congestion tree, and the fact
that the leaves of correspond to nodes of the netwdskthat any
placement : U — leaves(Tg) which is ana-approximation for the
optimal congestion ifig corresponds to a placemeitU — V(G)
which approximates the optimal congestionGrto within a x f3.
(The details of this translation are given in Section 5.1.)

(B) Reduce the problem to the single-source caseln Sec-
tion 5.2, we show that there is a placeméithat maps all elements
in U to a single nodgg in the tre€lg and minimizes the congestion
of the tree edges. However, this placement has very high load, and
since our goal is to achieve low loads in addition to a low network
congestion, this solution is clearly not acceptable. However, this
will be a convenient structural result for the rest of the argument.

(C) Solve the single-source problemFinally, in Section 5.3, we
imagine the above single-node solutignas asingle client gener-
ating all the requestsand use the algorithm of Section 4 to find a

Preprocessing. We will use the rounding scheme used for the 9000 placement :U — leaves(Tg) for this single-client case. We
Single-Source Unsplittable Flow Problem to round our fractional _ShOW thatf is also a "good” placement for the original set of clients

solution, and hence we first construct an instance of SSUFP. Con-I"" 16: and achieves a congestion@fs 5 times the optimum.
sider the graplG = (V.E), and let us add a new "sink” vertax 51 Translating the QPPC Instance to a Con-
to it, with directed arcgv;,t) from eachy; € V to this new ver- gestion Tree
text, with each arqv;,t) having a capacity oédge_cap((vi,t)) = - . )
node_cap(V;). Now we creatdU | new “terminals”{t, |uc U}, all Consider a graplG = (V,E) and aff-approximate congestion
of which are located at the “sink” nodeDefine the client to be treeTg = (Vr,E7). Recall thaV is equal to the set of leaves o,
the “source”. i.e.V = leaves(Tg). Let f§ : U — V be the placement in the graph
Finally, note that total amount of flow ending atis equal to ~ C With the least edge congestioangg,. Let fr_ : U — leaves(Tg)
Sueu Yper Qu(R) = Yyload(u) x Xy using equality (4.6), which be the placement that rlas the least congestion over the edges of
by (4.4) is at mostode_cap(v;). Thus we can take all the flow that ~ the tre€Tg, and letcongy, be the value of this congestion. By
previously ended at the nodg and send it on the ar;,t) to the the definition of congestion trees, it follows thangr, < congg.
sinkt without violating capacities. Doing this for all vertices we Since we assumed that the optimal congestioras exactly 1,
get a flow that for each € U, senddoad(u) units of flow fromthe ~ We get the following fact.
sourcevg to the terminaty,.
Using SSUFP to Round the LP Solution. Finally, we apply

u€{0,1},Vvi eV,YueU. (4.9)

Herexj, is the indicator variable for the elemembeing placed
on nodev;, & is the set of paths from the cliew to the nodes;,!
gu(P) is the amount of traffic destined for elemerthat uses some
pathP, and A is the overall congestion of the resulting solution.
Since each ok, is either 0 or 1, they,(P)’s tell us how to send
the traffic from the clienty to the nodey; with xj, = 1. (Since we
do not require that they(P)’s be integral, technically the above
program is a mixed-integer program.)

Note that given a solutiori to the single-client QPPC problem
with congestiorcong ¢, we may sekjy, =1 < f(u) =v; and use
the flows prescribed by the given solution to obtais congs, and
hence this is indeed a formulation of the original problem.

Since we cannot solve this ILP optimally in polynomial time, we
relax the integrality constraints: instead of (4.9), we throw in the
constraint 0< xjy < 1 and solve the resulting linear program; now
we have to round the resulting fractional solutioh x,g) to one
wherex;, € {0,1} for all i andu. For simplicity of exposition, we
scale the edge capacities by a factoApfo that with the new edge
capacitiest* = 1.

Lemma 5.1 The optimal congestion onsTis at mostl.

INote that|. 7| could be exponential in; one can write an equiv- at mg;etover, iff jﬂu();;lretilvsseg%siso.? pI;ceenr?ehn;gvé?nc%r;%iﬁitigfn
alent formulation of this ILP with a number of variables and con- O x congry 8 g G, 8 g

straints polynomial im. However, the formulation we present here ~at most(a x f8) x congy_ < (& x f8) x congg over the edges db.
will be easier to argue about. This implies the following result:



Theorem 5.2 Any placement fU — leaves(Tg) with edge con-
gestiona x congy, over the edges ofgThas a congestion atf x
congg;, over the edges of G. In other words, a placement on the
leaves of § that is ana-approximation for congestion orgTis an
o-approximation for congestion on G.

Note that the above theorem only works for placements that map
elements to the leaves @§, and as such cannot be used directly
with the results of the next section.

5.2 Single Node Solutions are Good on Trees

For any noder € Vi, let fy : U — Vr be the trivial placement with
fu(u) =vforallue U; i.e., all the elements & are placed on the
single nodev. We will show that on a tree, an optimal placement of
(2, p), provided we ignore node capacity constraints, is on a single
node of the tree.

Lemma 5.3 Given a tree T= (V1,Et) and a placement fU —
Vr, one can find (in polynomial time) a nodg @ V such that the
placement \f, has congestion no greater than that of f.

Proof. Let f~1(v) denote{u | f(u) = v}. For a nodev € T, recall
thatry was the fraction of all the requests in the system that are
generated by the cliem and also that

loads(v) = load(u)
ueU:f(u)=v

P(Q)
ueU :fz(u):v Qe_;ueQ

=Y pQx[fvnQ)
Qe2

is the expected number of messages that reach thex{adere the
expectation is taken over the choice@finder the access strategy
p). Itis a simple exercise to prove that there exists a ngda T
such that each subtr@é of T — {vp} has at most half the demands;
i€, Yyer v < % < JvgT Tve

Consider an edge, and letT. and T be the subtrees formed
by deletinge. Letr(TL) = Yyer, rv be the total fraction of de-
mands generated by clientsTh. The expected number of mes-
sages seen by nodeslinis load (TL) = Y yer, load¢ (V). Letr(Tr)
andload; (Tr) be defined similarly for the subtr@g. Then the to-
tal congestion of the edgeunder the placemeritis

r(TL) x load(TR) +r(TR) x load(TL)

edge_cap(e) .11

Without loss of generality, let(T, ) <r(Tgr), and hence the nodg
must lie inTg. Thus all the messages traversing the eglgader
the placementy, go fromT_ to Tr, with e having a congestion of
r(TL) x [load¢ (TR) + load¢ (T)]/edge_cap(e); ther (T, )loadt (Tr)
term corresponds to messages generated by nodgswhich are
sent acrose under both placements, while th@ )load (T ) term
corresponds to messages generated by nodgstimat are sent to
nodes inT_ under placemenf but are sent acrossunder place-
ment fy,. Sincer(T_) < r(Tr), this quantity is at most (5.11), the
congestion under the placement Finally, we note that the node
Vo can be found in linear time simply by trying all the nodesTof
which completes the proof of the lemma. [ ]

While this lemma tells us how to find the best quorum placement
on trees, it is unsatisfying for at least two reasons. First, the node
\p in the above theorem suffers all the load in the system under the
placementfy,. Second, this nodey may be an internal node of
Tg, and hence we cannot directly obtain a solution for the gfaph

by applying Lemma 5.3 on the congestion tiieg and then using
Theorem 5.2 to translate the solution backatdn the next section
we provide a solution to these problems.

5.3 The Algorithm for General QPPC

Consider a congestion trdg, let f* be the best placement Of
on the leaves 0Of that respects the node capacities (lead ;- (v) <
node_cap(v) for all v); let cong;- be the congestion ifig under
f*. Let the best (single-node) placement given by Lemma 5.3 for
the treeTg be fy,, which places the entire quorum og. Let the
congestion incurred under this placementcbegva; Lemma 5.3
shows thatongva < cong:.

Let us show that ifip were generating all the requests (instead of
the nodev generating requests with probability), the placement
f* would still be a fairly good placement.

Lemma 5.4 The congestion incurred by the placemehiffall the
requests in the system originate at(instead of at the individual
clients) iscongs. y, < 2congs-.

Proof. Indeed, the congestion is no worse than if we use the fol-
lowing routing strategy for messages: igtchooseQ according

to the access strategy and a leaiv with probabilityry, and send
the messages to the various node$ (@) by first sending them to

v, which forwards them on td (u). The first part of this indirect
route incurs the same congestion as the case whare generat-
ing all the|Q| messages and using the placemigpntwhich is just
congs, < cong¢« (by Lemma 5.3). The second part of the route
incurs a further congestion @bngs., which proves the result. m

Recall thatcongs- < 1 due to Lemma 5.1. We now prove the
main result for the QPPC problem on trees:

Theorem 5.5 There is a placement f on the leaves of the tree T
that incurs a congestion of at mo8tong¢. +2 < 5, and which
places a load of at mo&node_cap(v) on each leaf v.

Proof. Let us imagine the nodg, of Lemma 5.4 to be the sole
client, and use the algorithm of Section 4 to find a placenfent
on the leaves oflg with “low” load and congestion. Each leaf
nodev of Tg corresponds to a node @& and hence has a node
capacity already defined; for each internal nedeTg, define the
node_cap(v) = 0, thus ensuring that no elements are mapped to
internal nodes.

Recall that one could specifgrbidden setf$or nodes and edges
in the algorithm of Section 4.2: let the forbidden &gtfor nodev
be the set of elementswith load(u) > node_cap(v). Also, the for-
bidden seFe for a tree edgeis defined to be the set of all elements
usuch thatoad(u) > 2edge_cap(e). Note that these settings ensure
thatloadmaxe < 2edge_cap(e) andloadmaxy < node_cap(V).

Note that the placemerit' on the leaves of is a possible solu-
tion to this instance of the single-client QPPC, having a congestion
of at most 2 (due to Lemma 5.4 and Lemma 5.1) and load of at
mostnode_cap(v), for eachv € V. Hence, Theorem 4.2 guaran-
tees us that (a) each node has a load of at most_cap(v) +
loadmaxy = 2node_cap(v), and that (b) each edge sees a traffic of
at most(cong- y, x edge_cap(e)) + 2edge_cap(e), and hence the
congestion is at mogbng. ,, +2 < 2cong- +2.

Now, since the requests are generated by the various nodes of
the network and not by the single nodg one has to add in the
extra congestion incurred by sending all the requestgtoBy
Lemma 5.3, this extra congestion is at mosigva < congj:.



Finally, putting the pieces together, the idea of conceptually “del-
egating” all the requests tg and using the placemeffitthat (ap-
proximately) optimizes the congestion for the “soureg'gjives us
the claimed congestion ofc8ng;- +2 < 5 (sincecong- < 1 by
Lemma 5.1). [ ]

Now combined with the results of Section 5.1, we get the result
for general graphs.

Theorem 5.6 Given an instance of QPPC on general graphs, we
can find a placement f that incurs on any node v a load of at most
2node_cap(Vv), and an edge congestion of at mégttimes the op-
timum (whereB is the performance of the best known congestion
tree).

Sincef = O(log®nloglogn), this proves Theorem 1.3.

6. THE FIXED ROUTING PATHS MODEL

In this section we consider a variant of QPPC in which we are
given routing path$},,, between each pair of vertices. A node
VvV generating an access to elemarthus incurs a unit of flow on
the edges oP% ), Whereu has been placed at nodgu). In
general, we do not requifg,,, andR;, \ to be equal. As before, our
goal is to find a placemerit of quorum elements onto the nodes
to minimize the congestion, while respecting the node capacities.
First note that Theorem 1.2 applies to this variant; if we are not
allowed to violate the node capacities then even finding a feasible
solution is NP hard. As before, we retreat to the task of finding
solutions that approximate the congestion well, but may violate the
node capacities by a small multiplicative factor. However, even if
we allow ourselves to ignore the node capacity constraints entirely
(i.e., violate them by arbitrary factors), minimizing the congestion
is still fairly inapproximable, as the following result states.

Theorem 6.1 In the fixed routing paths model, it is NP hard to c-
approximate the minimum congestion of a QPPC problem, for all
c € N, even on instances whermde_cap(v) = « for all v, and
load(u) = load(u’) for all u,u’ € U. Furthermore, unless\P C

ZPTIME (no(('og'og(“)>z)>, itis NP hard to ¢/loglog(n)) - ap-
proximate the minimum congestion QPPC solution, even on in-

stances whereode_cap(v) = o for all v, andload(u) = load(U')
forallu,u’ e U.

Proof. Recall that for a vectox, ||x||p := (zixip)l/p, and||X||o =
max{x }. The proof proceeds along similar lines as the proof
of hardness of the Vector Scheduling problem given by Chekuri
and Khanna [4]. We reduce Independent Set to QPPC instance
with node_cap(v) = « for all v, andload(u) = load(U’) for all

u,u’ € U. For a graplG, let o(G) be the size of the largest inde-
pendent set iB, and letw(G) be the size of the largest clique®
Lemma 6.2 states thai(G) > £n"/®(®), whereG hasn vertices.
Now consider the following multi-dimensional packing problem
(MDP): givenA € {0,1}9*" andk < n, minimize ||AX|. such that

x € {0,1}" and||x||1 = k. We can reduce MDP to QPPC instances
with load(u) = load(U) for all u,u’ € U in an approximation pre-
serving fashion as follows. We construct a quorum systenk on
elements with uniform load. We adbvertex disjoint edges of unit
capacity, one for each row of the matix as well as two sources
of quorum accesses; ands,. Partition of columns oA into sets
S1,S,...,S using the natural equivalence relation on the column
vectors, and add a vertex for eachS with node_cap(vj) = |S]|.
Note that if|S| = k, we can sehode_cap(vj) = ». We also add

a bottleneck edge of capacityrlz. We route the paths to ensure
that placing an element & is like selecting a column i$ (add
some infinite capacity edges to the graph as needed). Finally, we
ensure that no elements are placed at nodes othefthan. v }
by routing paths to these other nodes through the bottleneck edge.
Note that since we want to restrict ourselves to MDP instances
that reduce to QPPC instances with uniform load @k _cap(v) =
oo for all v, we require the matriX to satisfy the following prop-
erty: if &is column vector ofA, thenA must have at leasgt— 1
other column vectors that equal
We now proceed by reducing Independent Set to such MDP in-
stances. LeG be an Independent Set instanceronodes. Fix
parameterk andB. We construct a matri®’ with n columns, cor-
responding to each node @f For each cliqu€ in G of sizeB+ 1
or smaller, add a ro\€ to A’ such thala’cv =1if veC, and zero
otherwise. Now construct a matrwith kn columns, consisting
of k copies of each column & Callx e {0, 1}¥"valid if ||x||; = k.
Note that if|| Ax||. > 1 for all valid x, thena(G) < k. Furthermore,
if there exists a valid such that|AX| . < B, thena(G) > k5.
To prove this, consider a grafg® that is constructed fron® by
replacing each node of G with a cliqueCy of sizek, and adding
all edgesirC, x C, to G’ whenever(v,V') is an edge o&'. Clearly,
a(G) = a(G'). Note that sincdl AX||» < B, the subgraps; of G’
induced on{v|x, = 1} hasw(G}) < B, so

1
2e
and clearly(G) = a(G') > a(Gy).

Given ap-approximation for MDP on these instances (obtained
from ap approximation for QPPC on uniform load, infinite node
capacity instances), we approximate Independent S& as fol-
lows. Setk :=nP/(PT1) B:=p, and construct matriA accord-
ingly. Letx be the output of the MDP algorithm. [fAX||. > B,
output one, otherwise outpytk'/B. The output is always at most
o(G) by equation 6.12. Furthermore, in the first cfige||e > 1
for all valid x, since we used @-approximation for MDP, and
thusa(G) < k. In the latter caseg(G) < n trivially, so we have
a maxk,en/k/B} = 2e. (nl~&)-approximation. (Note that the
reduction takes poly®) time.) Combining this reduction with
known hardness results for Independent Set (see [7] and references
therein), completes the proof. [ ]

o e l/elG) ;B _ 118
a(Gy) = 5 IVIG| 2 eV [GAI7" = 5k (6.12)

Lemma 6.2 In any undirected graph G on n nodeze- o(G) >
nY/®(G) wherea(G) is the size of the largest independent set in G,
andw(G) is the size of the largest clique in &.

Proof. Suppose for a contradiction that> (2e- (G))®(®). Us-

%ng the well known Erds-Szekeres bound on the Ramsey number

R(s,t), namelyR(s,t) < (5{'7?), we conclude that
o(G) + o(G)
o(G)
Thus, by the definition oR(:,-), G has an independent set of size

o(G) +1 or a clique of sizaw(G) + 1, which yields the desired
contradiction. [ ]

n> (2e a(G))*© 2( )z R(a(G)+1,0(G)+1)

We now develop an approximation algorithm for QPPC in the
fixed paths model, starting with instances with uniform element
loads.

2\We note that stronger versions of this lemma exist, and a similar
lemma is stated without proof in [4], however this version is sulffi-
cient for our purposes.



6.1 Uniform Element Loads

Theorem 6.3 There is a polynomial time randomized algorithm
that, given an instance of the QPPC problem in the fixed routing
paths model in whickoad(u) = load(u') for all u,u’ € U, yields a
(O(logn/loglogn), 1)-approximation.

We reformulate the QPPC problem in the fixed paths model with

Algorithm for uniform load instances:
Generate matriA and guessong™.

Remove columng of Awith max{&;j} > cong®.
Optimally solve the resulting LP to get solutian
Roundx to y using the rounding in [27].
Outputfy.

6.2 The General Case
Here, lete/ be any algorithm for uniform load instances..df

uniform elements loads as follows. Assume WLOG that for each IS the algorithm given above, we suppose it is given its guess for

u €U, load(u) =1. Consider placing a logical elememtt a node
v. Since the loads are uniform, placing any logical elementrat

sults in the same increase in congestion to the edges of the network.

We represent this as a vectmre RIEl, where the coordinates are
indexed by edges. Thus coordinatef ¢y is the expected conges-
tion incurred by placing an elementwat For eachv, suppose we
can place at most(v) := {Lde’,“p—(v) logical elements at while
respecting the node capacities. Consider a m&rikat has ex-
actlyb:= ¥, h(v) columns, consisting di(v) copies ofc, for each
v. We say thesh(v) columns aressociatedvith v. Our variant of
the QPPC problem thus becomes

minimize [|AX|o St. x€{0,1}® and ||x||1 = [U|

We say thatx selectscolumnsi for which x; = 1, and for each
column associated withthatx selects, we place a logical element
atv. We call the resulting assignmefit It is easy to encode this
formulation as an ILP and take the LP relaxation.

A* = minimizeA

A > Yjaijxj Vi
Tixp = V] _
X; € [0,1 vj

cong™ as part of its input.

Algorithm for general instances:
Guessk = cong™.
For eachu € U, roundload(u) down to the nearest power
of two. Call the resultoad’ (u).
LetL := {load’(u)|jucU}.
For eacH € L, in decreasing order of size
Rung onU, ;= {ueU |load'(u) =1},
usingk as the input guess if needed.
PlaceU; as.« suggests, and decreassde_cap(-)
accordingly. That is, if elements otJ; are placed
onv, decreas@ode_cap(Vv) by tl.

Lemma 6.4 If &7 is a (o, 3)-approximation for QPPC instances

with uniform load in the fixed routing paths model, then the above

algorithmis a(a|L|, 23)-approximation for general QPPC instances
in the fixed routing paths model.

Proof. Supposd is the placement output by the algorithm. We first
proveload¢ (v) < 2Bnode_cap(v) for eachv. Note that it suffices

to show thatoad’ (v) < Bnode_cap(V), sinceload(u) < 2load’(u)

for all v. From now on all references to load referidad’.
Fix anyv. Suppose is run on elements with load’(u) = |
and places of them onv. There are two cases: either at this stage,

To solve this LP we can start by guessing the optimal conges- node_cap(v) > tl, in which case we can charge the load these ele-

tion 3 cong*, and remove all columns containing any endry >
cong* from the matrixA. We then solve the resulting LP, and ap-

ments cause to the corresponding decreasede_cap(Vv), or else
node_cap(v) < tl. In the latter case, we know thadde_cap(v) >

ply the rounding scheme of Srinivasan [27] to the resulting optimal tI /B since« is an(«, 8) - approximation, so we can charge 8

fractional solutionx to get an integral vectar.

Using this rounding procedure, Srinivasan guaranteed ytjat=
|U|, and for all vectorsa such thata; € [0,1] for all j, and for all
8 >0andu > E[y;ajyj]

Priziay > n(1+9)] < (p:9e)”  613)
As before, we can scale the valugsby 1/cong*, so that the op-
timal congestion becomes one, and eagh< 1. We can apply then
equation 6.13 to bound the congestion on a fixed ediiote that
E[yjajyj] = ¥jaijXj <1, since the optimal congestion is one, so
we setu = 1. For any constard, we can apply equation 6.13 with
somed = O(logn/loglogn) to prove that the congestion on edge

i exceeds the optimal congestion by more than an additive factor

of & with probability at most In®. Taking a union bound over
the edges, we infer that the congestiorOidogn/loglogn) with
high probability. Thus the placemefitis a(O(logn/loglogn), 1)-
approximation.

The algorithm is summarized as follows:

3|f guessingcong™ requires too much nondeterminism, it is suf-
ficient to guesd = ['09(1%)(‘30”%*)]: for any € > 0, and use

(1+¢)t as an estimate fatong*. This increases the bound on
congestion by a factor of t €.

to node_cap(V).
zero, v is not assigned any additional elements later on.

Furthermore, sinc@ode_cap(v) is reduced to
Thus

we can charge /I8 of the load tonode_cap(v), and conclude that

load} (V) < Bnode_cap(V).

We now bound the congestion caused by each executie# of
by o - cong®. To do this, it suffices to prove that the optimal con-
gestion is at mostong™® in each instance on whicly is run. Fix
an instance, say on elements withad’(u) = |, denotedu;. All
elements with larger loads have already been placed, thus reducing
the node capacities at some nodes. For a placefemdev, and

W CU, let

cap(f,vyW) = node_cap(v) — load’ (u)

ueW:f (u)=v

denote the remaining loadaafter placing dowW usingf. Here,
node_cap(v) are the original input node capacities. LEt:= {u |
load’(u) > 21}, and letf be the partial placement &' created
by the algorithm so far. Fix any optimal solutioiif. We can
place down elements df, at nodesv such thatcap(f,v,U’) —
cap(f*,v,U’UU)) > 0. Specifically, we place dowi(cap(f,v,U’)

— cap(f*,v,U’UU))/I| such elements at It remains to show
that we can place all dfi down this way. To see this, first note
that, by a simple volumetric argument,

S (cap(f.wU") —cap(f*,wU'UU)) =1-|Uj|

Vv



Next, observe thatap(f,v,U’) — cap(f*,v,U’UU)) is always a
multiple of I, since all elements dfi’ andU, have loads that are
multiples ofl. (Note how we have used the fact that the loads
load'(u) are multiples of two.) Combining these two facts, we see
that we can paclJ, in node capacity occupied by elementsJ6f.
U, under placement*, while respecting node capacity constraints
(with respect tdoad’), no matter howf placed dowrlJ’. Having
done this, it is clear that the resulting congestion due to plddjng
is no more tharong*.

Since the congestion due @ on each instance is at most:
cong®, we conclude that all executions eof together contribute
congestion at most | - o - cong™. ]

Note that|L| = |{|log,(load(u))| |u € U}| = n, so using the

algorithm given above fae7, with @ = O(logn/ loglogn) and =
1, we complete the proof of Theorem 1.4.

7. CONCLUSIONS

In this paper we studied the problem of placing the elements of a

universeJ underlying a quorum syster# on a networlkG in a way

that minimizes congestion due to quorum accesses, while respect-
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this problem in two models, differing on the basis of whether com-

munication routes are fixed or can be chosen. We showed that in

either case, this problem cannot be approximated to wéthyfac-

tor (unless P=NP). However, by allowing doubling of the capacity
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APPENDIX

A.

THE MIGRATION MODEL

from T). Let alsoloadp, (TL) = S yeT, loadp, (v) andload, (Tr) de-

fined similarly, be the expected number of messages seen by nodes
in T_ andTr respectively, at timé Then the congestion of the edge

e over the time period is

8 r(TL) x loadp, (TR) +r(TR) x loadp, (Tp)
&

edge_cap(e)
Let vp be the node found in Lemma 5.3 and assume itfikt) <
r(Tr). Nodevy has to lie inTgr and thus the congestion efor the

Axr(Ty)x (loadn, (Tr)+loadn, (T
placementhy, with migration is s L)X(Zghev‘j;sze) 02 L))
Sincer (T.) <r(Tr) and the total load of the system does not change,
this is at most the quantity given by A.14, which completes our
proof. [ ]

(A.14)

A.1 A solution for arbitrary graphs.

To obtain a solution for arbitrary graphs we will usédRe’s

In this section we study the congestion of a quorum system place- results on congestion trees. Consider an arbitrary g@&ahd con-
ment in a variant of the arbitrary routing model. We assume that struct its associated congestion tiiee Then find the nodeg from
the logical elements dfl canmigratefrom one physical node to
another. For simplicity we ascribe zero cost to the migration of of clients are known. If the node is a leaf we are done, we can
logical elements, leaving as future work the study of the problem simply use the placemerf, in the original graphG with only a
in a model with non-zero costs for migration.

Our objective function is the congestion of the most congested to specify a way in whiclvg gets mapped to one of the nodes®f
edgee € E amortized oven time units, where each eleman& U
is stationary during each time unit (and can migrate in between). done by choosing the leaf onto whighis mapped, independently
A solution to this problem is @lacement with migrationi.e., a
functionh:U x {1,...,A} — V, whereh(u,t) specifies the node

Lemma 5.3 that minimizes congestion, assuming the request rates

polylogn loss in congestion. Ny is an internal node ifig we need
in the cluster corresponding t@ in G. In Racke’s work this was

at random from a special distribution depending on the cluster cor-
responding tag. More precisely, each leaf was chosen with a prob-

that hostai during time unit. No bounds are placed on the capacity  ability proportional to itaveightin that cluster (which was equal to
of any physical node, in other words, load is not an issue here. As the sum of the capacities of the edges incident to that node that
with migration cost, we leave the problem of addressing load in a were leaving the cluster). This is done independently at random for
migration model as future work. each message that is routed through the ngde
We now give an example which shows that, in arbitrary graphs,  To obtain the same approximation ratio for congestion, we can
migration can indeed help reduce congestion. Consider the com-do something similar here (this is based on ideas from [32]). After
plete graptKn on n vertices, with each edge having unit capacity, a fixed amount of time, the node in the clustemgbnto whichvg
and assume that the universe of logical elements consists of a sinis mapped, makes a decision as to whether it should keep all the
gle node U = {u}. A static strategy would specify a placement |ogical elements off mapped onto itself or it should migrate them
f:U —Vofuonv= f(u), one of the nodes df,. Assuming that  to another node of the cluster correspondingdo The next node
each client sends a request each time unit, the amortized congestiofin the migration chain is picked independently at random from the
of the placement is 1. special distribution mentioned before from the nodes of the cluster.
Consider now what happens when we allow migration. Suppose This ensures that over a longer period of time, we will match the
that after each client request we move the logical element from one conditions that enable#ke’s construction to provide the polylog
physical node to the next in a circular manner such that all nodes areapproximation factor for congestion. By an argument similar to
used. In this case all edges have congestjdhwhich is lessthan  the one from Section 5.1, we can see that our solution will also
the one obtained for a fixed placement. In fact, a simple averaging suffer only a polylog loss in congestion compared to the optimal
argument shows thad(n) is the largest gap that can be obtained one in the migration model, regardless of whether that solution uses
between the congestions of the two models (with and without mi- migration or not.
gration). Here is an example illustrating how our algorithm works for a
This example indicates that studying the model in which migra- particular graph. Consider the congestion tfge for the com-
tion is allowed can have possible benefits in terms of congestion. plete graptK, and assume that all edgeskf have unit capacity.
Unfortunately, this is not true for all graphs, in particular, it is not  Assume further, that clients issue requests uniformly from all the
true for trees, as we will now prove. nodes ofK,. The treeTk, will consist of a root andh leaves, each
leaf being connected to the root by an edge of capacityl. The
Lemma 1l For atree T there exists a nodg such that no place- algorithm will find the root as the node minimizing congestion and
ment with migration h of a quorum system over the universe with a will place all the elements d on it. The root is mapped to one
single element U= {h} can have a congestion better than that of ~of the leaves with probabilit)% and then migrated after some fixed
hy,, where R, (u,t) = vp for each te {1,... A}. amount of time to a new leaf chosen independently at random (and
uniformly in this case) from all the leaves @k,. This, in fact,

Proof. The proof is similar to that of Lemma 5.3. La&t: U x corresponds to the optimal solution for the complete gt&ph

{1,...,A} — V be an arbitrary placement with migration, and let
ht = h(-,t) : U — V be the placement specified hyat timet. For
an edgee € E, letr(T.) andr(Tgr) be the request rates of clients
coming from the two subtre€g andTr (obtained by removing



