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Abstract

We study the problem of routing in doubling metrics, and
show how to perform hierarchical routing in such metrics
with small stretch and compact routing tables (i.e., with
small amount of routing information stored at each vertex).
We say that a metric �����	��
 has doubling dimension ���������

at most � if every set of diameter � can be covered by ��� sets
of diameter ����� . (A doubling metric is one whose doubling
dimension ���������
 is a constant.) We show how to perform
���! #"$
 -stretch routing on metrics for any %�&'")(*� with
routing tables of size at most �+�,�-"$
/.10 �32�4�5363798 bits with
only �+�,�-"$
 .10 ��2 4�536:8 entries, where 8 is the diameter of
the graph; hence the number of routing table entries is just
"<; .=0?> 2 4�5�6:8 for doubling metrics. These results extend and
improve on those of Talwar (2004).

We also give better constructions of sparse spanners for
doubling metrics than those obtained from the routing tables
above; for "A@'% , we give algorithms to construct �/�! #"$
 -
stretch spanners for a metric �����	��
 with maximum degree at
most �B�C D�E�-"$
 .10GFIH JK0�L 2�2 , matching the results of Das et al.
for Euclidean metrics.

1 Introduction

The doubling dimension of a metric space �����	��
 is the least
value � such that each ball of radius M can be covered by at
most �3� balls of radius MN��� [13]. For any �#OQP , the spaceR � under any of the S�T norms has doubling dimension UV�+�W
 ,
and hence this doubling dimension extends the standard
notion of geometric dimension; moreover, it can be seen as a
way to parameterize the inherent “complexity” of metrics.

In this paper, we study the problem of designing routing
algorithms for networks whose structure is parameterized by
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the doubling dimension ��������Q
�\]� ; we show that one
can route along paths with stretch �/�! ^"$
 with small rout-
ing tables—with only _`�	���=�E"$
 .10 �32 4�536K8 
 entries, where 8
is the diameter of the network. Each entry stores at most
_`� 4�536ba  4�536:8 
 bits, and hence for doubling metrics—
where � is a constant—and any "c(d� , we have ���e f"$
 -
stretch routing with only _`� 4�536 7 8 
 bits of routing informa-
tion at each node.

The idea of placing restrictions on the growth rate of net-
works to bound their “intrinsic complexity” is by no means
novel; it has been around for a long time (see, e.g., [18]),
and has recently been used in several contexts in the litera-
ture on object location in peer-to-peer networks [23, 17, 16].
While these papers used definitions and restrictions that dif-
fer slightly from each other, we note that our results hold
in those models as well. Our results extend those of Tal-
war [25], whose routing schemes for metrics with ���������
1\
� require local routing information of gh_`� 4�5�6 � 8 
 bits.
Formally, we have the following main result.

THEOREM 1.1. Given any network i inducing a metric
�����	��
 with ���������
!\'� and any "j@k% , there is a routing
scheme on i that achieves ���l #"$
 -stretch and where each
node stores only � � m 
 .=0 ��2 4�5�6 7 8 bits of routing information.

The proof of the theorem proceeds along familiar lines;
we construct a set of hierarchical decompositions (HDs)
of the metric �����n��
 , where each HD consists of a set
of successively finer partitions of � with geometrically
decreasing diameters. Each node in � maintains a table
containing next hops to a small subset of clusters in these
partitions; to route a packet from o to p , we use the routing
table for o to pick some “small cluster” q in o ’ table that
contains p and send the packet to some node r in q ; a similar
process repeats at node r�O�q until the packet reaches p . The
idea is to create routing tables which ensure that the distance
from r to p is much smaller than that from o to p , and hence
the detour taken in going from o to p is only "s�t�+o3�/p/
 . (Details
of routing schemes appear in Section 4.)

While this framework is well-known, the standard ways
to construct HDs are top-down methods which iteratively
refine partitions. These methods create long-range depen-
dencies which require us to build _`� 4�536ba 
 HDs in general;
in order to use the locality of the doubling metrics and get
away with u_`�+�W
 HDs, we develop a bottom-up approach that
avoids these dependencies when building HDs. The analy-



sis of this process uses the Lovász Local Lemma (much as
in [19, 13]); details are given in Section 3.

Apart from the above result on low-stretch routing, the
proof of Theorem 1.1 can be used to infer the existence of
linear-sized spanners for doubling metrics, i.e., subgraphs
with only _ m�� � � a 
 edges that maintain distances to be within
a factor of ���V "$
 . We further give simpler and tighter
constructions of spanners, extending similar results of Das
et al. [7] for Euclidean metrics.

THEOREM 1.2. Every metric �����	��
 has a �/�K )"$
 -spanner�
where the degree of each vertex is at most �+�^ 

�E�E"$
 .=0GF H J:0�L 2�2 ; hence
�

has a linear number of edges for
any constant " and �s�������
 .

1.1 Related Work Distributed packet routing protocols
have been widely studied in the theoretical computer science
community; see, e.g., [9, 10, 3, 21, 6, 22], or the survey by
Gavoille [11] on some of the issues and techniques. Note
that these results, however, are usually for general networks,
or for networks with some topological structure. By placing
restrictions on the doubling dimension, we are able to give
results which degrade gracefully as the “complexity” of the
metric increases. For example, it is known that any universal
routing algorithm with stretch less than � requires some node
to store at least �e� a 
 routing information [12]; however,
these graphs generate metrics with large �s������Q
 . Our
results thus allow one to circumvent these lower bounds for
metrics of “lower dimension”.

Packet routing in low dimensional networks has been
previously studied in Talwar [25], that gives algorithms that
require _`���K���m � 
/� � 4�5�6 ��� 7 8 
/
 bits of information to be
stored per node in order to achieve �/�, �"$
 -stretch routing—
for constant stretch " and doubling dimension � . The
resulting dependence of _`� 4�536 7 �9� 8 
 should be contrasted
with the dependence of _`� 4�5�6 7 8 
 bits of information in our
schemes. We should point out that his algorithms are based
on graph decomposition ideas with a top-down approach and
do not require the LLL to construct routing tables.

One of the papers that influence this work is that of
Kleinrock and Kamoun [18]. They describe a general hi-
erarchical clustering model on which our routing schemes
are based. They show that routing schemes based on a hier-
archical clustering model do not cause much increase in the
average path length for networks that satisfy the following
two assumptions: (a) the diameter of any cluster 	 chosen
is bounded above by _`��
 	�
 �
 for some constant �)O�� %$�I��� ,
and (b) the average distance between nodes in the network
is UV� a  
 . In contrast, we give bounds on the path stretch on
a per node-pair level using slightly different assumptions on
the network geometry.

Other papers on object location in peer-to-peer net-
works [23, 17, 16] have also used restrictions similar to [18]
on the growth rate of metrics; in particular, they consider

metrics where increasing the radius of any ball by a factor
of � causes the number of points in it to increase by at most
some constant factor ��� . (Plaxton et al. [23] also consider
the lower bound on the growth.) Here the parameter � can
be considered to be another notion of “dimension” for a met-
ric space. It can be shown that ���������
:(���� [13, Prop. 1.2];
hence our results hold for such metrics as well. Our scheme
is also similar in spirit to a data-tracking scheme of Rajara-
man et al. [24], who use approximations by tree distributions
to obtain bounds on the stretch incurred.

Finally, sparse spanners have been studied widely,
having found applications in network algorithms (see,
e.g., [22]), since they allow us to store information about the
metric compactly. Our work extends the results of Arya et
al. [2] and Das et al. [7] who have show the existence of
�/�l #"$
 -spanners for

R � with _ m�� � � a 
 edges. Independent
of our work, Har-Peled and Mendel [14] have also obtained,
among many other results, constructions of sparse spanners
for doubling metrics; they also give linear-time procedures
to find these constructions.

2 Definitions and Notation

Let the input metric be �����	��
 ; this paper deals with finite
metrics with at least 2 points. We use standard terminology
from the theory of metric spaces; many definitions can be
found in [8] and [15]. Given r O � and ��� % , we let� ��r ��� 
 denote � r � Ok�!
b� ��r9�/r"��
 (#�%$ , i.e., the ball of
radius � around r . Given a subset 	'& � , the distance of
r�O � to the set 	 is � ��r9�(	b
b\#�`*)+� �t��r �/r"�?
,
Er �9O-	.$ .

The doubling constant / L of a metric space �����n��
 is
the smallest value / such that every ball in � can be covered
by / balls of half the radius. The doubling dimension of
� is then defined as ���������
N\ 4�5�6 7 / L ; we use the letter
� to denote ���������
 . A metric is called doubling when
its doubling dimension is a constant. A subset 01&h�
is an � -net of � if (1) for every r9��2 O30:�	�t��r ��2s
4�5�
and (2) �6&87:9<;�= � �>2<��� 
 . Such nets always exist for any
�V@ % , and can be found using a greedy algorithm.

PROPOSITION 2.1. (SEE, E.G.,[13]) If all pairwise dis-
tances in a set 0?& � are at least � (e.g., when 0 is an
� -net of � ), then for any point r�O � and radius p , we have

that 
 � ��r9�	p/
+@A0B
�(C/EDGF H(I�J JLKMONL .

A cluster q in the metric �����n��
 is just a subset of
points of the set � . The diameter of the cluster q is the
largest distance between points of the cluster. Each cluster is
associated with a center r�O � (which may not lie in q ) and
the radius of the cluster q is the smallest value � such that
the cluster q is contained in

� ��r ��� 
 .
DEFINITION 2.1. Given �k@ % , an � -ball partition P of
�����	��
 is a partition of � into clusters q > �nq 7 ��QRQRQ , with each
cluster qTS having a radius at most � .



By scaling, let us assume that the smallest inter-point
distance in � is exactly � . Let 8 denote the diameter of
the metric �����	��
 , and hence 8 is also the aspect ratio of the
metric. Define � \ �������� '� and �D\�� 4�536�� 8
	 . Let us
define � S \k�, ��  � 7  CQRQRQ  �� S &�� S � > �s����� � 
 ; note that
� S \���� S ; >  k� . Let us fix a � S � � -net and denote with � S
for the metric �����	��
 , for every %V(��b(��V ^� .
2.1 Hierarchical Decompositions (HDs) We now give
a formal definition of a hierarchical decomposition (HD)
which is used throughout this paper and is the basic object
of our study. As noted below, such a decomposition can be
naturally associated with a decomposition tree that is used
for our hierarchical routing schemes.

DEFINITION 2.2. A � -hierarchical decomposition P P P ( � -
HD) of the metric �����	��
 is a sequence of partitions
P�����QRQ�QI��P�� with � \�� 4�536��W8
	 such that:

1. The partition P�� has one cluster � , the entire set.

2. (geometrically decreasing diameters) The partition
P S is an ��S -ball partition. Since inter-point distances
are at least � , it implies that P�� \ ��� r+$ �srAOQ� $ ; in
other words, each cluster in P�� is a singleton vertex.

3. (hierarchical) P�S is a refinement of P�S � > and each
cluster in P�S is contained within some cluster of P S � > .

Given such a � -HD P P P \ �LP S 
 �S"!#� , the partition P�S is called
the level- � partition of P P P and clusters in P�S are the level- �
clusters. Note that these clusters have a radius �%S and hence
diameter ( �$��S . Furthermore, define the degree �&% 6 � P P PC
 to
be the maximum number of level- � clusters contained in any
level- ���t f� 
 cluster in P�S � > , for all % (��b('�(�#� .
2.1.1 Hierarchical Decompositions and HSTs A hierar-
chical decomposition is a laminar family of sets, where given
any two sets, they are either disjoint or one contains the other.
It is well known that such a family ) of sets over � can be
associated with a natural decomposition tree whose vertices
are sets in ) and whose leaves are all the smallest sets in
the family (which are elements of � , in this case). We can
use this to associate a so-called hierarchically well-separated
tree (also called an HST [4]) *,++ + with a hierarchical decom-
position P P P ; since each edge in *,++ + connects some q O P�S
and q �=O P S ; > with q �E&cq , we associate a length ��S with
edge �+q � q ��
 . Given such a tree *,++ + , we can (and indeed do)
talk about its level- � clusters with no ambiguity; these are
the same level- � clusters in the associated P S . Note that the
degree of vertices in this tree * + + + is bounded by �-% 6 �*P P P 
  #� .
2.2 Padded Probabilistic Ball-Partitions Recall that an
� -ball partition P of �����n��
 is a partition of � into a set of
clusters q & � , each contained in a ball

� ��.t��� 
 for some
.�O�� .

� ��r9�	p/
 is cut in the partition P if there is no cluster

q'O-P such that
� ��r �/p/
T&^q . In general,

� ��r9�/p/
 is cut by a
set 	 & � if both 	�@ � ��r9�/p/
 and

� ��r9�	p/
0/"	 are non-empty.
Let 1 be a collection of all possible partitions of � , and

hence P O21 . Given a partition P O21 and r O � , let
q + ��r<
 be the cluster of P containing r .

DEFINITION 2.3. ([13]) An �>�-�43�
 -padded probabilistic
ball-partition of a metric �����	��
 is a probability distribution5 over 1 satisfying:

1. (bounded radius) Each P in the support of 5 is an � -
ball partition.

2. (padding) 6tr O � , 798;:=< � ��r9�/�>/ q�+ ��r<
/
,�?3 ��� � >7 .

(This is called a padded probabilistic decomposition in [13].)
Each cluster q in every partition P in the support of a
probabilistic ball-partition 5 has radius at most � ; and for
any r O � , a random � -ball partition P drawn from the
distribution 5 does not cut

� ��r9�@3 �-
 (and hence
� ��r9�43 � 
 is

contained in cluster q + ��r<
 O P ) with probability � �-� � .

3 Padded Probabilistic Hierarchical Decompositions

In this section, we define a ���t�43�
 -padded probabilistic hierar-
chical decomposition (PPHD) of the metric �����	��
 , on which
the routing algorithm is based. A PPHD is a probability dis-
tribution over HDs that has a “probabilistic padding” prop-
erty similar to that in Definition 2.3. For any pair of nodes
o , p in � and any ball containing both o and p with a diame-
ter of g � �Bo��	p/
 , the PPHD ensures that this ball is contained
in a single cluster of radius only slightly ( gc� factor) larger
than �t�+o3�	p/
 at a suitable level with probability � >7 . Thus the
shortest o - p path is contained entirely in this cluster of radius
not much more than �t�+o3�/p/
 . This is the general intuition for
PPHDs and the starting point for the routing algorithm.

For our applications, we refine PPHDs so that they
consist of only A \ _`��� 4�5�6 �,
 of HDs. We first give an
existence proof, using the Lovász Local Lemma (LLL), to
show that such decompositions exist in Section 3.1. We then
outline a randomized polynomial-time algorithm to find the
decompositions using Beck’s techniques [5] in Section 3.2.

The existence proof for the PPHDs has the following
outline. We first give a randomized algorithm to form a sin-
gle random hierarchical decomposition P P P , which proves the
existence of PPHDs, albeit with support over an exponen-
tial number of HDs. To reduce the size to something that
depends only on � , we have to use the locality property of
the metric space and the LLL. One significant complication
in the proof is that we cannot use the standard top-down de-
composition schemes to construct PPHDs, since they have
long-range correlations that preclude the application of the
LLL. Our solution to this problem is to build the decompo-
sition trees in a bottom-up fashion and to make sure that the
coarser partitions respect the cluster boundaries made in the
finer partitions.



3.1 Existence of PPHDs Motivated by the routing appli-
cation, we are interested in finding the following structure,
which we call a � � �@3 
 -padded probabilistic hierarchical de-
composition. This is a probability distribution 5 over � -
hierarchical decompositions (as defined in Definition 2.2) so
that given

� ��r �43 � 
 with � g � S , if we choose a random � -
HD P P P from 5 and examine the partition P S in it,

� ��r ��� 
 is
cut in this partition P S with probability at most >7 .
DEFINITION 3.1. (PPHD) A ���t�43�
 -padded probabilistic
hierarchical decomposition (referred to as a ���t�43�
 -PPHD)
is a distribution 5 over � -hierarchical decompositions, such
that for any point r�O � and any value � s.t. � S ; > (��V(?� S ,

798 + + + ;�: � � ��r9�@3<� 
 is cut in P S �9( >7 �
where the random � -hierarchical decomposition chosen is
P P P \ �LP S 
 �S"!#� . The degree of the PPHD 5 is defined to be
�-% 6 � 5 
1\f� ��� + + + ;�: �-% 6 �*PP P 
 .

Note that the definition of a PPHD extends both the
idea of a padded probabilistic ball-partition and that of
HDs—we ask for a distribution over entire HDs, instead of
over ball-partitions at a certain scale � . However, having
picked a random � -HD P P P \ �>P S 
 �S"!#� from this distribution,
we demand that balls of radius g 30� S be cut with small
probability only in partition P S that is “at the correct distance
scale”. Our main theorem of this section is the following:

THEOREM 3.1. Given a metric �����	��
 , there exists a ���t�43�
 -
PPHD 5 for �����	��
 with ��\ _`���,
 and 3 \*_`���E� �W
 . The
degree �&% 6 � 5 
 of the PPHD is at most � .10 ��2 . Furthermore,
there exists a distribution 5�� whose support is over only
A \f_`�+� 4�5�6 �W
 HDs.

Since any hierarchical decomposition P P P can be associ-
ated with a tree * + + + (as mentioned in Section 2.1), the above
theorem can be viewed as guaranteeing a set of A trees such
that the level- � clusters in half of these trees do not cut a
given ball of radius g 3 � S . This proves the existence of an
appropriate tree cover.

DEFINITION 3.2. A stretch-
�

Steiner tree cover for �����	��
 is
a set of trees � \ � * > ��QRQRQI�@* � $ (with each tree * S possibly
containing Steiner points �O � , and edges having lengths),
where for every r9�	r"� OD� , there exists a tree * S O	� for
�����n��
 such that the (unique shortest) path in * S between r
and r � has length at most

� � ��r9�/r � 
 .
LEMMA 3.1. Given a metric �����	��
 with ���������
 \ � ,
there exists a stretch- _`���s� 3�
 Steiner tree cover consisting of
_`��� 4�536 �W
 trees, where each tree has degree at most � .10 ��2 .
We omit the simple proof of the above lemma and the
description of how the Steiner points can be removed from
the trees without altering distances and degrees. We prove

Theorem 3.1 in the rest of this section. We first prove (in
Section 3.1.1) that one can obtain the result where the PPHD5 has support over many HDs. We then use the Lovász Local
Lemma (in Section 3.1.2) to show that a PPHD distribution5 � with support over only a small number of HDs exists.

3.1.1 Padded Probabilistic Hierarchical Partitions If
we do not care about the number of HDs in the support of a
PPHD, the existence result of Theorem 3.1 has been proved
earlier [25] with better guarantees; the proof basically fol-
lows from the padded decompositions given in [13]. How-
ever, we now give another proof that introduces ideas that
are ultimately useful in obtaining a PPHD distribution whose
support is over a small number of HDs.

THEOREM 3.2. Given a metric �����n��
 , there exists a � � �@3�
 -
PPHD 5 for �����	��
 with �j\ _`�+�W
 and 3 \ _`���-�-�,
 , and
with degree �-% 6 � 5 
 \D� .=0 ��2 . Furthermore, one can sample
from 5 in polynomial time.

Proof. We define a randomized process that builds a random
hierarchical decomposition tree in a bottom-up fashion, in-
stead of the usual top-down way. To build a HD P P P , we start
with �>P�� \ ��� r $ ��r�O�� $E
 and perform an inductive step.
At any step, we are given a partial structure �>P S/��QRQRQ ��P�� 

where for each 
 ( � , the clusters in P�� ; > (which is an
��� ; > -ball partition) are contained within the clusters of P�� .
We then build a new partition P S � > , with all clusters of P�S
being contained within clusters of P S � > . We have to ensure
that clusters of P�S � > are contained in balls of radius at most
��S � > and that any ball of radius 3<� for � S ( �V(?� S � > is cut in
P S � > with probability at most >7 . This way, we end up with
a valid random HD P P P . The claimed probability distribution5 is the one naturally generated by this algorithm. To cre-
ate the clusters of P S � > , we use a decomposition procedure
whose property is summarized in the following lemma.

LEMMA 3.2. Given a metric �����	��
 with a  -ball partition
P�� of � into clusters lying in balls of radius at most �� � ,
and a value � ���� , there is a randomized algorithm to
create a ���� � 
 -ball partition P�� � of � , where each cluster
of P�� is contained in some cluster of P � � , and for any r�O �
and radius %V( � (�� ,

7 8�� � ��r9��� 
 is cut in P � � �9( _`� �l �W

� � Q

Proof. Note that we can assume that  &�� ��� � and � �
� , since otherwise the lemma is trivially true. Using the
algorithmCUT-CLUSTERS given in Figure 3.1, we create a
partition of 0 (and hence of � ); all distances are measured
according to the original distance function � in � .

Let us define ��� \ � ��r9���-
 . Note that if ��� is cut in P�� �
due to some value of � from . O � (for the first time), then
� falls into the interval � � � . �	rt
 � �
��b�	�t��.t�/r<
1 �e � � .



0. Let 0�� � , ����� � �� for constant � to be fixed later,
� be a � � � -net of � .

1. Pick an arbitrary “root” vertex . O � not picked before
2. Set the initial value of the “radius” ��� � ���
3. Flip a coin with bias �
4. If the coin comes up heads, goto Step 11
5. If the coin comes up tails, increment � by 
6. If � @�� ��� � �E� �3�,

7. choose a value

	� from � %s� � ���>�3�,
 � u.a.r.
8. round down

	� to the nearest multiple of 
9. set ��� � ��� � �E� �3�,
  	�
10. Else goto Step 3
11. Form a new cluster q � in P � � containing all

clusters in P��%@ 0 with centers lie in
� ��.t� �:


12. Remove the vertices in q � from 0
13. (Remark: q � has radius at most �� � )
14. If 0 �\�
 goto Step 1
15. End

Figure 3.1: Algorithm CUT-CLUSTERS

Indeed, if � � is cut in P � � , there are at least two clusters
q �> �nq �7 O6P � such that they both cut � � , and

� � . � �:

contains one of their centers but not both. Since both clusters
intersect � � , their centers � � > and � �7 are at distance at most
�1  from r . If � & �t��.t�/r<
#�-� �  , the triangle inequality
implies that

� ��.t� �:
 cannot contain either center. Similarly,
if � @#� � . �	rt
I �$  ,

� � . � �:
 contains both of them. Hence
the value of � must fall into the interval indicated above.

If a cut in Step 11-12 is made due to the appearance of a
heads in Step 4, we call such a cut a normal cut; else we call
it a forced cut. We now bound the probability that the ball
���N\ � ��r9��� 
 is cut due to either type.
Normal cuts. Consider the first instant in time when the
parameter � for some root .�O � reaches a value such that
the cut obtained by taking all P�� @ 0 clusters with centers in� ��.t� �K
 would cut � � . (If there is no such time, then � � is
never cut by a normal cut.) In this case, � must also be in
the range �t��.t�/r<
�k� �N  
 , and increases with time. Now
either (i) we make a normal cut before � goes outside this
range; or (ii) we make a forced cut; or (iii) � goes outside
the range and we make no cut in this range. In any case, the
fate of � � is decided; � � is either cut or contained in a new
cluster with center . . We now upper-bound the probability
that event (i) happens. There are at most �s�>�3  
n�� coin flips
made (with bias � ) when the value of � is in the correct range
of width at most �$� �C �W
 and one of these flips must come
up heads for the cut to be made. The trivial union bound now
shows this probability to be at most 7 0�� � � 2� ��\ 7 � 0�� � � 2� � .
Forced cuts. Let us look at some root .�O � and bound the
probability that a forced cut is made with cutting radius �
from . in some range � � \ � � . �	rt
� �>�: W
 . Since the cut

is forced and the value of � is greater than � �����^�E� �3�,
 �
��� � � , we must have flipped a sequence of at least � � ��
successive tails; the probability of this event is at most

�/� ���<
 0 ����� � 2 (�� ; T ����� � \�� ;��� � Q(3.1)

Now, we choose
	� to be a multiple of  uniformly in

a range of width at most � �<�3� , and hence the probability
that � falls into a range of length �s�>�   
 is at most
�$� �  W
	�s� � �<�3�,
 . Multiplying this by (3.1), we obtain a
bound of �3; �� ���! 0�� � � 2� � on the probability that a forced
cut is made around . with � in the range � � such that the
cluster q � with center . in P � � may cut � � . Finally, for any
r�O � , � � can only be cut by clusters from roots . O � that
are at distance at most � �� W
  � (C� � from r ; by Prop. 2.1,
there are at most 
 � ��r9�(� � 
 @ � 
�\ � � ���� 7 
/� (c��� �3
/� of such
roots. Now we choose � to be large enough; the probability
of
� � being cut by a forced due to any such root is at most

�E� � �"��; �� �#�$ 0%� � � 2� �A( .10�� � � 2� � by the union bound.

We now use the above lemma to prove Theorem 3.2. Using
P�� \ P S , �\ ��S=&�� S ���s����� � �E
/
 , and �)\ ��S � > � �\ � S � > ,
and using � \�� S � > (which is a � S � > ���Q\ � ��� net), we
create a � ` �)\ ��S � > 
 -ball partition such that for all r and
all �V(�� S � > and 3 \f_`���-�-�,
 , we have

798�� � ��r9�@3 �-
 cut � ( .10'&(� � � 2� �A( .=0 �*) 2� )�+-, �A( >> � &*>7 �(3.2)

for ��� � and � being large enough constants. The probability
distribution 5 over all decompositions P P P thus generated sat-
isfy the requirements of a PPHD as given in Definition 3.1.
Finally, we bound the degree �-% 6 � 5 
 of the PPHD 5 ; note
that each level- � cluster is centered at some .)O � S , hence
the number of level- � clusters contained in some level- ���- ��E

cluster is �+� ��S � > �s��� S ����
/
 .=0 �32=\f� .=0 �32 by Prop. 2.1.

Few Hierarchical Decompositions. The above proof im-
mediately gives us a PPHD 5/. with a support on only0 \ _`� 4�5�6:a  4�5�6b4�536:8 
 HDs. By sampling from the
distribution 5 for

0
times, we get the HDs P P P 0 > 2 �RQ�QRQI� P P P 0 . 2 ,

and let the PPHD 5/. be the uniform distribution on these
HDs. By (3.2), for each 
 O ��� Q�QRQ 0 � , point r'Ok� and
radius � ( � S , � ��r9�43 � 
 is not cut in the partition P 0 � 2S with
probability �E��� % ; hence a Chernoff bound implies that this
ball is cut in the level- � partitions of more than

0 � � of the
HDs with probability less than �-��� ae4�5�6b8 
 .=0 > 2 . Now taking
the trivial union bound over all possible values of the center
r OQ� , and all the 4�5�6:8 values of � which are powers of �
shows that the 5 . is a ���t�433� �3
 -PPHD whp.

3.1.2 Even Fewer Hierarchical Decompositions While
the proof of Theorem 3.2 and the discussion above do not
produce a PPHD with small support (of size _`��� 4�536 �W
 ),
we have seen all the essential ideas required to prove the
existence of such a distribution 5 � and hence to complete



the proof of Theorem 3.1. To prove this result, we use the
locality of the construction, in conjunction with the Lovász
Local Lemma (LLL). This locality property is the very
reason why we built the hierarchical decomposition bottom-
up; it ensures that if any particular ball is not cut at some low
level � (the “local decisions”), it is not cut at levels higher
than � (i.e., the “non-local decisions”). Also, we choose the
decomposition procedure of Theorem 3.2 in preference to
others (e.g., those in [13] and [25]) since they choose a single
random radius for all clusters in one particular partition P of
� , which causes correlations across the entire metric space.
(The LLL has been used in similar contexts in [13, 19].)
Proof of Theorem 3.1: To show that there is a distribution5 � over only A \ _`�+� 4�5�6 �W
 trees, we use an idea similar
to that in the previous section, augmented with some ideas
from [13]. Instead of building one hierarchical decomposi-
tion P P P bottom-up, we build A hierarchical decompositions
P P P 0 > 2 �RQ�QRQI� P P P 0

�
2 simultaneously (also from the bottom up).

As before, the proof proceeds inductively; we assume
that we are given level- � partitions P 0 > 2S �RQRQ�Q ��P 0

�
2S , where

P 0 � 2S is the level- � partition belonging to P P P 0 � 2 . We then show

that we can build level- � �K �E
 partitions P 0 > 2S � > ��QRQ�QI��P 0
�
2S � >

where each P 0 � 2S is a refinement of the corresponding P 0 � 2S � > ,and any given ball
� ��r9�@3<� 
 with � S ( �A(>� S � > is cut in

at most A���� of these level- � �W � 
 partitions. We start off

this process with each P 0 � 2� \ ��� r+$?�Kr'O � $ being the
partition consisting of all singleton points in � . Let � \
�3����QRQ�Q��@A $ . Given A level- � partitions �LP 0 � 2S 
 � ;�� , we create

A level- ���t �E
 partitions �>P 0 � 2S � > 
 � ;�� using the procedure in
Lemma 3.2 independently on each of the A decompositions;
parameters are set as in the proof of Theorem 3.2, with
� \ � S � > , c\ � S , and 3�\ �-� _`���,
 . This extends the A
hierarchical decompositions to the ���  �E
���� level; it remains
to show that the probability of balls being cut is small.

To describe the events of interest, let us take �Q\ 3 � S � >
and define � to be a � -net of � . For each � O	� , define ��

to be

� ���$� � � 
 , and  S � >
 to be event that ��
 is cut in more

than A���� of the partitions �LP 0 � 2S � > 

�
� ! > , which we refer to as a

“bad” event (used in Section 3.2). We prove the claim using
the Lovász Local Lemma.

CLAIM 3.3. Given any �LP 0 � 2S 

�
� ! > , 7 8���� 
 ;��  S � >
 �9@#% .

LEMMA 3.3. (Lovász Local Lemma) Given a set of events
�� S � >
 $�
 ;�� , suppose that each event is mutually independent
of all but at most

�
other events. Further suppose that, for

each event  S � >
 , 7 8��  S � >
 �`( � . Then if %(�W� �  � 
 & � ,
798���� 
 ;��  S � >
 �9@ % .
Proof of Claim 3.3: First, let us calculate the probability
of  S � >
 : by changing the constant in 3 , we can make the
probability that a ball ��
 is cut in one level- � �t f� 
 partition
to be at most �-��� . Let us denote by � � 
 the event that ��


is cut in partition P 0 � 2S � > . The expected number of partitions
in which the ball is cut is at most A���� . Since the partitions
are constructed independently, the probability for the event
 S � >
 that � 
 is cut in A���� partitions (which is at least four
times the expectation) is at most % ��� �4���$A��<��%3
 ; this can be
established using a standard Chernoff bound. This, in turn,
is at most ��% Q ��
 � , which we define to be � .

Next we show that an event  S � >
 is mutually indepen-
dent of all events  S � >
�� such that � ���$���%��
#@ ����S � > . For

each partition P 0 � 2S � > , each root .AO'� S � > determines its ra-
dius by conducting a random experiment independent of any
other roots’ experiments. These random experiments, and
only these, determine whether events such as � � 
 occur. In
turn, whether event  S � >
 occurs is determined only by events
� >
 ��QRQ�QI���

�

 . For a particular 
 , for each � , all of the cuts that

could affect � 
 in the algorithm CUT-CLUSTERS are made
from roots . O � S � > at distance at most ���j   	� \
���Q � S � > & � � S � > from � . Whether event � � 
 occurs is
determined by the experiments corresponding to these roots
alone. If � ���$���%��
^@ ��� S � > , then there is no intersection
between the experiments for � and the experiments for � � .
Since  S � >
 is determined by � >
 �RQ�QRQI���

�

 ,  S � >
 is mutually

independent of the set of all  S � >
 � such that �t��� ���%��
 @ ����S � > .
We apply the LLL now. Note that the number of � � O

� within distance ����S � > of  S � >
 for � O�� is at most

 � ��� ������S � > 
 @�� 
C(!  �" )�+-,�

# � (d_`���,
 � Q We define this
quantity to be

�
; %(�W� �  Q� 
 is at most � for A \D_`��� 4�5�6 �,


and Claim 3.3 follows.
Having proved the claim, let us now show that with

nonzero probability, each
� ��r ��� 
 for rAOj� and � S (�� (

� S � > is not cut in at least A�� � of the level- ���  f�E
 partitions
�LP 0 � 2S � > 
 � ;�� . Let us call this event 	bqTS � > . The claim shows
that with nonzero probability, each ball ��
 with � O$� is
not cut in at least A���� of the partitions �>P 0 � 2S � > 
 � ;�� . Since
each rkOf� is at distance at most � to some ���AO%� , the
triangle inequality implies that

� ��r9�43 � 
 & � ��r ��� 
 is not
cut if

� ��� � �n��� 
 is not cut, which holds in at least half of the
partitions. Hence 	1q.S � > also holds with nonzero probability.

Finally, we prove that we can choose a random set
of HD’s �*P P P 0 � 2 
 � ;�� such that 	1qTS � > occurs for each �c(
�  ^�N( � simultaneously with nonzero probability. The key
to the proof is that we have assumed an arbitrary (worst-case)
set of partitions �>P 0 � 2S 


�
� ! > at level � in proving a nonzero

lower bound on 798 � 	1q.S � > � . Hence, we can ignore any
dependence among the events 	1q,S � > for � (>�= '� ( � ,
and simply multiply their nonzero probabilities together to
obtain a nonzero lower bound on the probability that they all
occur simultaneously.

3.2 An Algorithm for Finding the Decompositions The
above procedure can be made algorithmic using an approach
based on Beck’s algorithmic version of the LLL (see, e.g., [1,



5]). The decomposition satisfies all properties of the one that
is shown to exist using LLL in Theorem 3.1, although with
some changes in constant parameter values. As in the proof
of Theorem 3.1, we build A \ _`�+� 4�536 �W
 HDs level by
level in a bottom-up fashion.

On any particular level �9 c� , we begin by choosing A
partitions at random. After making the random choices, we
examine the partitions and identify all of the bad events that
have occurred. We then group together bad events that may
depend on each other, as well as “good” events that may
depend on the bad events. Each group forms a connected
component in the LLL dependency graph. We show that,
with high probability, all connected components have size
_`� 4�5�6 �$
 , where � \ 
 � 
 is the size of the 3 � S � > -net of � .

Once the groups have been identified, we need to elim-
inate the bad events. Hence, for each group, we “undo”
all of the random choices concerning that group, while not
modifying any choices that do not affect the group. New
choices must be made for each group so that no bad event oc-
curs. Because the group size is small (the number of centers
.QO�� S � > concerning the group that we choose random ra-
dius for is also _`� 4�5�6 �$
 ), we can find new settings for these
choices using exhaustive search in polynomial time.

One interesting complication in this proof is that the
set of clusters containing a group have different shapes in
the A different partitions. In each partition, we cut out a
“hole”, and redo the choices within the hole. The boundary
of the hole is formed from the boundaries of the clusters that
may influence the bad events (and the good events) in the
group. In forming the boundary, additional good events may
be added to the hole. As a consequence, it is possible that a
good event inside a hole in one partition may appear inside a
different hole in another partition. Hence, when we perform
exhaustive search, these holes must be considered together.
However, our method of bounding the size of each connected
component already takes into account any merging of holes
on account of shared good events, so that we never have to
redo the choices for a group of size more than _`� 4�536 �s
 .

Another issue is that the subset of centers in a hole that
belong to � S � > , the � S � > � � -net that covers the entire metric,
may not by themselves cover the hole. (Portions of the hole
may be covered by centers outside the hole.) So for each of
the A partitions, we may have to add additional net points
inside the hole to obtain a complete cover for it. We show
that the size of net points in the hole increases by only a
constant factor and remains _`� 4�5�6 �s
 , and the degree of the
hierarchical decomposition trees is at most � .=0 ��2 as before.

4 The �/�: "$
 -Stretch Routing Schemes

Given a ���t�43�
 -PPHD 5 � with a support on A HDs, we
can now define, for every % & " (h� , a �/�  "$
 -stretch
routing scheme which uses routing tables of size at most
AQ�+�,�-"$
 .=0 ��2 4�5�6 7 8 bits at every node.

We consider routing schemes in two models. In a basic
model, we assume that there is no underlying routing fabric
and each node can only send packets to its direct neighbors.
In a second model, we can build an overlay hierarchical
routing scheme upon an underlying routing fabric like IP
that can send packets to any specific node in the network.
We specify the routing algorithm in the basic model, but
also indicate how one can circumvent certain steps of this
algorithm when an underlying routing mechanism is given.

Let us recall some of the notation defined earlier. Let
�*PP P 0 � 2 
 �� ! > be the A hierarchical decompositions on which5 � has positive support, and the level- � partition correspond-
ing to P P P 0 � 2 be called P 0 � 2S . Recall that we can associate each
hierarchical decomposition P P P 0 � 2 with a tree * � (as outlined
in Section 2.1). Note that each of these trees has a �&% 6 � 5 � 

bounded by � .10 ��2 and a height of at most �f\ � 4�536��W8 	 .
Recall that each internal vertex of the tree * � at level � cor-

responds to a cluster of P 0 � 2S and leaves of * ��� 6 
�O � , cor-
respond to vertices in � , where � \ �3�3�RQRQ�Q��@A $ . Let each
internal vertex . of each tree * � label its children by num-
bers between � and �&% 6 � 5 � 
 ; . does not label anything with
the number % , but uses it to refer to its parent. Note that this
allows us to represent any path in a tree * � by a sequence of
at most ��� \D_`� 4�5�6 � 8 
 labels.

Lemma 3.1 already shows that the A trees thus created
form a small _`� ���03�
�\ _`�+� 7 
 -stretch Steiner tree cover,
which can be used for routing purposes (as in Section 4.3).
However, since such a large stretch is not always acceptable,
we improve on this scheme in the following subsections to
get better routing bounds.

4.1 The Addressing Scheme Given a tree * � and a vertex
r�O � , we assign r a local address addr �3��rt
 , which consists
of �^\ � 4�5�6 � 8 	 blocks, one for each level of the tree * � .
Each block has a fixed length. The � � � block of the addr ����r<

corresponds to partition P 0 � 2S and contains the label assigned

to the cluster q � containing r in P 0 � 2S by q � ’s parent in
* � . Since any such label is just a number between � and
�&% 6 � 5 � 
 , where �-% 6 � 5 � 
�\ � .=0 ��2 , we need _`��� 4�536 �W

bits per block. In fact, one can extend this addressing scheme
to any cluster q in * � . If q is a level- � cluster, the

� � � -block
of addr�3�BqN
 contains � ’s for

� & � ; addr �3����
 for the root
cluster of * � contains all � ’s matching all vertices in � .

The global address addr ��rt
 of point rQO�� is the con-
catenation

�
addr > ��rt
��������9� addr � ��rt
�� of its local addresses

addr �3��rt
 for 
 O%� . Since each cluster q belongs to only
one tree * � , we define addr � � �BqN
 to be a sequence of � ’s
of the correct length (where � are dummy symbols match-
ing nothing), and hence define a global address of q as well.
(This is only for simplicity; in actual implementations, clus-
ter addresses for * � can be given by the tuple

�
addr � �BqN
�� 
	� .)

Since there are _`��� 4�5�6 �,
 bits per block, � blocks per



local address, and A local addresses per global address, sub-
stitution of the appropriate values gives the address length
� to be at most A � � ��� 4�5�6 ���-% 6 � 5 � 
/
��V\'_`�+� 4�5�6 �W
 �
� 4�5�6��W8
	 � _`�+� 4�5�6 �W
b\ _`��� 7 4�5�6 � 4�5�6:8 
 bits.

4.2 The Routing Table For each point rAOj� , we main-
tain a routing table Route � that contains the following infor-
mation for each * � , �e( 
 (?A :

1. For each ancestor of r in * � that corresponds to a cluster
q containing r , we maintain a table entry for q .

2. Moreover, for each such q , we maintain an entry for
each descendant of q in * � reachable within S hops in
tree * � . Here S)\hUV� 4�5�6�� �-� 3-"$
 , with the constants
chosen such that ��S ;�� ( &

m� � S ; > .
In the routing table Route � for r , each of the above entries
thus corresponds to some level- � � cluster q � in * � . Let
close �$�+q � 
 be the closest point in q � to r . (We assume,
w.l.o.g., that ties are broken in some consistent way, so
that any node 2 on a shortest path from r to close �$�Bq ��

has the value close 9 �+q �?
 \ close � �Bq �?
 ; in fact, this
consistency is the only property we use.) For this q � ,
Route � stores (a) the global address addr �+q �?
 by which the
table is indexed, (b) the identity of a “next hop” neighbor
2 of r that stays on a shortest path from r to the closest
point close � �+q � 
 in q � , and (c) an extra bit ���
	 � �������� � �Bq � 
 :
if the cluster S levels above q � in * � is the cluster q , then
���
	 � �������� � �+q � 
 is set to be true if

� ��r �43 � S � ��� 
 is entirely
contained within cluster q and �t��r9� close � �Bq �?
/
 ( 3 � S � ��� ,
and is set to be false otherwise. Of course, if we reach the
root of * � while trying to go up S levels, then the bit is set to
be true. Note that if there is an underlying routing fabric
like IP, we can store the IP-address of some node in q � (say,
the closest one) instead of (b) and (c) above.

LEMMA 4.1. The number of entries in the routing table
Route � of any r�O � is at most 4�536:8 �Q�+�,�-"$
 .=0 �32 .
Proof. Let us estimate the number of entries in Route � for
any r O � . There are A trees. For each tree * � , for all

 O � , there are � \ � 4�5�6 � 8 	 ancestors of r and the degree
of the tree is bounded by �-% 6 � 5 � 
 \ � .=0 �32 . Recall that
� and �E�03 are both _`���,
 , and hence Sc\ _`� 4�5�6 ���=�E"$
/
 .
Plugging these values in, we get that the number of entries
for r across A trees is at most A � �$�D�+�-% 6 � 5 � 
	
 � \
_`��� 4�536 �W
 � _`� 4�5�6 � 8 
 ��� .=0 ��� 2 \ 4�5�6:8 � �+�,�-"$
 .=0 ��2 .
Each entry is indexed by one global address (of at most
� \ _`��� 7 4�5�6 � 4�536:8 
 bits), and contains the identity of
the next hop (which uses _`� 4�5�6 degree-of-rt
Q\h_`� 4�5�6:a 

bits) and one additional ���
	 � �������� bit.

The forwarding algorithm makes use of two functions,
NextHop � and PrefMatch � . For a point r and a level- � �
cluster q � in * � , the function NextHop � � addr �+q �?
/
 returns

the next hop on the path from r to close � �+q � 
 provided that
the next hop does not leave the cluster q at level ���� )S that
contains q � , and null otherwise. (As we shall see, the packet
forwarding algorithm is guaranteed never to encounter a
null next hop.) Given points r and p in � , the function
PrefMatch � ��p/
 returns an addr �+q �?
 in Route � such that in
some * � , p belongs to the level- � cluster q � , ���
	 � �������� �s�+q �?

is true, and the value � is the smallest across all trees. Note
that both of these functions can be computed efficiently by
node r . Furthermore, it is possible to support the functions
with data structures of size comparable to that of Route � .

Note that once the points in � have been assigned
addresses (for which we have described only an off-line
algorithm), the routing tables can be built up in a completely
distributed fashion. In particular, a distributed breadth-first-
search algorithm can be applied to determine whether a ball
of a certain radius is cut in a particular decomposition, and
a distributed implementation of the Bellman-Ford algorithm
can be used to establish the next-hop entries for destinations
for which the shortest paths lie within a certain cluster.

4.3 The Forwarding Algorithm The idea behind the for-
warding algorithm is to start a packet off from its origin o
towards an intermediate cluster q containing its destination
p ; the packet header thus consists of two pieces of informa-
tion

�
addr ��p/
�� addr �+qN
�� , where p is the destination node for

the packet and q is the intermediate cluster containing p . Ini-
tially, the cluster can be chosen (degenerately) to be the root
cluster of (say) tree * > .

Upon reaching a node r in the intermediate cluster q , a
new and smaller intermediate cluster q � , also containing p ,
must be chosen, possibly from a different tree; the packet
header must be updated with addr �+q � 
 that remains the
same until reaching q � . Suppose that the new cluster q �
containing p is at level � � . After selecting this cluster, the
packet is sent off towards q � with the new header, following
a shortest path that stays within the cluster

	
q at level � �s )S

that contains both r and q � . This process is repeated until
ultimately the packet reaches the cluster containing only the
destination p . The algorithm is presented in Figure 4.2.

THEOREM 4.1. The forwarding algorithm has a stretch of
at most ���: A"$
 , where " ( � .
Proof. We first show that the algorithm is indeed valid;
each of the steps can be executed and the packet eventually
reaches p . Suppose that the packet has just reached a node
r in an intermediate cluster q containing p (with addr �+qN

in its header); thus r needs to execute Step 3 to find a new
cluster q � containing p . Clearly, PrefMatch �$��p/
 can return
the root cluster q ����� � of any * � , since it contains p . We show,
however, that the cluster q � returned by PrefMatch �$��p/
 has
a small diameter and nodes along a valid shortest path from
r to q � will forward the packet correctly until it reaches q � .



1. Let packet header be
�
addr ��p/
 � addr �BqN
�� .

2. If q contains r , the current node, then
3. find addr �+q �?
 � PrefMatch � ��p/

4. let 2 � NextHop � � addr �Bq ��
	

5. forward packet with new header
6.

�
addr ��p/
�� addr �+q � 
 � to 2 .

7. Else (now r �O�q )
8. let 2 � NextHop � � addr �BqN
/

9. forward packet with unchanged header
10.

�
addr ��p/
�� addr �+qN
 � to 2 .

11. End

Figure 4.2: The Forwarding Algorithm at Node r
LEMMA 4.2. If the packet is at node r with distance to
the target p being �t��r �/p/
�(�3 � S , Step 3 must return some
addr �+q �?
 such that cluster q ����p is at level at most ��� �QS 

in some * ��� with ���
	 � �������� � �+q � 
 being true. Furthermore,
all vertex . on all shortest paths from r to close � �Bq � 
 \
close ���Bq � 
 has a non-null NextHop � � addr �+q �?
/
 .
Proof. The ���t�43�
 -PPHD ensures that there exists at least
one tree * � such that

� ��r9�@30� S 
 is not cut in the level- �
partition P 0 � 2S ; let

	
q � ��� � O3P 0 � 2S be the level- � cluster in

* � that contains
� ��r �43 � S 
 . Let q � O P 0 � 2S ;�� be the level-

��� � S 
 cluster in * � containing p . The ���
	 � �������� � �Bq � 

bit must be true since

� ��r9�@3 � S 
 & 	
q � ��� � in P 0 � 2S and

� ��r9� close � �+q � 
/
�( �t��r �/p/
Q( 3 � S ; thus PrefMatch � can
(and may indeed) just return addr �+q � 
 given no “better”
choices. However, PrefMatch � always finds a cluster q � in
some * ��� , at the lowest level across all trees, such that p:O�q � ,
and ���
	 � �������� �$�+q � 
 is true in Route � . Let the level of q �
be � � ; the value � � is at most � � �QS 
 . Now Let

	
q O P 0 � � 2S � ��� be

the cluster S levels above q � O P 0 � � 2S � in * � � that contains both
r and q � . (Such

	
q must exist at level � �  ^S for addr �+q ��


to be in Route � .) We know that
� ��r �43 � S � ��� 
 & 	

q and
� ��r9� close � �+q �?
/
�( 3 � S � ��� since ���
	 � �������� � �+q �?
 is true
in Route � . Thus all shortest paths from r to close � �+q �?
 are
entirely contained in

	
q . Hence, the NextHop � � addr �+q �?
/


pointer at any node . on one of these paths must be non-null
since all shortest paths from . to close ���Bq � 
 \ close � �Bq ��

are all contained in

	
q , the cluster S levels above q � in * �� .

It remains to bound the path stretch. Consider the case when
a packet is sent from o to p . Let q � be a cluster at level � ��S
returned by Step 3 of the forwarding algorithm. Note that
if the level � ( S , then q � \ � p $ and we send the packet
directly to p with "Q\ % . Using these short distances as the
base case, we now do induction on the distance from o to p .

If q � is a non-trivial cluster containing p , then we go on
a shortest path from o to some vertex . \ close � �+q �?
KO�q � .
Since p O'q � , �t�+o3�@.�
�( �t�+o3�/p/
 . Because the diameter of

q � is at most � ��S ;�� , �t��.t�/p/
�( � ��S ;�� &�3 � S ; > & � �Bo��	p/
 .
(The last inequality holds because if 3 � S ; > � �t�+o3�/p/
 , then
PrefMatch � would have returned a cluster at a level lower
than that of q � by Lemma 4.2.) Hence, we can apply the
induction hypothesis to find a path from . to p of length at
most ���l "$
��t��.t�/p/
 ( ���l "$
	� ��S ;�� . The path from o to p
as derived from Route � is of length at most �t�+o3�@.�
= k���! 
"$
/� � . �	p/
N& �t�+o3�/p/
, c���! "$
/�$� S ;�� . The stretch of the path
from o is p is then �= ^���1 Q"$
/�$� S ;�� � � �Bo��	p/
 . This quantity is
at most �K " since "�( � and we have chosen constants so
that � S ;�� ()" 3 � S ; > � � .

4.4 Reducing table size to _ � � m � 4�536:8 
 Here are some
ideas to further reduce the storage. We choose a portal
portal � �+qN
�O q for each cluster q in * � , so that r'Ok�
is a representative for at most one cluster from each * � ( * �
must have no internal degree � nodes, which can be done).
Set S'\ UV� 4�536 � A�� 3-"$
 , a bit bigger than before. Each
node r keeps a smaller routing table Route � ; instead of
keeping entries for “ S -levels down” clusters for all ancestors
in each * � , it keeps entries only for its S nearest ancestors.
Furthermore, if r is the portal for cluster q O * � , entries
for the S nearest ancestors of q are also kept at r , but in a
new routing table Route � . The total size of all ( ��A  c� 

routing tables at r is only _ � � m � 4�5�6K8 
 bits now. We can now
imagine “routing to a cluster q'O * � ” by sending the packet
to portal �+qN
 , and each node r runs possibly AD � copies of
the routing algorithm: one for itself and one for each q with
portal �BqN
b\#r .

Suppose one routes a packet from o to p , we change the
forwarding algorithm at node o as follows. If the lca �+o3�/p/
 has
level at most S , the routing proceeds as before. Otherwise,
the longest prefix matches at o will return clusters S levels
above o , in which case o forwards the packet in round-robin
fashion to its parent clusters (one in each * � ) to try and find
one whose ancestor S levels up contains p in its subtree. If
this fails, o tries the clusters two levels up in each tree, and
so on. This doubling search procedure ensures that the extra
distance traveled before we see the lca of o and p in some
tree is only "s� �Bo3�/p/
 , and hence the stretch remains ���: A"$
 .

5 Constant-Degree Spanners for Doubling Metrics

Given a metric ���b�	��
 with doubling dimension � and "f@
% , this section shows how to construct a ���  "$
 -spanner
whose maximum degree is bounded by �B�  >m 
 .=0 �32 . Our
construction consists of two phases. In the first phase, we
construct a spanner ���b�

	� 
 from a nested sequence of nets
�<0 S $ ; we include an edge if the end points are from the same
net and “reasonably close” to each other. We then show that
the edges in this spanner can be directed such that the out-
degree of each vertex is bounded, and hence the spanner is
sparse. We then have a second phase, in which we modify
these edges in

	�
to obtain another spanner, but now with



bounded degree. Our main theorem, whose proof we sketch
in Section 5.1, is the following:

THEOREM 5.1. Given a metric � �1�n��
 with doubling dimen-
sion � , there exists a ���  �"$
 -spanner such that the degree of
every vertex is at most �+�! >m 
 .=0 �32 .

5.1 Constructing a sparse �/�  "$
 -spanner We first de-
scribe the construction of a sparse ���: A"$
 -spanner. Without
loss of generality, we assume " ( >7 . For " @ >7 , we still run
the whole procedure with " �<\ >7 . All the bounds would still
hold because � .=0 �32!\ �B�  >m 
 .10 ��2 . Without loss of gener-
ality, we assume that the distance between any two distinct
vertices is at least 1. Otherwise, we can re-scale the metric.
Given " @#% , let � � \4�C � 7m and � � \ � 4�5�6 7

� � .
Our construction requires a hierarchical sequence of

nets, which is defined as follows. Define 0 ; T � \ � . For
��@ � � , let 0"S be a � S -net of 0"S ; > . (Note that since the
inter-vertex distance is at least 1, 0 S \ � for � � ( �l&k% .)
For each net 0 S in the sequence, we include the edges whose
end points are in the net and are close together. In particular,
define for � � � � ,

� S \ �����W�@.�
�O 0 S � 0 S 
 � �s� S ; > &
� ��� � .�
C( � �E� S $%Q Let

	� \ 7 S � S , and ���b�
	� 
 is the spanner

obtained from the construction. The following lemma shows
that � �1�

	� 
 preserves distances in the metric and is sparse:

LEMMA 5.1. The graph � �1�
	� 
 is a ���` "$
 -spanner for

���b�	��
 . Furthermore, the edges of
	�

can be directed such
that each vertex has out-degree bounded by �+�! >m 
 .10 ��2 .
While we omit the proof, let us indicate how to direct the
edges. For each . O � , define ������.�
 � \*� ��� � �O
4.)O 0"S $ .
For each edge ��� � .�
 O 	�

, direct it from � to . if ������� 
`&
������.�
 ; if ��� ��� 
b\'�	����.�
 , direct the edge arbitrarily.

Bounded-degree spanners: We now modify
	�

to get an-
other spanner ��i`�bu� 
 with the same number of edges, but
with bounded degree in the following way. Let 
 be the small-
est positive integer such that >7

�� , (^" . Then 
,\k_`� 4�536 >m 
 .
For each vertex � O � , and for � � ( � ( � � ���<
 , define0 S ���<
 to be the set of vertices � such that � O?� S ���<
 and
��� ���<
 is directed into � . Define �c\5� � 
	� . O 0 S ��� 
 $ .
Suppose the elements of � are listed in increasing order
� > &�� 7 & ����� ; for brevity, we write

0��� � \ 0 S�� ���<
 .
We now keep all the arcs directed out of � . Moreover,

for ��( 
A(�
 , we keep the arcs directed from
0��� into � .

For 
 @�
 , we pick an arbitrary vertex �cO 0��� ;�� and replace
every arc from

0 �� into � by an arc from
0 �� into � . Let

���b�1u� 
 be the resulting undirected graph. Since every edge
in
	�

is either kept or replaced by another edge (which might
be already in

	�
), 
 u� 
 (#
 	� 
 . The following lemma, whose

proof is omitted, gives the claimed result:

LEMMA 5.2. Every vertex in ���b�bu� 
 has degree bounded by
�+�  >m 
 .10 ��2 . Furthermore, if u� is the metric induced by

���b�1u� 
 , then u� (k���: ��"$
 	� .
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