
Holistic Application Analysis for Update-Independence

Charles Garrod
charlie@cs.cmu.edu
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

Amit Manjhi
manjhi+@cs.cmu.edu
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

Bruce Maggs
bmm@cs.cmu.edu

Carnegie Mellon University
Akamai Technologies

Todd Mowry
tcm@cs.cmu.edu

Carnegie Mellon University
Intel Research Pittsburgh

Anthony Tomasic
tomasic+@cs.cmu.edu
Carnegie Mellon University

ABSTRACT
Current database performance optimizations stop at the bor-
der between the database application and the database sys-
tem, focusing either on improving the performance of just
the database system or the application’s execution in isola-
tion of the other. We argue that typical database applica-
tion design enables a more holistic analysis that maintains
the relationship between the database and application data.
We describe techniques to maintain this relationship and
introduce several optimizations to improve the efficiency of
Web application execution in a distributed environment. We
show that our holistic analysis outperforms traditional non-
holistic methods both statically and when used as part of a
dynamic, distributed environment for executing Web appli-
cations using database caches.

1. INTRODUCTION
A key strength of the paradigm of database management

systems (DMBSs) is that it encapsulates all data manage-
ment tasks into a single infrastructure, separating those
tasks from the applications where the data is used. Al-
though this encapsulation is ideal from the perspective of
good software engineering and programmatic design, it can
cause inefficient performance because relationships among
data are not maintained between the data’s storage and
use. Although some research has attempted to erase the
barrier between the application and DBMS, most work to
improve system performance focuses on just the DBMS or
the database application individually, maintaining the sep-
aration imposed by the DBMS paradigm.

In many database applications the interactions between
the application and DBMS are clearly specified at compile-
time. This is especially true for Web applications, in which
database requests are often written as templates with pa-
rameters that are filled in at run-time. For many Web ap-
plications and database request templates there is a clear
relationship between the DBMS data and application data.
This fact enables a holistic analysis of the DBMS and the
database application: the clear specification of database in-
teractions in an application enable us to maintain the re-
lationships between the DBMS data and application data.
Maintaining these relationships allows the automated holis-
tic optimization of the application and DBMS, while still
maintaining their programmatic separation.

As an example of the type of data relationships that can
be maintained, consider a column within a relation that is
specified to contain unique values. Values retrieved from
this column are then known to be distinct, which can lead
to better optimization of the application’s execution. Here
we study only a very narrow use of these cross-boundary
data relationships: we use them to better determine when
the execution of a Web application is not affected by a data-
base update, which we call the application-update depedence
problem. This problem is especially important for distribu-
ted settings where the application is executing at a remote
server: if the application is not affected by an update, then
the remote server does not need to be notified of the update.

In this paper we describe techniques to maintain the re-
lationship between the DBMS data and application data.
We then apply these techniques to the problem of correctly
executing Web applications while using database query re-
sult caches, showing that our holistic techniques outperform
traditional techniques that focus just on the database re-
quests or application alone. Our overall contributions are
as follows:

• We introduce static, offline techniques that maintain
simple known relationships between DBMS and appli-
cation data.

• We apply the above techniques to the problem of ex-
ecuting Web applications using database caches in a
distributed environment, describing two optimizations
that cannot be found without holistic analysis.

• We measure the contribution of our holistic analysis
both statically and when used as part of a dynamic,
distributed environment that executes Web applica-
tions using database caches.

The remainder of the paper is organized as follows. Sec-
tion 2 describes work related to the holistic analysis of data-
base applications. Section 3 describes our key contribution,
showing how we maintain the relationship between database
and application data and describing two cases for which
holistic analysis can determine that a Web application is
not affected by a database update when traditional analyses
cannot make this determination. Section 4 describes a dis-
tributed database caching system we previously developed
that we use here to evaluate our analytical techniques, as
well as the results of our evaluation.



2. RELATED WORK
The problem of mapping application data to DBMS data

has long been a data management problem. Early approaches
such as object-oriented databases and persistent program-
ming languages failed to gain wide acceptance in the data-
base community, and common current practice is still to
manually program the database access logic or to use an
object-persistence layer (e.g., Hibernate [12] or TopLink [11])
to manage the mapping between application and database
data. Recently, Melnik et al. [9] proposed a model in which
the programmer explicitly declares a general-purpose map-
ping between application and database data, independent of
the programming model and DBMS used. Our work does
not extend the state-of-the-art in developing an application-
DBMS data mapping. Instead, our focus is on a novel
use of such mappings for holistic performance optimization
across the application-DBMS boundary. In our work we
exploit only simple, direct mappings between an applica-
tion’s statically-declared database requests and the applica-
tion data, which we believe are common for Web application
database workloads. One key advantage that we have over
these approaches is that our mapping analysis is automatic
and does not require any additional programmer work.

In an earlier thesis, [8], we use a similar holistic anal-
ysis across the application-database boundary to optimize
database applications for execution in high-latency distri-
buted environments. There we used holistic analysis to to
recompile Web applications to require fewer database re-
quests while generating equivalent output, reducing the av-
erage execution time of the applications in high-latency envi-
ronments. Although both that work and this examine data
across the application-DBMS boundary, there we did not
explicitly map DBMS data to application data, and our use
of the holistic analysis targets different subproblems for ex-
ecuting Web applications in distributed environments.

To test the efficacy of our application-DBMS data map-
ping we apply our techniques to the the application-update
dependence problem, the problem of determining whether
an application using a database query result cache is af-
fected by a database update. For a database query result
cache, the problem of whether a given cached query result
is affected by a particular update is equivalent to the well-
studied query-update independence problem. While this
problem is undecidable in general, it can be solved for many
common types of query-update pairs [1, 5, 7]. Blakeley et
al. [1] and Elkan [5] gave efficient methods for determin-
ing query-update independence that relied upon showing
that the query’s result was not derived from data affected
upon the update. Levy and Sagiv later gave a more general
method of proving independence, reducing the problem of
independence to the problem of determining equivalence of
datalog programs [7]. The application-update dependence
problem is similar to the query-update dependence prob-
lem but differs in two key respects. First, a database ap-
plication often does not specify the exact queries and up-
dates it executes but instead specifies query and update
templates which define a range of requests it might execute.
The application-update independence problem therefore of-
ten reduces to the question of whether some set of database
queries is independent of some set of updates. Second, even
if an application uses a database query affected by some up-
date, the application might not use the affected data and
therefore still be independent of the update.

In [10] we described the notion of dependence analysis
for query-update templates in the context of database cache
consistency management, but did not explore template de-
pendence analysis formally or extend our work to the notion
of application-update independence.

Finally, Challenger et al. previously studied the prob-
lem of whether a dynamic Web application was affected
by a given database update [4], and several projects ex-
tended this idea to identifying the dynamic content frag-
ments affected by particular updates [3, 2]. All of this work
uses a very similar notion of application-update dependence
that we use here. A key difference between their work and
ours, however, is that nobody has previously studied the
database application and its associated database requests
holistically. By analyzing the relationship between appli-
cation and database data and maintaining database meta-
data across the application-database boundary, our analyt-
ical techniques can prove application-update independence
in some cases where their analyses cannot determine the
application-update relationship.

3. HOLISTIC APPLICATION-UPDATE DE-
PENDENCE ANALYSIS

To show that a database application is independent of a
given update we extend the ideas of Blakeley et al. [1] and
Elkan [5], showing that all data used by the application is
independent of the update. The database requests in many
applications consist of a small number of static templates
within the application code. Typically, each template has a
few parameters that are bound at run-time, with the tem-
plate and its instantiated parameters defining the database
request actually executed. The earlier techniques to show
query-update independence extend easily to query and up-
date templates. For many common query templates we can
simply determine the data from which an instantiation of the
template possibly derives, and for update templates we can
similarly determine the data which an instantiation of the
template possibly affects. By arguments analagous to those
of Blakeley et al. and Elkan, the query template is indepen-
dent of the update template if no possible instantiated query
can derive from data affected by a possible instantiated up-
date. We applied this extension of traditional query-update
dependence analysis to query-update template pairs in [10].

It is possible, however, for a query-update template pair
to be dependent, but for an application using the query tem-
plate to still be independent of any updates from the update
template. This situation can occur in two ways. First, it is
possible that although a query-update template pair is de-
pendent, the application will never use template parameters
that result in a dependent query-update pair. Second, it is
possible that the application does use parameters that cre-
ate a dependent query-update pair, but the application only
uses a subset of the query result data that was not affected
by the update. In both of these cases, determining the inde-
pendence of the application from the update requires con-
sideration of not just the database requests alone but also
how the application issues and uses those database requests.

In our application-update dependence analysis, we refine
the traditional approach by applying analytical techniques
from optimizing compilers to determine how applications
use their database request templates. In particular, we cor-
relate application data to the database data from which it



was derived. This allows us to propagate database meta-
data through the application and determine constraints on
the parameter values actually used to instantiate database
templates. All of our dependence analysis occurs offline,
using just the static application code and its database re-
quest templates. We do not examine or modify the run-time
execution of the application in any way.

The remainder of this section describes two classes of
query-update template pairs for which application-update
dependence analysis can determine that the application is
not affected by the update but traditional analysis cannot.
We first describe the unused-data optimization, in which the
query-update pair are dependent but the application does
not use any affected data. We then describe the existing-
primary-key optimization, in which our compile time data
analysis can determine that a run time parameter will always
be an existing primary key for some relation, allowing us to
prove that queries actually instantiated from that template
will be independent of insertions to that relation.

3.1 The unused-data optimization
In some cases database application programmers retrieve

more data from the database than they use in their appli-
cation. This frequently occurs for requests that do not limit
the projection of data retrieved from a row (i.e. “SELECT
*”), and can also happen when either the application or
database schema evolves and the programmer fails to up-
date the database request to reflect the change. If a subse-
quent database update affects the unused data, that update
will affect the database query result but not the application
using the result. This section describes how we detect query
result data that is unused by the database application, al-
lowing us to infer that the application is not dependent on
some updates that affect the query result.

To apply the unused-data optimization, we first use the
database schema to expand any wildcard characters (*) in
the projection clause to all the fields that are retrieved from
the database by the query. We then examine the appli-
cation’s use of the query result set, marking each field in
the query result as either used or unused by the application.
Applications typically retrieve query result data using either
the field name or the numerical index of the data they wish
to access. For example, after executing the query “SELECT
name, salary FROM emp WHERE id = 42” an applica-
tion could retrieve the salary using either getInt(“salary”) or
getInt(2), so this process is usually straightforward. Some-
times our offline analysis can not determine which field of
the result is being accessed, typically when the field is chosen
using a variable set at runtime. In such cases we conserva-
tively mark all fields as used to ensure the correctness of
the optimization. We then remove any unused fields from
the query and use our modified query in traditional query-
update dependence analysis with each other update in the
application, yielding a potentially finer analysis than was
possible before. Note that we use our modified query only
in our offline dependence analysis, and do not modify the
query that is actually executed by the application at run-
time. We do this so that we do not affect the performance
characteristics of the application.

3.2 The existing-primary-key optimization
The exisiting-primary-key optimization applies in situa-

tions where we can determine that a query result retrieves

data based only on an existing primary key for some rela-
tion. In such a case, we then know that the query result is
unaffected by insertions to that relation, since primary keys
are guaranteed to be unique.

For example, let emp(id, name, salary) be a relation with
primary key id. Consider the following Java code snippet:
try {

PreparedStatement namePs =

connection.prepareStatement(

"SELECT name FROM emp WHERE id = ?");

ResultSet idsResult = statement.executeQuery(

"SELECT id FROM emp WHERE salary > 10");

while (idsResult.next()) {

int empId = idsResult.getInt("id");

namePs.setInt(1, empId)

ResultSet nameResult =

namePs.executeQuery();

...

}

} catch (SQLException e) {

}
This code first selects the id of all employees with salaries

greater than 10, and then selects the name of each of em-
ployee based on those ids. If there are no interevening dele-
tions or modifications to the primary keys of this relation,
then each name query will retrieve the name of an employee
already in the database, and thus the name query is unaf-
fected by insertions to the employee relation. In this simple
example the code snippet could be replaced by the single
query “SELECT name FROM emp WHERE salary > 10”.
In real applications similar interactions might be broken into
multiple queries because the business logic is too complex
to easily express as a single SQL query, or intervening user
input might affect the application’s execution.

To apply the existing-primary-key optimization we must
first determine that a query’s selection parameter is in fact a
primary key for some relation, and then prove that the pri-
mary key has not been modified or otherwise removed from
the database. To accomplish the former we track the rela-
tionship between application data and database data, using
data propagation techniques similar to those used when ap-
plying compiler optimizations. Whenever a variable is as-
signed a value originating from the database, we label the
variable with the database metadata characteristics for the
data. For example, in the code snippet above the line int
empId = idsResult.getInt(“id”); would allow us to label the
variable empId with the fact that its value originated from
the id field of the employee relation. This fact would be
propagated to when the value was used in the subsequent
query (namePs.setInt(1, empId)) at which point the meta-
data can be used to refine the dependence analysis. This
data propagation technique is well-suited to typical Java
applications, because variables often have limited scope and
direct memory access and pointer arithmetic are prohibited.

When the data source can be propagated to a query pa-
rameter we then check whether the data source was the pri-
mary key for this query’s source relation and whether the
parameter constrains the query to match just the row for
the primary key. If this is the case, we examine all updates
within the application to confirm that no update deletes
rows from this relation and also that no update modifies the
primary key data for the relation (primary keys are typically
immutable). This allows us to conclude that the source data



consists of a primary key that still exists in the relation,
and thus that this query is unaffected by any insertions to
the relation since primary keys are unique. As described,
this technique can only succeed when the primary key for a
relation is a single column, since we do not track the rela-
tionship between different variables in the application. Our
technique could be modified to work for simple cases when
the relation has a multi-column primary key, although such
a modification might require more data to be tracked about
each variable during the data propagation step.

4. EVALUATING APPLICATION-UPDATE
DEPENDENCE ANALYSIS

To evaluate the effectiveness of application-update de-
pendence analysis we seek to answer two basic questions.
First, to what extent do our improvements apply to existing
database applications? Second, what performance advan-
tages can be gained from applying them? To answer these
questions we apply application-update dependence analy-
sis to three common database application benchmarks and
compare the results to traditional query-update dependence
analysis. For these applications we show that our meth-
ods can determine the independence of many query-update
pairs whose relationship cannot be determined from tradi-
tional query-update dependence analysis. We then use the
results of these dependence analyses as part of the consis-
tency management infrastructure in a distributed database
cache, and show that consistency management requires sig-
nificantly fewer messages with application-update-derived
dependencies than with traditional dependence analysis.

This section is organized as follows. Section 4.1 describes
the three benchmark applications we use. In Section 4.2
we apply both application-update dependence analysis and
traditional query-update dependence analysis to the bench-
marks, comparing the number of possible dependencies that
can be ruled out with each technique. Section 4.3 describes
Ferdinand, a distributed caching environment we built pre-
viously, and Section 4.4 examines the performance of appli-
cation-update dependence analysis when its dependencies
are used by Ferdinand’s consistency management system.

4.1 Benchmark applications
To evaluate application-update dependence analysis we

use three data-intensive Web applications designed to bench-
mark the performance of Web and database systems. They
are the TPC-W bookstore, the RUBiS auction, and the
RUBBoS bulletin board benchmarks. Each benchmark sim-
ulates the activity of users as they browse a dynamically
generated Web site. Each emulated browser sends a request
to a Web server, waits for a reply, and then “thinks” for
a moment before sending another request. Eventually each
emulated browser concludes its session and another emu-
lated browser is simulated by the benchmark. For each re-
quest the Web server generates a reply by executing a Java
application, which communicates with a back-end database
server as needed. These applications mimic the type of in-
teractions expected for common dynamic Web content, and
the database requests they generate are typical of many such
applications.

The TPC-W bookstore models the types of interactions
expected for users of an online retailer. The application
consists of 16 update templates and 29 query templates,

acting on 10 database tables. We used a large configuration
of the bookstore database composed of one million items
and 86,400 registered users, with a total database size of
480 MB.

The RUBiS auction models the interactions of a user of
an online auction site. It consists of 11 update templates
and 28 query templates, acting on 8 database tables. Our
version of the auction database contained 33,667 items and
100,000 registered users, totaling 990 MB.

The RUBBoS bulletin board models an interactive online
news site like Slashdot. It consists of 13 update templates
and 39 query templates on 8 tables. Our bulletin board
database contained 6,000 active stories, 60,000 old stories,
213,292 story comments, and 500,000 users, totaling 1.6 GB.

4.2 Static gains of application-update depen-
dence analysis

To evaluate the coverage of application-update depen-
dence analysis we applied both traditional query-update de-
pendence analysis and each of our dependence analysis im-
provements to each benchmark. For our evaluation we man-
ually applied the optimizations to each benchmark, being
careful to include only cases where we are certain that an au-
tomated implementation could perform the necessary anal-
ysis. Figure 1 shows the results of our comparison.

The bookstore benchmark contains 464 potential query-
update template pairs. A coarse table-level dependence
analysis determines that all but 85 query-update template
pairs are independent. A finer-grained row- and column-
level data analysis eliminates an additional 20 pairs, rul-
ing just 65 to be possibly dependent. Of these 65 pairs,
our application-update analysis determines that an addi-
tional 26 pairs are independent, an improvement of 40%
over the traditional query-update dependence analysis. Of
these 26 pairs, 15 possible dependencies were eliminated by
our unused-data analysis: the query-update templates were
possibly dependent, but the application did not actually use
any of the possibly affected data. The other 11 pairs were
ruled independent by our existing-primary-key analysis.

The auction benchmark contains 308 query-update tem-
plate pairs. All but 82 pairs can be ruled independent by
table-level analysis, and all but 48 independent by finer-
grained analysis. Application-update dependence analysis
finds only 7 additional query-update template pairs that are
independent, a 14% improvement over the traditional data
analyses. For this benchmark, the unused-data optimiza-
tion is completely ineffective – the application always uses
all data in a possibly-affected query – and all gains are from
the existing-primary-key optimization.

The bulletin board benchmark contains 507 query-update
template pairs, and all but 88 of these can be ruled inde-
pendent by table-level data analysis. Row- and column-level
data analysis determines that 65 of these pairs may be de-
pendent, and application-level analysis determines that 19 of
those 65 pairs are surely independent, a 29% improvement
over the traditional analysis. Of these 19, 4 were found
by the unused-data optimization and 15 were found by the
existing-primary-key optimization.

These results demonstrate that the effectiveness of the
unused-data optimization can vary significantly between ap-
plications. For the auction benchmark, all queries are writ-
ten to retrieve specific columns for rows that match some
criteria, and all retrieved information is immediately dis-



bookstore auction bulletin board
Total (no analysis) 464 308 507
Table-level analysis 85 (82%) 82 (73%) 88 (83%)
Row- and column-level analysis 65 (24) 48 (41) 65 (26)
Row- and column-level plus unused-data 50 (23) 48 (0) 61 (6)
Row- and column-level plus existing-primary-key 54 (17) 41 (15) 50 (23)
Row- and column-level plus both methods 39 (40) 41 (15) 46 (29)

Figure 1: Number of possibly dependent query-update template pairs for each benchmark application using
various methods of dependence analysis. The parenthesized number is the percent improvement over the
previous level of analysis (for all forms of application-update dependence analysis, the previous level is “Row-
and column- level”).

played or used in the auction’s business logic. The book-
store and bulletin board benchmarks, however, both some-
times retrieve data that is not used by the application. In
all of these cases, all columns of a row (or set of rows) are
retrieved but only some columns are used in the subsequent
computation – and any possibly affected columns are not
used by the application.

For applications like these, the existing-primary-key opti-
mization is highly effective. All of these applications contain
interactions where a set of rows is retrieved from the data-
base, the application implements some business logic based
on the retrieved data, and additional queries are executed
using data from the earlier result set. In many of these
cases, our analysis can determine that the subsequent query
depends only on data previously existing in the database,
and therefore that the query is not affected by insertions
to the relevent table. We expect interactions like this to
be common, and thus expect that the existing-primary-key
optimization will apply to a wide range of Web applications.

4.3 The Ferdinand Query Cache
To evaluate the effect of application-update dependence

analysis on real systems, we compare the performance of ap-
plication-update-derived dependencies to traditional query-
update dependence analysis when used as part of the con-
sistency management infrastructure of Ferdinand [6], a dis-
tributed database caching system we previously developed.
This section briefly describes Ferdinand.

Ferdinand is a CDN-like architecture for scaling dynamic
Web content. Users connect directly to proxy servers, each
of which consists of a Web cache, an application server, and
a database query result cache. Each Ferdinand proxy server
is a member of a decentralized publish / subscribe infras-
tructure. When a query result is placed in a Ferdinand
proxy cache, the proxy subscribes to topics in the publish
/ subscribe infrastructure to ensure that the proxy will be
notified of any updates that possibly affect the query. When
an update is executed at a Ferdinand proxy, notifications are
published to any proxy servers containing queries possibly
affected by the update; upon receiving an update notifi-
cation, the proxy server removes from its cache any query
results that are possibly affected by the update.

Ferdinand uses a topic-based publish / subscribe system
for consistency management. The dependence analysis de-
termines the topics to which a proxy subscribes when it
places a query result in its cache and the topics to which
a proxy publishes when it executes an update. For a given
query the proxy subscribes to a topic for each update tem-

Figure 2: Number of notification messages per up-
date for each benchmark and each dependence anal-
ysis.

plate that possibly affects it, unless it is already subscribed
to the topic. For some query-update template pairs, the de-
pendence of the pair can be determined from the template
parameters at run time even though the dependence is un-
known at compile time. In these cases, a subscription might
be avoided, or a query might cause a subscription for only
updates with the run time parameters that affect the query.

4.4 Dynamic gains of application-update de-
pendence analysis

To evaluate the gains of application-update dependence
analysis in an applied setting, we compared the performance
of Ferdinand’s consistency management system using tradi-
tional query-update dependence analysis to the performance
when using our methods. For the bookstore and auction
benchmarks we executed the application on 8 Ferdinand
nodes for 15 minutes at approximately 50% system utiliza-
tion, starting with warm query result caches, and measured
the number of update notifications required by the consis-
tency management system. For the bulletin board bench-
mark we did the same, but using a Ferdinand system with
12 nodes. The results of this evaluation are in Figure 2.

For both the bookstore and bulletin board benchmarks,
the application-update-derived dependencies reduced con-
sistency management traffic by 10% compared to query-
update dependence analysis. The improvement for the auc-



tion benchmark is more slight. From the experiments using
just the unused-data or existing-primary-key optimizations,
we see that nearly all performance gains come from the
existing-primary-key optimization. This result is true for
the bookstore and bulletin board benchmarks even though
the unused-data optimization identified many query-update
template pairs as independent, when the pairs’ relationships
could not be determined using traditional dependence anal-
ysis or the existing-primary-key analysis. This fact indi-
cates that simply measuring the number of dependent query-
update template pairs is not sufficient to discern real per-
formance gains, and that any meaningful performance anal-
ysis must consider the dynamic execution of the database
application. Determining the independence of a frequently
executed query or update is much more valuable than de-
termining the independence of a rare database request.

Overall, the value of the unused-data optimization is un-
clear. Its applicability is more variable than that of the
existing-primary-key optimization, and even when unused-
data determines that query-update template pairs are in-
dependent, for our tested benchmarks those queries and
updates seem uncommon in practice. For our benchmarks
the unused-data optimization most commonly applies to join
queries when the application requires all columns from one
relation but only several columns from another relation. In
such a case a typical programmer might project all columns
of the result set (i.e. “SELECT *”) rather than specify just
the needed columns, since all columns are used from one of
the relations. If this is the dominant case where the unused-
data optimization applies, then it is not surprising that its
overall effect on performance is slight since join queries are
executed less frequently than simpler retrieval and update
queries for most typical Web application workloads.

The existing-primary-key optimization produced signifi-
cant gains for all workloads, with the gains relative to its
applicability in the workload. We expect this optimization
to apply to most Web applications, as it identifies a common
data usage scenario: because it applies to simple insertion
and row retrieval queries, we expect it to result in similar
performance gains for a wide class of applications.

5. CONCLUSIONS
In many environments database requests are executed as

part of a client database application. In this paper, we ex-
tend the techniques of query-update dependence analysis to
instead determine the dependencies between database up-
dates and the applications that execute the database queries.
We show how the application and database requests can be
analyzed together to infer relationships that cannot other-
wise be deterimined using traditional query-update depen-
dence analysis, describing two specific cases where we im-
prove upon earlier dependence analysis. In the first we show
how one can sometimes determine that an application is
not affected by a database update even though the appli-
cation uses a query result affected by the update, in cases
when the query result is not wholely used by the applica-
tion. Our second improvement shows how we can determine
that some query results are not affected by insertions to the
query’s relation, by proving that the query result depends
only on data already existing in the relation. We then ap-
plied our application-update dependence analysis to three
benchmark Web applications, showing that our techniques
are not merely theoretical but are likely to apply to real

database applications. Finally, we executed those Web ap-
plications using a distributed query result cache, showing
how our application-update dependence analysis required
less communication to maintain cache coherence than when
traditional query-update dependence analysis was used.

In our latter optimization we introduced a powerful new
technique of tracking database metadata across the applica-
tion-database boundary. Here we used this technique specif-
ically to determine when parameters in a database query
originated from the database via an earlier query, allow-
ing us to infer the independence from insertions described
above. Tracking the relationship between application data
and database data, however, is a new general tool that might
yield advancements in many database subfields; we plan to
explore this technique further.

6. REFERENCES
[1] J. A. Blakeley, N. Coburn, and P.-Å. Larson.

Updating derived relations: Detecting irrelevant and
autonomously computable updates. ACM Trans.
Database Syst., 14(3):369–400, 1989.

[2] I. Chabbouh and M. Makpangou. Caching dynamic
content with automatic fragmentation. In G. Kotsis,
D. Taniar, S. Bressan, I. K. Ibrahim, and S. Mokhtar,
editors, iiWAS, volume 196 of books@ocg.at, pages
975–986. Austrian Computer Society, 2005.

[3] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting.
A fragment-based approach for efficiently creating
dynamic web content. ACM Trans. Internet Techn.,
5(2):359–389, 2005.

[4] J. Challenger, A. Iyengar, and P. Dantzig. A scalable
system for consistently caching dynamic web data. In
INFOCOM, pages 294–303, 1999.

[5] C. Elkan. Independence of logic database queries and
updates. In Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, April 2-4, 1990, Nashville,
Tennessee, pages 154–160. ACM Press, 1990.

[6] C. Garrod, A. Manjhi, A. Ailamaki, C. Olston,
B. Maggs, T. Mowry, and A. Tomasic. Scalable query
result caching for web applications. In VLDB, 2008.

[7] A. Y. Levy and Y. Sagiv. Queries independent of
updates. In R. Agrawal, S. Baker, and D. A. Bell,
editors, VLDB, pages 171–181. Morgan Kaufmann,
1993.

[8] A. Manjhi. Increasing the Scalability of Dynamic Web
Applications. PhD thesis, Carnegie Mellon University,
Computer Science Department, March 2008.

[9] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
mappings to bridge applications and databases. In
C. Y. Chan, B. C. Ooi, and A. Zhou, editors,
SIGMOD Conference, pages 461–472. ACM, 2007.

[10] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M.
Maggs, and T. C. Mowry. A scalability service for
dynamic web applications. In CIDR, pages 56–69,
2005.

[11] Oracle. Oracle Fusion Middleware: Oracle TopLink.
http://www.oracle.com/technology/products/ias/

toplink/.

[12] Red Hat Middleware, LLC. Hibernate: Relational
Persistence for Java and .NET.
http://www.hibernate.org/.


