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Abstract.

This paper presents the first optimal-time algorithms for path selection in an optimal-size non-
blocking network. In particular, we describe an N -input, N -output, nonblocking network with
O(N log N) bounded-degree nodes, and an algorithm that can satisfy any request for a connection
or disconnection between an input and an output in O(log N) bit steps, even if many requests are
made at once. Viewed in a telephone switching context, the algorithm can put through any set of
calls among N parties in O(log N) bit steps, even if many calls are placed simultaneously. Parties
can hang up and call again whenever they like; every call is still put through O(log N) bit steps after
being placed. Viewed in a distributed memory machine context, our algorithm allows any processor
to access any idle block of memory within O(log N) bit steps, no matter what other connections have
been made previously or are being made simultaneously.
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1. Introduction.

1.1. Definitions. Nonblocking networks arise in a variety of communications
contexts. Common examples include telephone systems and network architectures for
parallel computers. In a typical application, there are 2N terminals (usually thought
of as N inputs and N outputs) interconnected by switches that can be set to link the
inputs to the outputs with node-disjoint paths according to a specified permutation.
(Switches are also called nodes.) In a nonblocking network, the terminals and nodes
are interconnected in such a way that any unused input–output pair can be connected
by a path through unused nodes, no matter what other paths exist at the time. The
6-terminal graph shown in Figure 1.1, with inputs Bob, Ted, and Pat and outputs
Vanna, Carol, and Alice, for example, is nonblocking because no matter which input–
output pairs are connected by a path, there is a node-disjoint path linking any unused
input–output pair. In particular, if Bob is talking to Alice and Ted is talking to Carol,
then Pat can still call Vanna.

The notion of a nonblocking network has several variations. The nonblocking
network in Figure 1.1 is an example of the most commonly studied type. This net-
work is called a strict-sense nonblocking connector, because no matter what paths are
established in the network, it is possible to establish a path from any unused input
to any unused output. A slightly weaker notion is that of a wide-sense nonblocking
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Fig. 1.1. A nonblocking network with 3 inputs and 3 outputs.

connector. A wide-sense nonblocking connector does not make the same guarantee as
a strict-sense nonblocking connector. A network is a wide-sense nonblocking connec-
tor if there is an algorithm for establishing paths in the network one after another so
that after each path is established, it is still possible to connect any unused input to
any unused output. Still weaker is the notion of a rearrangeable connector. A rear-
rangeable connector is capable of realizing any 1–1 connection of inputs to outputs
with node-disjoint paths provided that all the connections to be made are known in
advance. A nonblocking or rearrangeable connector is a called a generalized connector
if it has the additional property that each input can be simultaneously connected to
an arbitrary set of outputs, provided that every output is connected to just one input.
Generalized connectors are useful for multiparty calling in a telephone network as well
as for broadcasting in a parallel machine.

1.2. Previous work. Nonblocking and rearrangeable networks have a rich and
lengthy history. See [30] for an excellent survey and [9, 10] for more comprehensive
descriptions of previous results. In 1950, Shannon [35] proved that any rearrange-
able or nonblocking connector with N -inputs and N -outputs must have Ω(N log N)
edges1. Further work on lower bounds can be found in [4, 11, 32, 33]. In 1953, Clos
constructed a strict-sense nonblocking connector with O(N1+1/j) edges and depth j,
for fixed j. (The degree of the nodes is not bounded). Bounded-depth nonblocking
networks have subsequently been studied extensively [8, 10, 24, 25, 29, 33]. In the
early 1960’s, Beizer [5] and Beneš [6] independently discovered bounded-degree rear-
rangeable connectors with depth O(log N) and size O(N log N), and Waksman [38]
gave an elegant algorithm for determining how the nodes should be set in order to real-
ize any particular permutation. Ofman [26] followed with a generalized rearrangeable
connector of size O(N log N). Next, Cantor [7] discovered a bounded-degree O(log N)-
depth strict-sense nonblocking connector with O(N log2 N) edges. The existence of
a bounded-degree strict-sense nonblocking connector with size O(N log N) and depth
O(log N) was first proved by Bassalygo and Pinsker [3]. Although the Bassalygo and
Pinsker proof is not constructive, subsequent work on the explicit construction of
expanders [23] yielded a construction.

More recent work has focused on the construction of generalized nonblocking
connectors. In 1973, Pippenger [28] constructed a wide-sense generalized nonblocking
connector with O(N log2 N) edges. This result was later improved to O(N log N)
edges by Feldman, Friedman, and Pippenger [10]. Recently, Turner suggested cascad-

1Throughout this paper log N denotes log
2

N .
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ing two of the asymptotically larger Clos or Cantor networks as a more practical way
to construct a generalized nonblocking connector [36]. This method requires that all
the parties in a multiparty call are known at the time that the call is placed.

Unfortunately, there has not been as much progress on the problem of setting
the nodes to realize the connection paths. Indeed, several of the references cited
previously show that there exists a way of setting the nodes to realize the desired
paths, but are unable to provide any reasonable algorithms for actually finding the
right node settings. For example, no polynomial time algorithm is known for finding
the paths in the wide-sense generalized nonblocking connector of [10]. There are a few
exceptions. On the naive nonblocking networks of size Θ(N2) (e.g. an N × N mesh
of trees [15]), a simple greedy algorithm suffices to find the paths on-line in O(log N)
time. (An algorithm that finds the settings for the nodes is called a circuit switching
algorithm. An algorithm that is performed by the nodes themselves using only local
information is called an on-line algorithm; an off-line algorithm is one that uses more
global information.) Also, Lin and Pippenger recently found polylogarithmic time off-
line parallel algorithms for path selection in O(N log2 N)-size strict-sense nonblocking
connectors using one processor per request [22]. On any strict-sense nonblocking
connector, an on-line version of breadth-first search can be used to find a path from
an unused input to an unused output on-line. Unfortunately, this algorithm cannot
efficiently cope with simultaneous requests for connections. Nevertheless, no better
algorithm, either on-line or off-line, was previously known for any O(N log N)-size
nonblocking network.

1.3. Models and conventions. The running times of the algorithms in this
paper are described in two models, the bit model and the word model. In the bit
model, each network node can be thought of as a finite automaton. In each bit step,
the node can receive a single bit of information along each of its incoming edges (of
which there are at most a constant number), change to a new state, and output a
single bit of information on each of its outgoing edges (of which there are at most a
constant number). In the word model, each edge in an N -node network can transmit
a word consisting of up to O(log N) bits in a single step.

To simplify the explanation of the algorithms and results in this paper, we have
adopted some conventions that may differ from the way that this material is treated in
the more applied literature. For example, we generally route paths in a node-disjoint
fashion. In practice, however, it may be desirable to route paths in an edge-disjoint
manner instead. Our definitions and results can also be applied in this setting, as
demonstrated in Section 5.3.3. Note that node-disjoint paths are automatically edge-
disjoint, and any algorithm for routing edge-disjoint paths on a degree-d network can
be converted into one for routing node-disjoint paths by replacing each node with a
d × d complete bipartite graph.

1.4. Our results. In this paper, we describe an O(N log N)-node nonblocking
network for which each connection can be made on-line in O(log N) bit steps. The
path selection algorithm works even if many calls are made at once — every call still
gets through in O(log N) bit steps, no matter what calls were made previously and no
matter what calls are currently active, provided that no two inputs try to access the
same output at the same time. (If many inputs inadvertently try to access the same
output at the same time, all but one of the inputs will receive a busy signal. The
busy signals are also returned in O(log N) bit steps, but, at present, we require the
use of a sorting circuit [2, 20] to generate the busy signals. Alternatively, we could
merge the calling parties together, but this also requires the use of a sorting circuit.)
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In all scenarios, the size of the network and the speed of the path selection algorithm
are asymptotically optimal.

In addition to providing the first optimal solution to the abstract telephone switch-
ing problem, our results significantly improve upon previously known algorithms for
bit-serial packet routing. Previously, O(log N)-bit-step algorithms for packet routing
were known only for the special case in which all packet paths are created or de-
stroyed at the same time, and even then only by resorting to the AKS sorting circuit
[2], or by using randomness on the hypercube [1]. In many circuit-switched parallel
machines, however, packets are of varying lengths and packet paths are created and
destroyed at arbitrary times, thereby requiring that paths be routed in a nonblocking
fashion – which is something that previously discovered algorithms were not capable
of doing. Even without worrying about the nonblocking property, our results pro-
vide the first non-AKS O(log N)-bit-step algorithms for bit-serial packet routing on a
bounded-degree network. (Since this work first appeared, Leighton and Plaxton have
developed an O(log N)-bit-step randomized sorting algorithm for the butterfly [20].)

1.5. Our approach. The networks that we use to obtain these results are con-
structed by combining expanders and Beneš networks in much the same way that
expanders and butterflies are combined to form the multibutterfly networks described
by Upfal [37]. We refer to these networks as multi-Beneš networks. The nonblocking
networks of Bassalygo and Pinsker [3] are similar. The details of the construction are
provided in Section 2 of the paper.

The techniques in this paper can also be applied to bandwidth-limited switching
networks such as fat-trees [21]. These networks may be more useful in the context of
real telephone systems, where there are limitations on the number of calls based on
the proximity of the calls (e.g., it is unlikely that everyone on the East Coast will call
everyone on the West Coast at the same time).

The description and analysis of the path selection algorithm is divided into three
sections. In Section 3, we prove that the multi-Beneš network is a strict-sense non-
blocking connector. A similar approach was used in [17] to show that the multibut-
terfly is capable of routing in the presence of many faulty nodes. Indeed, we can think
of currently-used nodes as being faulty since they cannot be used to form new con-
nections. Similarly, the algorithms we describe for routing in nonblocking networks
can easily be extended to be highly tolerant to faults in the network. In Section 4, we
describe an O(log N)-bit-step algorithm for bit-serial routing in a multibutterfly. This
algorithm relies on an unshared-neighbor property possessed by all highly-expanding
graphs. By implementing this algorithm on the multi-Beneš network and combining
it with the methods of Section 3, we produce an algorithm that can handle many calls
at the same time, independent of what calls have been made previously and what
calls are currently connected.

In Section 5, we describe algorithms for handling multiparty calls, and situations
where many inputs try to reach the same output simultaneously. Some of these
algorithms rely on sorting circuits and are not as practical as those described in
Section 4. We also show how to remove the distinction between terminals and non-
terminals.

2. The multi-Beneš and multibutterfly networks. Our nonblocking net-
work is constructed from a Beneš network in much the same way that a multibutter-
fly network [37] is constructed from a butterfly network. We start by describing the
butterfly, Beneš, and multibutterfly networks.
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Fig. 2.1. An 8-input butterfly network.
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Fig. 2.2. An 8-input Beneš network.

An N -input butterfly has log N + 1 levels, each with N -nodes. An example is
shown in Figure 2.1. The Beneš network is a (2 log N + 1)-level network consisting
of back-to-back butterflies. The network in Figure 2.2 is a Beneš network. Although
Beneš networks are usually drawn with the long diagonal edges at the first and last
levels rather than in the middle (see e.g., [16, Figure 3-27]), the networks are isomor-
phic.

A multibutterfly is formed by gluing together butterflies in a somewhat unusual
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Fig. 2.3. An 8-input 2-butterfly network.

way. In particular, given 2 N -input butterflies G1 and G2 and a collection of permuta-
tions Π = 〈π0, π1, . . . , πlog N 〉 where πl : [0, N

2l −1] → [0, N
2l −1], a 2-butterfly is formed

by merging the node in row jN
2l + i of level l of G1 with the node in row jN

2l + πl(i)

of level l of G2 for all 0 ≤ i ≤ N
2l − 1, all 0 ≤ j ≤ 2l − 1, and all 0 ≤ l ≤ log N .

The result is an N -input (log N + 1)-level graph in which each node has 4 inputs
and 4 outputs. Of the 4 output edges at a node, two are up outputs and two are
down outputs (with one up edge and one down edge coming from each butterfly).
For example, see Figure 2.3. Multibutterflies (i.e., d-butterflies) are composed from d
butterflies in a similar fashion using d−1 sets of permutations, Π(1), . . . ,Π(d−1), where

Π(i) = {π(i)
l , 0 ≤ l ≤ log N}, resulting in a (log N + 1)-level network with 2d × 2d

nodes.
In a butterfly or multibutterfly, for each output v there is a distinct logical (up-

down) path from the inputs to v. In order to reach v from any input u, the path from
u to v must take an up-edge from level l to level l +1 if the lth bit in the row number
of v is 0, and a down-edge if the bit is 1. (The bits are counted starting with the
most significant, which is in position 0). Figure 2.4 shows the logical path from any
input to output 011. Let us use the term physical path to denote our usual notion
of a path through the network, i.e., a physical path consists of a sequence of nodes
w0, w1, . . . , wlog N such that node wi resides on level i of the network, and nodes wi

and wi+1 are connected by an edge, for 0 ≤ i < log N . In a butterfly network, the
logical path can be realized by only one physical path through the network. In a
multibutterfly, however, each step of the logical path can be taken on any one of d
edges. Hence, for any logical path there are many physical paths through the network.

The notion of up and down edges can be formalized in terms of splitters. More

precisely, the edges from level l to level l+1 in rows jN
2l to (j+1)N

2l −1 in a multibutterfly

form a splitter for all 0 ≤ l < log N and 0 ≤ j ≤ 2l−1. Each of the 2l splitters starting
at level l has N

2l inputs N
2l and outputs. The outputs on level l+1 are naturally divided

into N
2(l+1) up outputs and N

2(l+1) down outputs. By definition, all splitters on the same
level l are isomorphic, and each input is connected to d up outputs and d down outputs
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Fig. 2.5. A splitter with expansion property (α, β).

according to the butterfly and the permutations π
(1)
l , . . . , π

(d−1)
l and π

(1)
l+1, . . . , π

(d−1)
l+1 .

The most important characteristic of a multibutterfly is the set of permutations
Π(1), . . ., Π(d−1) that prescribe the way in which the component butterflies are to be
merged. For example, if all the permutations are the identity map, then the result
is the dilated butterfly (i.e., a butterfly with d copies of each edge). We are most
interested in multibutterflies that have expansion properties. In particular, we say
that an M -input splitter has expansion property (α, β) if every set of k ≤ αM inputs
is connected to at least βk up outputs and βk down outputs for β > 1. Similarly,
we say that a multibutterfly has expansion property (α, β) if each of its component
splitters has expansion property (α, β). For example, see Figure 2.5.
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Fig. 2.6. An 8-input 2-multi-Beneš network.

Although the constants α, β, and d do not appear in the expressions for the
running times of our algorithms, e.g., O(log N), as a practical matter they are crucial.
In general, the larger β is, the fewer bit steps an algorithm will require. However,
since d ≥ β, a network with large β must also have large d, and in practice it may
be difficult to build a node that can receive and transmit along all d of its edges
simultaneously if d is large. Furthermore, most of the algorithms require β > d/2,
which (as far as we know) can only be achieved for small α. As we shall see, the
fraction of network nodes that are actually used by paths is at most 1/α, so if α is
small, the network is not fully utilized.

If the permutations Π(1), . . . ,Π(d−1) are chosen randomly, then with non-zero
probability, the resulting d-butterfly has expansion property (α, β) for any d, α, and
β for which 2αβ < 1 and

d > β + 1 +
β + 1 + ln 2β

ln( 1
2αβ )

.(2.1)

This bound appears as Corollary 2.1 in [37]. A derivation can be found in [18].
Roughly speaking, the bound says that the expansion, β, can be almost as large as
d − 1, provided that α is small enough. Furthermore, for any α, β can be made
arbitrarily close to 1/2α, by making d large. It is not known if β can be made close to
both d − 1 and 1/2α simultaneously. Constructions for splitters and multibutterflies
with good expansion properties are known although the expansion properties are
generally not as good as those obtained from randomly-generated graphs.

Like a multibutterfly, a multi-Beneš network is formed from Beneš networks by
merging them together. A 2-multi-Beneš network is shown in Figure 2.6. An N -input
multi-Beneš network has 2 log N + 1 levels labeled − log N through log N . Levels 0
through log N form a multibutterfly, while levels − log N through 0 form the mirror
image of a multibutterfly.

As in the multibutterfly, the edges in levels 0 through log N are partitioned
into splitters. Between levels − log N and 0, however, the edges are partitioned into
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mergers. More precisely, the edges from level l to level l + 1 in rows j2l+log N+1 to
(j+1)2l+log N+1−1 form a merger for all − log N ≤ l < 0 and 0 ≤ j ≤ N/2l+log N+1−1.
Each of the N/2l+log N+1 mergers starting at level l has 2l+log N+1 inputs and outputs.
The inputs on level l are naturally divided into 2l+log N up inputs and 2l+log N down
inputs. All mergers on the same level l are isomorphic, and each input is connected
to 2d outputs. There is a single, trivial, logical path from any input of a multi-Beneš
network through the mergers on levels − log N through −1 to the single splitter on
level 0. (Any physical path will do.) From level 0 there is a single logical up-down
path through the splitters to any output on level log N . In both cases, the logical
path can be realized by many physical paths.

We say that an M -output merger has expansion property (α, β) if every set of
k ≤ αM inputs (up or down or any combination) is connected to at least 2βk outputs,
β > 1. With nonzero probability, a random set of permutations yields a merger with
expansion property (α, β) for any d, α, and β for which αβ < 1/2 and

2d > 2β + 1 +
2β + 1 + ln 2β

ln( 1
2αβ )

.(2.2)

This inequality can be derived by making a small number of substitutions in the
derivation of Inequality 2.1 found in [18]. We say that a multi-Beneš network has
expansion property (α, β) if each of its component mergers and splitters has expansion
property (α, β). The multibutterflies and multi-Beneš networks considered throughout
this paper are assumed to have expansion property (α, β).

It is worth noting that all the results in this paper hold for a broader class of
networks than multibutterflies and multi-Beneš networks. In particular, each basic
butterfly component used to make a multibutterfly or multi-Beneš network can be
replaced by any Delta network. A Delta network is a regular network formed by
splitters like the butterfly, but for which the individual connections within each splitter
can be arbitrary [14].

3. A proof that the multi-Beneš network is nonblocking. In this section
we prove that the multi-Beneš network is a strict-sense nonblocking connector. As
a consequence, a simple algorithm like breadth-first search can be used to establish
a single path from any unused input to any unused output in O(log N) bit steps,
where N is the number of rows. Algorithms that handle simultaneous requests for
connections and multiparty calls are deferred to Sections 4 and 5.

In order for the algorithm to succeed, the multi-Beneš network must be “lightly
loaded” by some fixed constant factor L, where we will choose L to be a power of
2. Thus, in an N -row multi-Beneš network, we only make connections between the
N/L inputs and outputs in rows that are multiples of L. Since the other inputs and
outputs are not used, the first and last log L levels of the network can be removed, and
the N/L inputs and outputs can each be connected directly to their L descendants
and ancestors on levels − log N + log L and log N − log L, respectively.

The basic idea is to treat the nodes through which paths have already been
established as if they were faulty and to apply the fault propagation techniques from
[17] to the network. In particular, we define a node to be busy if there is a path
currently routing through it. We recursively define a node in the second half of the
network to be blocked if all of its up outputs or all of its down outputs are busy or
blocked. More precisely, nodes are declared to be blocked according to the following
rule. Working backwards from level log N − log L − 1 to level 0, a node is declared
blocked if either all d of its up edges or all d of its down edges lead to busy or blocked
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nodes. From level −1 to level − log N + log L, a node is declared blocked if all 2d of
its outgoing edges lead to busy or blocked nodes. A node that is neither busy nor
blocked is said to be working.

The following pair of lemmas bound the fraction of input nodes that are blocked
in every splitter and merger.

Lemma 3.1. For L > 1/2α(β − 1), at most a 2α fraction of the inputs in any
splitter are declared to be blocked. Furthermore, at most an α fraction of the nodes
are blocked because of busy and blocked nodes from the upper outputs, and at most an
α fraction are blocked because of busy and blocked nodes from the lower outputs.

Proof. The proof is by induction on level number, starting at level log N − log L
and working backwards to level 0. The base case is trivial since there are no blocked
nodes on level log N − log L. Suppose the inputs of an M -input splitter contain more
than αM nodes that are blocked because of the upper (say) outputs. Consider the
set U of busy or blocked upper outputs. Since all of the edges out of a blocked input
lead to busy or blocked outputs, we can conclude that |U | ≥ αβM . Since every path
passing through the upper outputs must lead to one of M/2L terminals, there can
be at most M/2L busy nodes among the upper outputs of the splitter. Furthermore,
by induction there are at most αM blocked nodes among the upper outputs. Thus,
|U | ≤ αM + M/2L. For L > 1/2α(β − 1) we have a contradiction. Hence, at most
an α fraction of the nodes are blocked, as claimed.

Lemma 3.2. For L > 1/2α(β − 1), at most a 2α fraction of the upper inputs and
a 2α fraction of the lower inputs in any merger are blocked.

Proof. The proof is like that of Lemma 3.1
After the fault propagation process, every working node in the first half of the

network has an output that leads to a working node, and every working node in
the second half has both an up output and a down output that lead to working
nodes. Furthermore, since at most a 2α fraction of the nodes in each merger on level
− log N + log L are blocked, and 2αL < L − 1 for L > 1/2α(β − 1) and 2αβ < 1,
each of the N/L inputs has an edge to a working node on level − log N + log L. As a
consequence, we can establish a path through working nodes from any unused input
to any unused output in O(log N) bit steps using a simple greedy algorithm. Since
the declaration of blocked nodes takes just O(log N) bit steps, and since the greedy
routing algorithm is easily accomplished in O(log N) bit steps, the entire process takes
just O(log N) bit steps.

The preceding algorithm for establishing paths one after another in the multi-
Beneš network implies that it is a wide-sense nonblocking connector. The proofs
of Lemmas 3.1 and Lemmas 3.2, however, do not make any assumptions about the
strategy used to make previous connections between inputs and outputs. Indeed,
the only requirement is that there are at most M/L paths through each M -input
splitter or M -output merger, which holds for any path selection strategy. Therefore,
no matter how the paths for the previous connections were found, there is still at
least one working node in each block at level − log N + log L, and as a consequence,
at least one path between any unused input and unused output. Thus the multi-Beneš
network is also a strict-sense nonblocking connector. As such, it is not really necessary
to label the nodes as blocked or working; a simple on-line algorithm like breadth-first
search is guaranteed to find a path. When simultaneous requests are dealt with in
Section 4.4, however, a proper labeling will be important.

4. Establishing many paths at once. In this section, we describe an on-line
algorithm for routing an arbitrary number of additional calls in O(log N) bit steps.
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As before, we assume for the time being that each input and each output is involved
in at most one two-party call. Extensions to the algorithm for handling multiparty
calls are described in Section 5. We also assume that paths are established between
inputs and outputs on rows congruent to 0 mod L in the multi-Beneš network, where
L is a power of 2 and L ≥ 1/α. This will insure that no splitter or merger is ever
overloaded.

To simplify the exposition of the algorithm, we start by describing an on-line
algorithm for routing any initial set of paths in a multibutterfly (i.e., we don’t worry
about the nonblocking aspect of the problem for the time being). This comprises
the first known circuit-switching algorithm for the multibutterfly. (Previous routing
algorithms for the multibutterfly [17, 37] only worked for the store-and-forward model
of routing.) The existence of the circuit-switching algorithm provides another proof
that the multibutterfly is a rearrangeable connector. We conclude by modifying the
definitions of busy and blocked nodes from Section 3 and showing how to implement
the circuit-switching algorithm on a multi-Beneš network so that it works even in the
presence of previously established calls.

4.1. Unshared neighbors. Our circuit-switching algorithm requires the split-
ters in the multibutterfly to have a special “unshared-neighbors” property defined as
follows.

Definition 4.1. An M -input splitter is said to have the (α, δ) unshared neighbor
property if in every subset X of k ≤ αM inputs, there are δk nodes in X that have
an up-output neighbor that is not adjacent to any other node in X, and there are δk
nodes in X that have a down-output neighbor that is not adjacent to any other node in
X (i.e., δk nodes in X have an unshared up-neighbor, and δk nodes have an unshared
down-neighbor).

Lemma 4.2. Any splitter with the (α, β) expansion property also has the (α, δ)
unshared-neighbors property where δ = 2β/d − 1, provided that β > d/2.

Proof. Consider any set X of k ≤ αM inputs in an M -input splitter. These
nodes have at least βk neighbors among the up (down) outputs. Let n1 denote the
number of these neighbors incident to precisely one node of X, and let n2 denote the
number of neighbors incident to two or more nodes of X. Then n1 + n2 ≥ βk and
n1 +2n2 ≤ dk. Solving for n1 reveals that n1 ≥ (2β−d)k. Hence at least (2β/d−1)k
of the nodes in X are adjacent to an unshared neighbor.

By Equation 2.1, we know that randomly-generated splitters have the (α, δ)
unshared-neighbors property where δ approaches 1 as d gets large and α gets small.
Explicit constructions of such splitters are not known, however. Nevertheless, we will
consider only multibutterflies with the (α, δ) unshared-neighbors property for δ > 0
in what follows.

Remark: The (α, β) expansion property (β > d/2) is a sufficient condition for the
unshared-neighbors property, but by no means necessary. In fact, we can easily prove
the existence of random splitters which have a fairly strong (α, δ) unshared-neighbors
property for small degree. For such graphs, the routing algorithm we are about to
describe is more efficient in terms of hardware required. However, multibutterflies
with expansion properties will remain the object of our focus.

4.2. A level-by-level algorithm. Our first algorithm extends the paths from
level 0 to level log N by first extending all the paths from level 0 to level 1, then from
level 1 to level 2, and so on. As we shall see, extending the paths from one level to
the next can be done in O(log N) bit steps, so the total time is O(log2 N) bit steps.
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In a multibutterfly with the (α, δ) unshared-neighbors property, it is relatively
easy to extend paths from one level to the next because paths at nodes with unshared
neighbors can be extended without worrying about blocking any other paths that are
trying to reach the next level. The remaining paths can then be extended recursively.
In particular, all the paths can be extended from level l to level l + 1 (for any l), by
performing a series of “steps”, where each step consists of:

1. every path that is waiting to be extended sends out a “proposal” to each of
its output (level l + 1) neighbors in the desired direction (up or down),

2. every output node that receives precisely one proposal sends back its accep-
tance to that proposal,

3. every path that receives an acceptance advances to one of its accepting out-
puts on level l + 1.

Note that each step can be implemented in a constant number of bit steps.

Since the splitters connecting level l to level l + 1 have M = N/2l inputs, and at
most M/2L paths must be extended to the upper (or lower) outputs, for L > 2/α,
the number of inputs containing these paths is at most αM . Thus, we can apply the
(α, δ) unshared-neighbors property to these nodes. As a consequence, in each step the
number of paths still remaining to be extended decreases by a (1 − δ) factor. After
log(N/L2l+1)/ log(1/(1 − δ)) steps, no paths remain to be extended.

By using the path-extension algorithm just described to extend all of the paths
from level 0 to level 1, then all of the paths from level 1 to level 2, and so on, we can
construct all the paths in

log N

L
−1

∑

l=0

log N
L2l+1

log 1
1−δ

≤ log2 N
2L

log 1
1−δ

= O(log2 N)

steps.

4.3. A faster algorithm. To construct the paths in O(log N) bit steps we
modify the first algorithm as follows. Given a set of at most αM paths that need to
be extended at an M -input splitter, the algorithm does not wait Θ(log M) time for
every path to be extended before it begins the extension at the next level. Instead,
it waits only O(1) steps, in which time the number of unextended paths falls to a
fraction ρ of its original value. We will choose ρ to be less than 1/d. Now the path
extension process can start at the next level. The only danger here is that the ρ
fraction of paths left behind may find themselves blocked by the time they reach
the next level, and so we need to ensure that this won’t happen. Therefore, stalled
paths send out placeholders to all of their neighbors at the next level, and henceforth
the neighbors with placeholders participate in the path extension process at the next
level, as if they were paths. Thus, a placeholder not only reserves a spot that may be
used by a path at a future time, but also helps to chart out the path by continuing to
extend ahead. Since a placeholder doesn’t know which path will ultimately use it, a
node holding a placeholder must extend paths into both the upper and lower output
portions of its splitter. A placeholder that first extends a path into the upper output
portion of its splitter continues to attempt to extend a path into the lower portion,
and vice versa. We will call a path from the inputs of the network to the inputs of
any splitter in the network a real path if it contains no placeholders. The goal of the
algorithm, of course, is to extend real paths all the way through the network. Any
path that contains at least one placeholder is called a placeholder path.
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Since each stalled path generates up to 2d placeholders at the next level, and these
placeholders might later become stalled themselves, there is a risk that the network
will become clogged with placeholders. In particular, if the fraction of inputs in a
splitter that are trying to extend rises above α, the path extension algorithm ceases
to work. Thus, in order to prevent placeholders from clogging the system, whenever a
stalled path, either real or a placeholder, gets extended into either the upper or lower
output portion of a splitter, it sends a cancellation signal to each of the nodes in
that portion of the splitter that are holding placeholders for it. When a placeholder
is replaced by a real path, one of the two directions (up or down) into which the
placeholder has been attempting to extend becomes unnecessary. If the placeholder
has already extended its path in that direction, a single cancellation is sent along the
edge that the path uses. Otherwise, a cancellation is sent to each of the d placeholding
neighbors in that direction. When a placeholding node gets cancellations from all of
the nodes that had requested it to hold their places, it ceases its attempts to extend.
It also sends cancellations to any nodes ahead of it that may be holding a place for it.
Note that a placeholding node that has received cancellations from all but one of the
nodes that had requested it to hold their places continues to try to extend into both
the upper and lower output portions of the splitter. As we shall see, this scheme of
cancellations prevents placeholders from getting too numerous.

The O(log N)-step algorithm for routing paths proceeds in phases. Each path
is restricted to extend forward by at most one level during each phase. We refer to
the first wave of paths and placeholders to arrive at a level as the wavefront. The
wavefront moves forward by one level during each phase. A phase consists of the
following three parts:

(i) C steps of passing cancellation signals. These cancellation signals travel at
the rate of one level per step.

(ii) T steps of extending paths from one level to the next. In this time, the
number of stalled (i.e., unextended) paths at each splitter drops by least a factor of
ρ, where ρ ≤ (1 − δ)T .

(iii) 1 step of sending placeholders to all neighbors of paths in the wavefront that
were not extended during the preceding T steps

Note that for constant T and C, each phase can be performed in O(1) bit steps. We
will assume that C ≥ 2 so that cancellation signals have a chance to catch up with
the wavefront, and that d ≥ 3.

The key to our analysis of the algorithm is to focus on the number of stalled paths
(corresponding to real paths or placeholders) at the inputs of each splitter. In phase
t of the algorithm, where the first phase is phase 0, the wavefront advances from level
t to level t + 1. Let Pi denote the maximum fraction of inputs containing wavefront
paths (real and placeholder) in a level i splitter that wish to extend to the upper (or
similarly, to the lower) outputs at the end of phase i − 1, i.e., when the wavefront
arrives at level i, and let S(i, t) denote the maximum fraction of inputs that contain
stalled paths that wish to extend to the upper (or similarly, to the lower) outputs of
any splitter at level i at the end of phase t. Note that S(i, t) = 0 for t < i, since there
are no paths to extend at level i before phase i. Also, note that S(i, i) ≤ ρPi.

The following lemmas will be useful in proving that every path is extended to
completion in log N phases provided that L ≥ 1/α and ρ < 1/14d.

Lemma 4.3. If Pi ≤ α then S(i, t) ≤ ρt−iS(i, i) ≤ ρt+1−iPi for t ≥ i.

Proof. In each phase of the algorithm, the number of stalled paths at the inputs
drops by a factor of ρ, provided that the number of paths trying to extend is never
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greater than an α fraction of the inputs of the splitter. Since the number of paths
reaching the inputs never increases after the wavefront arrives, this condition is always
satisfied.

The following lemma bounds the size of the wavefront in terms of the number of
stalled paths behind it.

Lemma 4.4.

Pi ≤
1

2L
+ 2dS(i − 1, i − 1) +

∞
∑

l=0

C
∑

k=1

2Cl+k+1dS(i − 1 − Cl − k, i − l − 2).

Proof. The first term, 1/2L, is an upper bound on the fraction of inputs through
which real paths that wish to extend to the upper outputs (or similarly to the lower
outputs) will ever pass. The 2dS(i − 1, i − 1) term represents the fraction of inputs
that could hold placeholders generated by stalled paths at level i − 1 (the factor of 2
comes in because the number of inputs in a splitter at level i − 1 is twice as many as
those in a level i splitter). The 4dS(i−2, i−2) term (l = 0, k = 1) is an upper bound
on the fraction of inputs containing placeholders that were generated by paths stalled
at level i − 2 when the wavefront was extended to level i − 1 in phase i − 2. Next,
for C ≥ 2, the contribution of placeholders from level i − 3 is 8dS(i − 3, i − 2) (here
l = 0, k = 2), not 8dS(i − 3, i − 3), since paths that are stalled at level i − 3 during
phase i−3, but get through during phase i−2, send cancellation signals to levels i−2
and i − 1 during the first part of phase i − 1. Hence, these paths do not contribute
placeholders to the wavefront when it is extended from level i − 1 to level i. The
contribution from level i−C − 2 is 2C+2dS(i−C − 2, i− 3) (here l = 1, k = 1), since
paths that are extended during the second part of phase i− 3 send cancellations that
reach level i − 2 during the first part of phase i − 2. These cancellations then reach
level i−1 during the first part of phase i−1. The rest of the terms in the summation
may be counted similarly. Although our summation seems to have infinitely many
terms, only finitely many of them are non-zero.

The next lemma, Lemma 4.5, presents a weaker bound on Pi. The difference
between this lemma and the previous lemma is that in Lemma 4.5 we assume that a
cancellation signal must reach level i rather than i − 1 before the start of the path
extension part of phase i − 1 in order for it to have an effect on the size of the wave
propagating from level i − 1 to level i. The reason for this assumption is that we
will later speed up the algorithm by overlapping the cancellation passing and path
extension parts of each phase.

Lemma 4.5.

Pi ≤
1

2L
+ 2dS(i − 1, i − 1)

+

C
∑

k=2

2kdS(i − k, i − 2)

+

∞
∑

l=1

C
∑

k=1

2Cl+kdS(i − Cl − k, i − l − 2).

Proof. The proof is similar to that of Lemma 4.4.
The following lemma shows that for the right choices of L, ρ, d, and C, no splitter

ever receives too many paths (real or placeholders) that want to extend to the upper
outputs (and similarly, to the lower outputs).
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Lemma 4.6. For L ≥ 1
α , ρ ≤ 1

14d , d ≥ 3, and C ≥ 3, Pi ≤ α, for 0 ≤ i ≤
log(N/L).

Proof. We prove by induction on i that for γ = α
14d , Pi ≤ α, and S(i, i) ≤ ρPi ≤ γ.

For the base case, observe that P0 ≤ 1/2L, and S(0, 0) ≤ ρP0 (by applying Lemma 4.3
with i = 0 and t = 0). Hence, S(0, 0) ≤ α/28d = γ/2. For the inductive step, we
apply Lemma 4.3 to the recurrence of Lemma 4.5, which yields:

Pi ≤
1

2L
+ 2dγ +

C
∑

k=2

2kdγρk−2

+

∞
∑

l=1

C
∑

k=1

2Cl+kdγρ(C−1)l+k−2

=
1

2L
+ 2dγ +

4dγ(1 − (2ρ)C−1)

1 − 2ρ

+
dγ2C+1ρC−2(1 − (2ρ)C)

(1 − 2CρC−1)(1 − 2ρ)

≤ 1

2L
+ 2dγ + 4.2dγ + .5dγ.

Note that in the last inequality we have used the fact that d ≥ 3, C ≥ 3, and
ρ ≤ 1/14d. (We really only needed C ≥ 2, but the constants are better for C ≥ 3.)
Thus if γ = α/14d and L ≥ 1/α, then Pi ≤ α. Also, by Lemma 4.3, S(i, i) ≤ ρPi and
if ρ ≤ 1/14d, we have: S(i, i) ≤ α/14d = γ, thereby establishing the induction.

From Lemma 4.6, it is clear that no splitter ever has more than an α fraction of
its inputs containing paths to be extended to the upper (or lower) outputs. Therefore
the path-extension algorithm is never swamped by placeholders and always works as
planned at each level, cutting down the number of stalled paths by a factor of ρ during
each phase. Hence, log(αM)/ log(1/ρ) phases after the wavefront arrives at a splitter
of size M , all paths are extended. Since the wavefront arrives at level i during phase
i − 1, the algorithm establishes all real paths to level log(N/L) (recall that the last
log L levels have been removed) by phase

max
0≤i<log(N/L)

max

{(

i − 1 +
log αN

2i

log 1
ρ

+
log N

L − i

C

)

, log
N

L
− 1

}

=

max
0≤i<log(N/L)

max

{(

log αN

log 1
ρ

+
log N

L

C
+ i

(

1 − 1

log 1
ρ

− 1

C

)

− 1

)

, log
N

L
− 1

}

phases, since a path that is last stalled at level i extends to level i + 1 by phase
i − 1 + log(αN/2i)/ log(1/ρ), and if the wavefront reaches level log(N/L) before its
cancellation signals do, then these signals arrive (log(N/L)− i)/C phases later. Oth-
erwise, if the cancellation signals catch up to the wavefront (but the path is never
again stalled), then the path extends to level log(N/L) by phase log(N/L) − 1 For
C ≥ 2 and ρ < 1/4, this expression takes on a maximum value of log(N/2L) − 1 +
log(2αL)/ log(1/ρ) + 1/C. At first, this result seems too good to be true, but stalled
real paths catch up to the wavefront very quickly once they get through, and they get
through at a very high rate. Hence, all real paths get through to the final level along
with the wavefront!
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Since the number of phases required is basically log(N/L), the overall time for the
algorithm depends mainly on the parameters C and T . By propagating the cancella-
tions at the same time that paths are extended, a single phase can be implemented in
max(C, 2T +1) steps. As long as ρ < 1/14d, the algorithm will work for C ≥ 3. Since
β < d− 1, and Lemma 4.2 gives us δ = 2β/d− 1, and we need ρ = (1− δ)T < 1/14d,
T must be at least 2. In general, in order to make T small, we need δ to be large.
In order to achieve large δ, we need β to be close to d, which requires α to be small
(and consequently L to be large) and d to be large. By using good splitters (δ ≈ 1),
α small, d large, C = 5, and T = 2, and replacing each edge with a small constant
number of edges, we can obtain a (5 + ε) log N -step algorithm for routing all the
paths. Unfortunately, d and L need to be quite large to achieve this bound. For more
reasonable values of d (less than 10) and L (less than 150), we can achieve provable
routing times of about 100 log N . Fortunately, the algorithms appear to run faster in
simulations [19].

It is worth noting that each node only needs to keep track of a few bits of infor-
mation to make its decisions. This is because only the ith bit of the destination is
needed to make a switching decision at level i, and therefore a node at that level looks
at this bit, strips it off, and passes the rest of the destination address onward. The
path as a whole snakes forward through the network. If it ever gets blocked, the entire
snake halts behind it. The implementation details for this scheme are straightforward.
Previously, only the AKS sorting circuit was known to achieve this performance for
bounded-degree networks, but at a much greater cost in complexity and constant fac-
tors. Recently, Leighton and Plaxton have also developed a randomized algorithm for
sorting on the butterfly in O(log N) bit steps [20].

4.4. Routing many paths in a nonblocking fashion on a multi-Beneš

network. It is not difficult to implement the circuit-switching algorithm just de-
scribed on a multi-Beneš network. The main difference between routing through
a multi-Beneš network and a multibutterfly network is that in the first half of the
multi-Beneš network, a path at a merger input is free to extend to any of the 2d
neighboring outputs. As the following definition and lemma show, the mergers have
an unshared-neighbor property analogous to that of the splitters.

Definition 4.7. An M -input merger is said to have the (α, δ) unshared neighbor
property if in every subset X of k ≤ αM inputs (either up or down or any combina-
tion), there are δk nodes in X which have an output neighbor that is not adjacent to
any other node in X.

Lemma 4.8. Any merger with the (α, β) expansion property also has the (α, δ)
unshared-neighbors property where δ = 2β/d − 1, provided that β > d/2.

Proof. The proof is essentially the same as that of Lemma 4.2.

In order to route around existing paths in a multi-Beneš network, we combine
the circuit-switching algorithm with the kind of analysis used in Section 3. To do
so, we need to modify the definition of being blocked. A splitter input on level l,
0 ≤ l < log N−log L, is blocked if more than 2β−d−1 of its d up (or down) neighbors
on level l + 1 are busy or blocked. A merger input on level l, − log N + log L ≤ l < 0,
is blocked if more than 4β − 2d − 2 of its 2d neighbors on level l + 1 are either busy
of blocked. Any node that is not blocked is considered to be working.

4.4.1. The subnetwork of working nodes. The following pair of lemmas
show that for β > (d + 1)/2, an unshared-neighbor property is preserved on the
working nodes.
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Lemma 4.9. For β > (d + 1)/2, the working splitter inputs have an (α, 1/d)
unshared-neighbor property.

Proof. In the proof of Lemma 4.2 we show that every set X of k ≤ αM nodes in an
M -input splitter has at least (2β−d)k neighbors in the upper and lower outputs with
only one neighbor in X. If X is a set of working switches, then at most (2β − d− 1)k
of these unshared neighbors can be busy or blocked. Thus, at least k of the unshared
neighbors must be working.

Lemma 4.10. For β > (d + 1)/2, the working merger inputs have an (α, 1/d)
unshared-neighbor property.

Proof. The proof is similar to that of Lemma 4.9.
Of course, we must also check that the new blocking definition does not result in

any inputs of the multi-Beneš network becoming blocked. This can be done with an
argument similar to that in Lemmas 3.1 and 3.2.

Lemma 4.11. For β > 2d/3 + 2/3 and L > 1/2α(3β − 2d − 2), less than a 2α
fraction of the inputs in any splitter are declared to be blocked. Furthermore, less than
an α fraction of the inputs are blocked because of busy and blocked nodes from the
upper outputs, and less than an α fraction are blocked because of the lower outputs.

Proof. The proof is by induction on level number, working backwards from level
log N − log L to level 0. For the base case, observe that on level log N − log L none of
the nodes are blocked. Now suppose that αM of the inputs of some M -input splitter
are blocked by upper outputs (say), and let |U | be the set of busy or blocked upper
outputs. Since the blocked inputs have at least αβM neighbors among the upper
outputs, and at most 2d − 2β + 1 edges out of each blocked node lead to working
nodes, |U | ≥ αM(β − (2d− 2β + 1)) = αM(3β − 2d− 1). By induction, however, the
number of blocked upper outputs is at most αM and thus |U | ≤ αM + M/2L. For
L > 1/2α(3β − 2d − 2), we have a contradiction.

Lemma 4.12. For β > 2d/3 + 2/3 and L > 1/2α(3β − 2d − 2), at most a 2α
fraction of the up inputs and at most a 2α fraction of the down inputs in any merger
are declared blocked.

Proof. The proof is similar to that of Lemma 4.11.

4.4.2. Routing new paths. Once the working nodes have been identified, new
paths from the inputs to the outputs of the multi-Beneš network can be established
using an algorithm that is essentially the same as the circuit-switching algorithm for
multibutterflies described in Section 4.3. There are two main differences. First, in
the multi-Beneš network, only working nodes are used. However, by Lemmas 4.9
and 4.10 the working switches have an (α, 1/d) unshared neighbors property. Hence,
we can run the algorithm of Section 4.3 with δ = 1/d. Second, routing in the first
half of the multi-Beneš network is actually easier than in the second half, which is a
multibutterfly, since there is no notion of up or down edges. The goal is simply to get
each new path from an input on level − log N + log L to any working node on level 0.
The algorithm uses placeholders and cancellation signals in the first half in the same
way that they are used in the second half.

4.5. Processing incoming calls. Since the working nodes must be identified
before new paths can be routed, incoming calls are processed in batches. When a
new call originates at an input, it waits until the paths are established for the batch
that is currently being processed. When all of the calls in that batch have been
established, the working nodes are identified, and then the paths for the new batch
are established. Since identifying the working nodes and routing the new paths both
take at most O(log N) bit steps, the time to process each batch is O(log N) bit steps,
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and no call waits for more than O(log N) bit steps before being established, including
the time waiting for the previous batch to finish.

5. Extensions.

5.1. Multiparty calls. If all of the parties in a multiparty call are known to a
caller at the start of the call, then it is possible to extend the algorithms in Sections 3
and 4 to route the call from the caller to all of the parties. As a call advances from
level 0 to level log N of the multi-Beneš network, it simply creates branches where
necessary to reach the desired output terminals. The bit complexity of the algorithm
may increase, however, because more than O(log N) bits may be needed to specify
the set of outputs that the call must reach.

The situation becomes more complicated if parties to a multiparty call are to be
added after the call is already underway. One possible solution is to set up paths
in the network from the caller to the parties in the call that make multiple passes
through the network. To simplify the explanation, let us assume that the input in
row i and the output in row i of the multi-Beneš network are actually the same node,
for 0 ≤ i ≤ N − 1. (Thus each input/output can be involved in at most one call.) A
multiparty call is established by constructing a binary tree whose root is the caller and
whose internal nodes and leaves are the parties in the call. Each node of the binary
tree is embedded at an input of the multi-Beneš network, and each edge in the tree
from a parent to a child is implemented by routing a path through the multi-Beneš
network from the input at which the parent is embedded to the output (which is also
an input) at which the child is embedded. To add a new party to the call, we add
a new node to the binary tree wherever its depth will be minimum. This ensures
that the depth of a tree with l parties will be O(log l). Since each edge of the binary
tree corresponds to a path of length log N in the network, the path from the root to
any other node in the tree has length at most O(log2 N) in the network. It’s easy to
see that a new party can be added in O(log2 N) bit steps, but with a little work the
time can be brought down to O(log N) bit steps. One problem with this scheme is
that the parties corresponding to internal nodes of the binary tree cannot hang up
without also disconnecting all of their descendants. Although this solution is not as
elegant as those proposed in [10] for wide-sense generalized nonblocking connectors,
no polynomial time routing algorithms are known for those constructions.

5.2. Multiple calls to the same output. If many parties want to call the
same output terminal, then we have two options: merging the callers into a single
multiparty call, or giving busy signals to all but one of the callers.

In either case, the first thing to do is to sort the calls according to their destina-
tions. Unfortunately, no deterministic O(log N)-bit-step sorting algorithm is known
for the multibutterfly network at present, although O(log N) word- and bit-step ran-
domized algorithms are known for the butterfly [20, 34]. If a deterministic O(log N)-
bit-step algorithm is required, the multibutterfly could be augmented with a sorting
circuit such as the AKS sorting circuit [2]. The AKS sorting circuit will provide us
with a set of edge-disjoint paths from its inputs to its outputs. If node-disjoint paths
are desired, then each 2× 2 comparator in the circuit can be replaced by a 2× 2 com-
plete bipartite graph. Note that in neither case is the sorting circuit a nonblocking
network, since adding new calls at the inputs may alter the sorted order, thus disrupt-
ing existing paths. In the remainder of this section, we will use a sorting circuit either
in conjunction with a butterfly network to route calls in a rearrangeable fashion, or
in conjunction with a multibutterfly to route calls in a nonblocking fashion. In the
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latter case, the sorting circuit is used only to help compute the routes that the calls
take, and not to route the calls themselves.

Once the calls have been sorted, a parallel prefix computation is applied to the
sorted list of calls. For each destination, one of the calls is marked as a winner, and
the others as losers. For a description of prefix operations, and how they can be
implemented in O(log N) bit steps on a complete binary tree (which is a subgraph of
the butterfly), see [16, Section 1.2].

If it suffices to send a busy signal to all of the callers except one, then these
signals can be sent back to the losers along their paths through the sorting circuit,
and the winning path can be established (in a nonblocking fashion) in a multibutterfly
network.

If the calls are to be merged into a single call, then the next step is to label the
winners according to their positions in the sorted order, and to give each loser the
label of the winner for its destination. This is also prefix computation.

To route calls in a rearrangeable fashion, we identify the outputs of the sorting
circuit with the inputs of a butterfly network. Each call is routed greedily in the
butterfly network to the output in the row with the same number as the winner’s
index. This type of routing problem is called a packing problem. Surprisingly, only
calls with the same destination will collide during the routing of any packing problem
[16, Section 3.4.3]. After this step, all of the calls to the same destination have been
merged into a single call. Since the calls remain sorted by destination, the problem
of routing them to their destinations is called a monotone routing problem. Any
monotone routing problem can be solved with a single pass through two back-to-back
butterfly networks without collisions [16, Section 3.4.3].

To route calls in a nonblocking fashion, we can either assume that all callers are
known at the time that a call is established or not. If all of the callers are known,
we can route the calls backwards through a multibutterfly from the shared output
to each of the inputs of the callers using the first scheme described in Section 5.1.
Otherwise, we can use the second scheme of Section 5.1 in reverse to route the calls
using paths of length O(log2 N).

5.3. Removing the distinction between terminals and non-terminals.

In this section we generalize the routing algorithm of Section 4 by removing the
distinction between nodes that are terminals and nodes that are not. The algorithm
in this section requires O(log N) word steps, not bit steps. Recall that in the word
model, each edge can transmit a word of O(log N) bits in a single step. The goal of
the algorithm is to establish a set of disjoint paths, each of which may start or end
at any node in the network. The following similar problem was studied by Peleg and
Upfal [27].

Given an expander graph, G, K source nodes, a1, . . . , aK in G, and
K sink nodes, b1, . . . , bK in G, where the sources and sinks are all
distinct (i.e., ai 6= aj and bi 6= bj for i 6= j, and ai 6= bj for all i and
j), construct a path in G from each source ai to the corresponding
sink bi, so that no two paths share an edge.

Peleg and Upfal presented polylogarithmic time algorithms for finding K edge-disjoint
paths in any n-node expander graph, provided that K ≤ nρ, where ρ is a fixed constant
less one. In this section we show that if we are allowed to specify the network (but not
the locations of the sources and sinks) then it is possible to construct even more paths.
In particular, we describe an n-node bounded-degree network, R, and show how to
find K edge-disjoint paths in it in O(log n) time, provided that K ≤ O(n/ log n).
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Furthermore, we show how to find node-disjoint paths between Θ(K) of the sources
and sinks.

5.3.1. The network. The network R consists of four parts, each of which con-
tains log N + 1 levels of N nodes. Each of the first three parts shares its last level
with the first level of the next part, so the total number of levels is 4 log N + 1, and
the total number of nodes in the network is n = N(4 log N + 1).

The first part is a set of log N + 1 levels labeled −2 log N through − log N . For
−2 log N ≤ i < −logN , the edges connecting level i to i+1, form an N -input merger.
Hence, every set of k ≤ αN nodes on one level has at least 2βk neighbors on the next
level, where α, β, and d are related as in Equation 2.2.

The second part consists of a multibutterfly whose levels are labeled − log N
through 0. The multibutterfly has expansion property (α, β), where α, β, and d are
related as in Equation 2.1.

The third and fourth parts are the mirror images of the first and second parts.
The levels of these parts are labeled 0 through 2 log N .

Although any node in R can be chosen to be a source or a sink, it would be more
convenient if all of the sources were to reside in the first part, and all the sinks in
the fourth. Thus, the node on level −i of the second part, i of the third part, and
2 log N−i of the fourth part each have an edge called a cross edge to the corresponding
node on level −2 log N + i of the first part. Similarly, each node in the fourth part
has cross edges to the corresponding nodes in first, second, and third parts. If a node
in any part other than the first is chosen to be a source, then its path begins with its
cross edge to the first part. If a node in any part other than the fourth is chosen to
be a sink, then the path to it ends with a cross edge from the fourth part. At this
point, each node in the first part may represent up to four sources, and each node in
the fourth part may represent up to four sinks.

5.3.2. Constructing node-disjoint paths. For the paths to be node-disjoint,
each path must avoid the sources and sinks in the second and third parts as it passes
from the first part to the fourth part. To avoid these sources and sinks, we declare
them to be blocked. We then apply the technique of [17] for tolerating faults in
multibutterfly networks to the second and third parts, treating blocked nodes as
if they were faulty. The technique of [17] can be summarized as follows. First, any
splitter (and all nodes that can be reached from that splitter) that contains more than
a 2α(β′−1) fraction of blocked inputs is erased, meaning that its nodes cannot be used
for routing, where β′ = β − d/4. Next, working backwards from the outputs to the
inputs, a node is declared to be blocked if more than d/4 of its up or down neighbors
at the next level are blocked (and not erased). (Note that it is not possible for all of
a node’s up and down neighbors to be erased unless that node is also erased.) Upon
reaching the inputs of the network, all the blocked nodes are erased. The switches
that are not erased are said to be working. The expansion property of the network of
working switches is reduced from β to β′.

The following lemmas bound the number of inputs (on levels − log N and log N)
and outputs (on level 0) that are erased in the second and third parts. Note that
Lemma 5.1 bounds the number of inputs that are erased, but are not themselves
blocked. (All the blocked inputs are erased.) Note also that since the two parts share
level 0, the number of erased nodes on that level may be as large as twice the bound
given in Lemma 5.2.

Lemma 5.1. In addition to the (at most) K blocked inputs, at most K/(β′ − 1)
nonblocked inputs are erased in the second and third parts.
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Proof. This lemma is essentially the same as Lemma 3.3 of [17].
Lemma 5.2. At most K/2α(β′ − 1) outputs are erased in each of the second and

third parts.
Proof. This lemma is essentially the same as Lemma 3.1 of [17].
In both networks at least N−O(K) of the inputs and N−O(K) of the outputs are

left working, where K is the number of sources (and sinks). Suppose that K ≤ γN ,
where γ is some constant. By choosing γ to be small, we can ensure that at least K
of the nodes on level 0 are not erased in either the second or third parts. We call
these K nodes the rendezvous points. By making β′ (and hence d) large, we can also
ensure that the number of nodes on levels − log N and log N that are erased, but are
not themselves sources or sinks, is εK, where ε can be made to be an arbitrarily small
constant.

The reconfiguration technique described in [17] requires off-line computation to
count the number of blocked inputs in each splitter. In another paper, Goldberg,
Maggs, and Plotkin [12] describe a technique for reconfiguring a multibutterfly on-
line in O(log N) word steps.

The next step is to mark some of the nodes in the first part as blocked. We begin
by declaring any node in the first part to be reserved if it is a neighbor of a source in
the second, third, or fourth part via a cross edge. Now, working backwards from level
− log N − 1 to −2 log N , a node is declared blocked if at least d/2 of its 2d neighbors
at the next level are either sources, sinks, blocked, reserved, or erased. We call a node
that is not a source or a sink, and is not reserved, blocked, or erased, a working node.

Where did the d/2 bound on non-working neighbors come from? In order to be
apply the routing algorithm of Section 4.3, the subnetwork of working nodes must
have an (α, δ) unshared neighbor property. Let β′ be the largest value such that the
subnetwork of working nodes has an (α, β′) expansion property (where (α, β) is the
original expansion property of the first part). To show that the subnetwork of working
nodes has an (α, δ) unique neighbors property, we need β′ > d/2. If every working
node has at most d/2 non-working neighbors, then the subnetwork of working nodes
has expansion property (α, β − d/4). (Recall that we multiply the β′ parameter by
2 to get the actual expansion in each merger.) Thus β′ > β − d/4. If β > 3d/4,
then β′ > d/2. By restricting a working switch to have fewer non-working neighbors,
we could have reduced the required expansion from 3d/4 down to nearly d/2. As
the following lemma shows, however, if a working switch can have d/2 non-working
neighbors, then we also need β > 3d/4 in order to ensure that there aren’t too many
blocked nodes. If we were to allow a working switch to have fewer (or more) than d/2
non-working neighbors, then one of the two “β > 3d/4” lower bounds would increase,
and the network would require more expansion.

Lemma 5.3. Let f denote the total number of nodes declared blocked in the first
part, let K ≤ γN denote the number of sources and sinks, and let εK denote the
number of nodes on level − log N that are not sources or sinks, but are erased. Then
if (2 + ε)γ < (2β − 3d/2 − 1)α, then f ≤ 2+ε

2β−3d/2−1K.

Proof. First, suppose that the total number of blocked nodes in the first part is
at most αN . Then the f blocked nodes must have at least (2β − 3d/2)f neighbors
that are either sources, sinks, blocked, reserved, or erased, since each blocked node
has at most 3d/2 neighbors that are working. Since there are a total of at most K
sources and reserved nodes in the first part, at most K sinks, and at most εK nodes
on level − log N that are erased, but are not sources or sinks, we have

f + 2K + εK ≥ (2β − 3d/2)f,
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which implies that f ≤ 2+ε
2β−3d/2−1K.

Otherwise, suppose that there are more than αN blocked nodes in the first part.
Let us rank the nodes according to the levels that they appear on (breaking ties within
a level arbitrarily), with the nodes on level log N−1 having highest rank, and those on
level −2 log N the lowest. Since the αN blocked nodes with highest rank must have at
least (2β−3d/2)αN neighbors that are sources, sinks, blocked, reserved, or erased, we
have αN +2K +εK ≥ (2β−3d/2)αN , a contradiction for (2+ε)γ < (2β−3d/2−1)α.

An identical process is applied to the fourth part, with blocked nodes propagating
from level log N to level 2 log N , and a lemma analogous to Lemma 5.3 can be proven,
showing that there are at most ((2+ ε)/(2β− 3d/2− 1))K blocked nodes in this part.

Because each node in the first part may be reserved by one source in each of the
second, third, and fourth parts, it may not be possible for all the sources to establish
their paths. If several sources wish to begin their paths at the same node, then one
is locally and arbitrarily selected to do so, and the others give up. Since at most four
paths start at any node in the first section, at least K/4 of the sources are able to
begin their paths. Each source then sends a message to the corresponding sink. A
message first routes across the row of its source to level − log N (recall that in every
merger there is an edge from each input to the output in the same row), then uses
the multibutterfly store-and-forward packet routing algorithm from [17, 37] to route
to the row of its sink on level 0, then routes across that row in the third and fourth
parts until it either reaches its sinks or reaches the cross edge to its sink. The entire
routing can be performed in O(log N) word steps. Note that we can’t use the circuit-
switching algorithm of Section 4.3 here because there may be as many as log N sinks
in a single row. The K/4 or more sinks that receive messages then each pick one of
these messages (there are at most 4), and send an acknowledgement to the source of
that message. At least K/16 sources receive acknowledgements, and these sources are
the ones that will establish paths. A source that doesn’t receive an acknowledgement
gives up on routing its path.

Some of the nodes at which the remaining sources and sinks wish to begin or end
their paths may have been declared blocked. None of these nodes will be used. By
making β (and hence d) large, however, the number of blocked nodes in the first and
fourth parts, ((2 + ε)/(2β − 3d/2− 1))K, can be made small relative to K/16. Thus,
we are left with Θ(K) source-sink pairs.

The paths from the sources and the paths from the sinks are routed independently
through the first two and last two parts, respectively. The path from a source ai then
meets the path from the corresponding sink bi at a rendezvous point ri on level 0.

The rendezvous points are selected as follows. First, the sources route their paths
to distinct nodes on level − log N in O(log N) time using the algorithm from Section 4
on the working switches. Then the sources are numbered according to the order in
which they appear on that level using a parallel prefix computation. A parallel prefix
computation can be performed in O(log N) word (or even bit) steps on an N -leaf
complete binary tree, and hence also on a butterfly. For a proof, see [16, Section 1.2].
(Note that although we are treating some of the nodes as if they were faulty, there are
no actual faults in the network, so non-working nodes can assist in performing prefix
computations.) The rendezvous points are also numbered according to the order in
which they appear on level 0 using another prefix computation.

Next, using a packing operation, a packet representing the ith rendezvous point
ri is routed from ri to the node in the ith row of level 0. At the same time, a packet
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representing the ith source ai is routed from level − log N , where ai’s path has reached
so far, to the ith node of level 0. These two routings can be implemented in O(log N)
word (or bit) steps on a butterfly [16, Section 3.4.3].

Once the packets for ai and ri are paired up, a packet is sent back to ai’s node
on level − log N informing it of the position of ri on level 0. (This is an unpacking
operation.) The path for source ai is then extended from level − log N to level 0 using
the algorithm from Section 4.3 on the working switches. Then a packet containing
the location of ri is sent from ai’s node on level − log N to the node on level 0 that
is in the same row that bi lies on in the fourth part. This routing can be performed
in O(log N) word steps using the store-and-forward multibutterfly routing algorithm
of [17]. (We can’t use the circuit switching algorithm because there may be as many
as log N sinks in the same row.)

In O(log N) time, the packet works it way across the row from level 0 to bi, which
lies somewhere between levels log N and 2 log N . (Note that although there may be
as many as log N b′is in the same row, the total time is still at most O(log N).)

Finally, a path is extended from bi to any working node on level log N and from
there to ri using the algorithm of Section 4.3 on the working switches.

5.3.3. Establishing edge-disjoint paths. It is easier to establish edge-disjoint
paths in R than node-disjoint paths. In particular, it is not necessary to apply the
technique of [17] for tolerating faults in multibutterflies to the second and third parts
of the network as we did in order to establish the node-disjoint paths. The main
thing that must be done is to modify the algorithm from Section 4 for locking down
node-disjoint paths in a multibutterfly so that it allows a constant number of edge-
disjoint paths to pass through each node. Let r be the maximum number of paths that
may pass through a node. In order to replace the unshared neighbors protocol with
one that allows r paths to pass through a node, we define the following r-neighbors
property for splitters. Similar definitions hold for mergers, or for pairs of consecutive
levels like those in the first and fourth parts of R.

Definition 5.4. An M -input splitter is said to have an (α, δ) r-neighbors prop-
erty if in every subset X of k ≤ αM inputs, there are subsets XU and XD of X such
that XU ≥ δk and XD ≥ δk, and every node in XU (XD) has at least r up-output
(down-output) neighbors, each of which has at most r neighbors in X.

The following lemma shows that a splitter with a sufficient expansion property
also has an r-neighbors property.

Lemma 5.5. A splitter with an (α, β) expansion property has an (α, δ) r-neighbors
property where

δ =
r+1

r β − d
r − r + 1

d − r + 1
.

Proof. The proof is similar to the proof of Lemma 4.2. Let X be a set of k ≤ αM
inputs in an M -input splitter, let nr denote the number of up (down) outputs that
have at least one, but at most r, neighbors in X, and let n+ denote the number of
up (down) outputs that have more than r neighbors in X. Then nr + n+ ≥ βk, and
nr + (r + 1)n+ ≤ dk. Solving for nr yields

nr ≥
(

r + 1

r
β − d

r

)

k.
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Let δk denote the number of nodes in X with at least r up-output (down-output)
neighbors, each of which has at most r neighbors in X. Then δkd+(1−δ)k(r−1) ≥ nr,
which implies that

δ ≥
r+1

r β − d
r − r + 1

d − r + 1
.

The algorithm for routing edge-disjoint paths in a multibutterfly is nearly identical
to the algorithm described in Section 4 for routing node-disjoint paths. First, each
node that has at least one path to extend in either the up (or down) direction sends
a proposal to each of his output neighbors in the up (down) direction. Then, every
output node that receives at most r proposals sends back acceptances to all of those
proposals. (Notice that this step limits the number of paths passing through a node
to at most r.) Finally, each node that receives enough acceptances to extend all of its
paths does so. In a network with an (α, δ) r-neighbors property, a constant fraction
of the paths on each level are extended at each step. Thus, the time to extend a set
of N paths from one level to the next is O(log N), and the total time to route a set of
N paths from the inputs to the outputs is O(log2 N). As in Section 4, this time can
be improved to O(log N) using place-holders and cancellation signals.

Note that for r ≈
√

d, only β ≈
√

d expansion is required in order to have an
(α, δ) r-unshared neighbors property, where α > 0 and δ > 0. Since an algorithm for
finding edge-disjoint paths can be converted to an algorithm for finding node-disjoint
paths by replacing each degree-2d node with a 2d × 2d complete bipartite graph, the
algorithm of this section reduces the expansion required for finding either edge- or
node-disjoint paths from β > d/2 to β ≈

√
d. The difference is important because

explicit constructions of expander graphs are known for β >
√

d [13], but not for
β > d/2. The algorithms for tolerating faults in [17] and the algorithms for routing
paths in a nonblocking fashion in this paper still seem to require β > d/2. Recently,
however, Pippenger has shown how to perform all of these tasks using only expansion
β > 1 [31].

In order to use this routing algorithm in network R, we must make one mod-
ification. The paths from the sources do not necessarily start on level −2 log N of
the first part. In fact as many as four paths may start at any node in the first part.
(Recall that sources in the second, third, and fourth parts start their paths in the
first part.) Thus, the routing algorithm must be modified so that a node in the first
part sends acceptances to the nodes at the previous level only if it receives at most
r − 4 proposals. The impact on the performance of the algorithm will be negligible if
r is large relative to 4.
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