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In this paper we examine the problem of sending an n-bit data item from a
client to a server across an asymmetric communication channel. We demon-
strate that there are scenarios in which a high-speed link from the server to
the client can be used to greatly reduce the number of bits sent from the client
to the server across a slower link. In particular, we assume that the data item
is drawn from a probability distribution D that is known to the server but not
to the client. We present several protocols in which the expected number of
bits transmitted by the server and client are O(n) and O(H(D)+1), respec-
tively, where H(D) is the binary entropy of D (and can range from 0 to »).
These protocols are within a small constant factor of optimal in terms of the
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number of bits sent by the client. The expected number of rounds of com-
munication between the server and client in the simplest of our protocols is
O(H(D)). We also give a protocol for which the expected number of rounds
is only O(1), but which requires more computational effort on the part of the
server. A third technique provides a tradeoff between the computational
effort and the number of rounds. These protocols are complemented by
several lower bounds and impossibility results. We prove that all of our
protocols are existentially optimal in terms of the number of bits sent by the
server, i.e., there are distributions for which the total number of bits exchanged
has to be at least n. In addition, we show that there is no protocol that is
optimal for every distribution (as opposed to just existentially optimal) in
terms of bits sent by the server. We demonstrate this by proving that it is
undecidable to compute (even approximately), for an arbitrary distribution
D, the expected number of bits that must be exchanged by the server and
client on the distribution D.  © 2001 Elsevier Science (USA)

1. INTRODUCTION

In the past few years a number of commercial networking technologies with
asymmetric bandwidth capabilities have been introduced. In some cities, for
example, telephone companies have started trials of asymmetric digital subscriber
lines (ADSLs). In Pittsburgh, this technology provides a download speed of
1.5 mbs, and an upload speed of 64 kbs. In the DirecPC network provided by
Hughes, a satellite beams data down to the user’s home at 400 kbs, and the user
sends data back using an ordinary phone line (at 33.6 kbs). Internet access provided
through cable-television networks is also typically asymmetric. In the Boston area,
for example, MediaOne is offering service with a download rate of 1.5 mbs and an
upload rate of 300 kbs. Using ordinary telephone lines, 56 k modems can download
at up to 56 kbs, but can upload data at a maximum rate of 33.6 kbs.

Asymmetric communication scenarios also arise in situations where the band-
width provided by the underlying communication channel is not asymmetric. For
example, a mobile node connected to a base station via a wireless channel may
wish to limit its transmissions in order to conserve power, while the base station
may have significantly less reason to limit its power consumption. The issues and
solutions in this paper apply to this and other types of asymmetry, but to keep our
terminology consistent, we shall refer to the high-speed direction of sending and the
low-speed direction of sending.

This paper aims to address the limitations of asymmetric network connections by
examining the following question. Is it possible to use a high-speed downlink to
improve the performance of a low-speed uplink? Perhaps surprisingly, in several
natural situations the answer is yes. To be more precise, suppose that a client at the
end of the downlink has an n-bit string x to send to a server at the end of the
uplink. We show that in certain circumstances, the server can use the high-speed
downlink to reduce the expected number of bits sent by the client across the
low-speed uplink to significantly less than ».
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1.1. Reducing the Number of Bits Sent by the Client

Classical coding techniques for reducing the expected number of bits sent across
a communication channel include source codes such as Shannon codes [24] and
static Huffman codes [6]. These codes can be used when x, the string to be sent, is
drawn randomly from a probability distribution D that is known to both the client
and the server. Using such a code, the expected number of bits that must be trans-
mitted from the client to the server is at most H(D)+ 1, where H(D) is the (binary)
entropy of the distribution D, a quantity that varies between 0 and #n, given by the
equation

1
H(D) = xe{zo;u" D(x) log, m,

where x is an n-bit string and D(x) is the probability of x being drawn from the
distribution D.

A drawback of source codes is that they can only make use of information about
D known to both the client and the server. This drawback is particularly relevant
when using source codes for asymmetric scenarios, since asymmetry can result in
the server having more information about D than the client for a variety of reasons.
In some circumstances the (limited bandwidth) client may lack the resources to
locally store or compute the distribution D. This is an important consideration
since the storage required just to represent a distribution on x-bit strings can be
exponential in n. A small mobile host communicating with a base station, for
example, may be more limited than the base station in terms of computational
resources that can be allocated to computing or storing information about D.

It is also possible that the client is unable to determine, in an information-
theoretic sense, the same information about the distribution that the server knows.
This would occur, for example, when the server is collecting data items from a large
number of clients, and these data items are correlated in some manner. After
the server has collected a sample of the data items, it is able to approximate the
distribution D of future data items to be sent, (see [7] for a good survey on
techniques for this) but the clients do not gain any such information.

This paper addresses the situation where the server has information about the
string being sent that is not known to the client. We study the following problem: a
string x must be transmitted from the client to the server, where x is drawn from an
arbitrary distribution D that is known to the server, but not the client. We assume
that the only information known to the client about D is x, the current string to be
sent. We shall demonstrate that in such a scenario, the presence of a high-speed
downlink allows the client to transmit the string x to the server by sending an
expected number of bits that is only a small constant factor more than H(D). This
is close to optimal, even if we compare the performance of this pessimistic scenario
to the case where the client has full knowledge of the distribution D.

The protocols we introduce demonstrate that the high-speed downlink can be
used to improve the performance of the low-speed uplink. Also, in all cases the
memory and computational requirements of the client are minimal. Thus, our
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protocols can be used to reduce the computational resource requirements of the
client: they enable the client to do away with locally computing and storing any
information about the distribution D without a large increase in the number of bits
that the client must send.

1.2. The Model

We study a model based on Yao’s two-party communication complexity model
[27]. To enable the client to transmit its n-bit string to the server, the client and the
server communicate bits to each other, as specified by some fixed protocol #. The
protocol £ specifies at each step whether the client or the server sends the next bit,
as well as the value of that bit. A bit sent by the client can only depend on the bits
sent thus far by the server and the information known to the client at the start of
the protocol. The analogous requirement holds for the server. Thus, the model is
asynchronous: the client and server are not able to obtain information based on
when the bits arrive. When the protocol terminates, the server must have enough
information to determine the »-bit string x with certainty.

A round of the protocol is defined as a maximal sequence of consecutive bits sent
by the server (without any bits sent in between by the client), followed by a
maximal sequence of consecutive bits sent by the client. Minimizing the number of
rounds required by a protocol is an important consideration in scenarios where
there is some fixed overhead for each round, such as message latency or bits sent
during handshaking protocols.

We also consider how expensive a protocol is in terms of local computation. All
protocols considered in this paper are fairly minimal in the computational demands
they place on the client, and thus this aspect of the protocols will not be addressed
by the model. A more interesting issue is the computational demands placed on the
server. We model server computation by assuming that the server has access to the
distribution D via a black box. The server is allowed to query the black box for any
k-bit string s, for any 0 < k < n. The black box returns the cumulative probability of
n-bit strings that start with the k-bit string s. The local computation of the server in
a given protocol is defined to be the number of such black box queries performed
by the protocol.

The actual computational effort required of the server in a given protocol is
dependent on how the distribution D is presented to the server, and thus this black
box model is not always going to give an accurate prediction of the computational
effort of a protocol. However, the black box model has the advantage of simplicity.
Furthermore, the accuracy of the computational effort performance measure does
not affect the accuracy of any of the other performance measures. We next describe
two scenarios where this black box model gives an adequate approximation to the
computational requirements of obtaining information about the distribution.

In the first example, either a description of the distribution or a set of samples
that defines the distribution is stored as an ordered tree. By storing cumulative
information at internal nodes of the tree, black box queries can be answered by a
single root to leaf traversal of the tree. In the second example, D(x) is dependent
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only on the Hamming distance between x and some fixed string x'. This kind of
distribution is useful when the server has access to a previous version of x, such as a
previously transmitted video image or an outdated file. In this case, the cumulative
probability of strings with a given prefix s is a function of only the length of s and
how many bits in s match x'. For both examples, black box queries can be
answered efficiently, and thus the black box provides an abstraction of the kind of
information about D that is available to the server. Note that in the second example
the server could specify any subset of the bits of x (instead of only bits in some
prefix of x). All results in this paper also extend to a black box model where
arbitrary subsets of the bits can be specified.

In general, we characterize a protocol in terms of four parameters, [a, ¢, A, p],
where ¢ is the expected number of bits sent by the server, ¢ is the expected number
of bits sent by the client, 1 is the expected number of black box queries performed
by the server, and p is the expected number of rounds.

1.3. Our Results

Shannon’s theorem [24] implies a lower bound of H(D) on the expected number
of bits sent by the client. If the server starts by transmitting a description of the
entire distribution to the client, then by using a static Huffman coding scheme [6]
the string can be transferred in one round with at most H(D)+ 1 expected bits sent
by the client. However, such a scheme can be completely impractical since the
number of bits the server sends to the client can be exponential in 7.

We show that we can in fact do much better. We begin by describing a
[3n, 1.71H(D)+1, 3n, 1.71H(D) + 1]-protocol. We call this protocol Computation-
efficient because the expected number of black-box queries performed by the server
is asymptotically optimal. This protocol is useful even in scenarios where the local
computation of the server is not accurately represented by the black box model: the
computation required of the client is simple and efficient, our analysis provides very
small constants, and most notably, the expected number of bits sent by the client is
within a factor of 1.71 of the lower bound.

The drawback of the protocol Computation-efficient is that the expected number
of rounds required is linear in the entropy of the distribution. Thus, we present a
second protocol, based on a completely different technique, that uses an expected
constant number of rounds. In particular, we present an [O(n), O(H(D)+1),
2", O(1)]-protocol, which we call Round-efficient. We also present a third technique,
which we call Computation-Rounds-Tradeoff(c). This protocol achieves a tradeoff
between the expected number of black box queries and the expected number of
rounds required. For any positive integer ¢ between 1 and n, Computation-Rounds-
Tradeoff(c) provides an [O(n), O(H(D) + 1), O("X), O(min(%, H(D)+ 1))]-protocol.

We also provide several interesting lower bounds. We first address the issue of
how many bits must be sent by the server. We demonstrate a lower bound of » on
the total number of bits that must be exchanged. This implies that in any protocol
where the client sends fewer than 7 bits, the server must send at least 5 bits. Thus,
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the expected number of bits that the server sends in our protocols is within a
constant factor of optimal for protocols that are efficient in terms of the expected
number of bits sent by the client. We first show that for any 0 <4 < n, there is a
class of distributions &, with entropy 4, such that when a distribution D, is chosen
uniformly at random from 2, the expected number of bits that must be exchanged
is at least n. This result follows from techniques developed in [20].

There are, on the other hand, specific distributions D' where the optimum
expected number of bits exchanged is o(n), but for which our protocols require
Q(n) bits to be exchanged. Thus, a natural question to ask is: does there exist a
protocol where the client and the server exchange close to the optimal number of
bits for every distribution? We demonstrate that the answer to this question is no.
This follows from a proof, using Kolmogorov complexity, that it is undecidable to
compute, for an arbitrary distribution D, even what the value of the optimal
number of bits is. Also, the problem remains undecidable even if only an approxi-
mate solution is required. For example, computing a value that is guaranteed to be
between the optimal number of bits and Ackermann’s function applied to the
optimum number of bits is undecidable. This implies that although our protocols
do not use the optimal number of bits for every distribution, they do provide the
best possible general guarantees (up to constant factors).

We also address the issue of how many rounds of communication are required. A
natural goal would be to derive a single-round protocol: a protocol which starts
with the server sending the client some number of bits, after which the client
responds with some number of bits, after which the server is guaranteed to know
the string x. We demonstrate that no efficient single-round protocol can exist. Spe-
cifically, for any 0 < 4 < n, and any single-round protocol P%, there is a distribution
D, with H(D,) = h, such that if the expected number of bits sent by the client on D,
is at most z, then the server must always send an exponential number of bits:
Q(n2").

We also show that the expected number of black-box queries performed by the
server in protocol Computation-efficient is asymptotically optimal. In particular, we
show that for any entropy 4, there is a distribution D with entropy H(D) = h for
which the expectation of the sum of the number of bits sent by the client plus the
number of black-box queries is at least 7.

1.4. Previous and Related Work

The question of sending a string x from a client to a server, where the server has
some information about x unknown to the client, has a long history in the area
known as interactive communication [ 14, 17-22, 257. Here, it is typically assumed
that a pair (x, y) is drawn from a joint probability distribution D, over pairs (x, y),
where D, is known to both the client and the server in advance. The string x is
given to the client, the string y is given to the server, and the task is to communicate
the n-bit string x to the server. However, all of this work studies the case where the
communication channel is symmetric. Thus, there is no regard to which direction
bits are sent: the only objective is to minimize the total number of bits that are sent.
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Furthermore, the techniques used to derive protocols in the area of interactive
communication typically restrict the types of distributions that are allowed. This is
not surprising given the lower bound of n» on the number of bits that must be
exchanged in the worst case. In the symmetric scenario, if n bits must be exchanged,
the most efficient technique is to send the string x directly to the server. In the
asymmetric scenario we consider, on the other hand, we have the advantage that we
can send those z bits in the other (faster) direction, and thus we do not need to make
any restrictions on the distribution D. As an example of the restrictions considered
in the symmetric case, the protocols provided in [20] assume that the pair (x, y) is
uniformly distributed over the set of pairs with nonzero probability. In our framework,
this would require that in the distribution D, all inputs x that are possible occur with
the same probability. Many of the other results in this area focus on the worst-case
number of bits for any possible input. In this case, there is also no reason to take into
account the actual probabilities of strings, further than differentiating strings that
occur with probability 0 and strings that occur with probability greater than 0.

Interactive communication is part of the large body of work on two-party com-
munication complexity. A good reference for this area is the book by Kushilevitz
and Nisan [10]. Most of this work examines symmetric communication channels,
and analyzes the total number of bits transmitted by the two parties, and sometimes
the number of rounds. There is relatively little work on asymmetric communication
complexity.

One notable exception is a body of work connecting asymmetric communication
complexity to lower bounds on the time to perform operations on various data
structures [15, 16]. The paper [16] is most closely related to this one. However,
instead of the problem of sending information from the client to the server, they
consider the problem of computing a {0, 1}-function, where a portion of the input
appears at the client and a portion of the input appears at the server. They present
a number of general techniques for proving tradeoffs between the number of bits
sent by the server and the number of bits sent by the client, and apply these tech-
niques to several fundamental problems, such as set membership, set disjointness,
and greater than. As an example, in the set membership problem, the server holds a
set S of strings, and the client holds a single string x. The value of the function is a
1 if x belongs to S and a 0 otherwise.

One way to view the issues addressed in this paper is as a combination of the
work on interactive communication and the work on asymmetric communication
complexity. The problem we study is similar to that studied in the interactive
communication literature, and the model we use is similar to that used in the
asymmetric communication complexity model.

Subsequent to the appearance of a preliminary version of this paper in [1], there
has been further work on the problem considered here. Eduardo Sany Laber has
shown [11] that the expected number of bits used by the client in the protocol
Computation-efficient is even better than we show in this paper. In particular, for
any distribution D, the expected number of bits used by the client is at most
1.08 H(D) + 1. Protocols that further improve on the expected number of bits sent
by the client (at the cost of more bits sent by the server) appear in [26] and [23].
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There have also been recent experimental studies of asymmetric bandwidth [2, 8, 9].
These studies have shown that in practice, even if the flow of data is entirely down-
stream, the overall rate at which data can be transferred in asymmetric
networks may be limited by the upload speed. The explanation for this is that in the
TCP protocol, acknowledgments must be sent upstream for all data that travels
downstream, and the flow of data will stall if the acknowledgments cannot keep up.

2. OUR PROTOCOLS

In this section we provide three protocols. All three are within a constant factor
of optimal in terms of the number of bits sent by the client, as well as the number of
bits sent by the server. The first is also asymptotically optimal in terms of the
number of black box queries required, the second is asymptotically optimal in terms
of the expected number of rounds required, and the third allows us to achieve a
tradeoff between black box queries and rounds. In many cases, the server sends the
client a message of length k, where the client does not know the value of k. In
scenarios where k must be explicitly specified, we use self-delimiting strings [12],
which prepend the length of a message to the message. A message of length k is sent
using k+ O(log k) bits. The effect of these additional bits on the analysis is
negligible, and is ignored.

2.1. Protocol Computation-Efficient

In this protocol, the server sends the client queries consisting of candidate
prefixes for the client’s string, and the client responds positively or negatively to these
queries. The server keeps track of the responses, and the string r held by the server
in this protocol represents the prefix of x that the server has already determined.
Positive responses allow the server to extend r, and negative responses allow the
server to remove strings from consideration. Future queries to the client depend on
the client’s previous responses. In order to do this efficiently, the results of black
box queries are adjusted from the a priori probability of a string occurring to reflect
the information learned from the client thus far. Given a set of excluded strings X
and p,, the result of a black box query Q, let Py be the sum of the probabilities of
the strings in X that are consistent with Q. We call the value pf__pix
adjusted probability for Q. This value reflects the fact that the actual string cannot
be in the set X. Note that we shall make normal black box queries, and then adjust
the answers given by these black box queries to reflect the exclusion adjusted
probabilities.

The protocol is defined as follows:

Let r be the empty string. Repeat the following until = x:

the exclusion

e Conditioning on all information learned from the client thus far, the server
finds a prefix of the unknown bits as follows:
— Let s be the empty string.

— The server repeats the following until it has a prefix s that occurs with
probability between i and %, inclusive, or that extends to the end of the string.
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* Query the black box for rs0.

* If the exclusion adjusted probability of the value returned by the black
box is > %, then a 0 is appended to the end of s.

x If the exclusion adjusted probability of the value returned by the black
box is <j, then a 1 is appended to s.

* If the exclusion adjusted probability of the value returned by the black
box is between 1 and 2, then a 0 is appended to s.

¢ The server sends s to the client.

e If s matches x, the client responds with a “y”, after which the server sets
F=rs.

CC_. 9o

 If s differs from x, the client responds with an “n”, after which the server
updates the exclusion adjusted probabilities accordingly.

Note that the prefix sent always either extends to the end of the string, or occurs
with probability between i and %, since when a prefix that occurs with probability
p>13 is extended by one bit, the prefix with the more likely of the two settings for
that bit occurs with probability at least 5. Also note that the actions performed by
both parties are deterministic. The only source of randomness is the value of x
given to the client.

THEOREM 1. For any distribution D, protocol Computation-efficient is a [3n,
1.71H(D)+1, 3n, 1.71H(D) + 1]-protocol.

Proof. We first show that the expected number of bits sent by the client is
O(H(D)+1). For any input distribution D, we model the bits sent by the client as a
tree, where each internal node of the tree corresponds to a query asked by the
server, and each leaf of the tree represents a string held by the client. Each left
branch of the tree represents a “y” response by the client and each right branch of
the tree represents a response of “n”. Upon reaching a leaf, the server and client
have agreed on some string x;, and there is exactly one leaf for every distinct string x;.
Thus, in this tree, the probability of the protocol reaching any leaf x; is exactly D(x;).

The choice of prefix that the server sends to the client implies that at every internal
node of the tree, the right branch occurs with probability <3, and the left
branch either occurs with probability <3 or represents an affirmative answer to a
prefix that extends to the end of the string (which is a leaf of the tree). Thus, along
any path from the root to a leaf, there is at most one branch that occurs with
probability >3. Therefore, the depth of leaf x; is at most 1+log,/; D(x;). This
implies that the expected number of bits sent by the client is at most
Y., D(x;)(1+log,; D(x;)) =1+ H(D)/log(3) ~ 1.71H(D) + 1.

The bound on the expected number of rounds follows from the fact that the
client sends one bit in each round. To see that the expected number of bits sent by
the server is at most 3n, let E; be the a priori expected number of strings sent by the
server to the client that include the ith bit position of the string held by the client.
For every prefix sent by the server, the probability of a successful match is at least 1 .
Therefore, E; <3, and the result follows from the linearity of expectation. The
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bound on the number of black box queries follows from the fact that each bit sent
by the server corresponds to a single black box query. ||

The next protocol uses only a constant expected number of rounds, but at the
cost of a larger number of black box queries.

2.2. Protocol Round-Efficient

For any distribution D, let 7(D) denote the strings in sorted order from most
likely to occur to least likely to occur. Let 7(D) denote a partition of the strings into
sets %;. Set %, contains the first A, strings of T'(D), where 4, is chosen so that 4, >0
and |(X,, cs D(x;))—3| is minimized. In other words, set %, contains as close to
half the probability weight as possible. Set %, contains the next 4, strings, where /4,
is chosen so that %, contains as close to half the remaining probability weight as
possible, and similarly with the remainder of the sets in the partition. Note that the
last set in the partition (denoted %) contains exactly 1 string. Also note that each
set 2 either contains only one string and contains at least ;3 of the remaining
probability weight, or contains between ; and 3 of the remaining probability
weight. The protocol we use proceeds in phases. During phase i, we use hashing to
check if the string is in the set Z;.

The protocol uses %,, the family of pairwise independent hash functions where
for each F € &%,, we have F(x) = ax+ b, where arithmetic is with respect to the finite
field GF[2"] [3]. Here, a and b are values chosen uniformly and independently at
random from GF[2"], and thus the total number of bits required to describe any
F e %, is 2n. Also, note that with this construction, for any k£ < n, the first k bits of
F(x) also forms a pairwise independent hash function (see for example [13]).

Within our protocol, the client computes the value of F(x), for some F chosen
randomly by the server. Within phase i of the protocol, the client and the server
check to see if x € Z;. This requires that the server know the first [log ;] bits of
F(x). The variable £ in the protocol represents the total number of bits of F(x) seen
so far; if [log A;] > ¢, then the client must send the server more bits of F(x) in order
to perform phase i of the protocol. The protocol proceeds as follows:

* The server queries the black box to find D(x) for all possible strings x, and
uses this information to determine the partition 7(D). To do this, the server sorts
the strings based on D(x).

* The server sends to the client two randomly chosen n-bit coefficients @ and b
for a hash function F € %,.

e leti=1andlet £=0.
* Repeat the following until x, the client’s string, is known by the server.
— The server sends to the client the binary representation of ¢’ =[log 4,7,
where h; = |%;].

— If £/ > ¢, the client sends to the server bits £+ 1 through ¢’ of F(x). Note
that this is sufficient for the server to know the first ¢’ bits of F(x).

— £=max({,¢").
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— The server finds all strings x’ € Z; such that the first ¢ bits of F(x') are
the same as the first £ bits of F(x), and sends the strings to the client.

— If the client sees its string in the list sent by the server, the client sends a
“y”, followed by the index of its string within the list, and the protocol terminates.

[T 1)

* Otherwise, the client sends the server an “n”.

— >If i =r—1, then there is only one possible string remaining, and the
protocol terminates.

* Otherwise i =i+ 1.

THEOREM 2. Protocol Round-efficient is an [O(n), O(H(D)+1),2", O(1)]-
protocol.

Proof. We first bound the expected number of bits sent by the client. We do this
as follows: we introduce a code 7, called the comparison code for the distribution D,
and show that the expected codeword length using 7 is O(H(D)+1). We then show
that the expected number of bits sent by the client is at most a constant factor more
than the expected codeword length of 7. The use of the comparison code in this
proof greatly simplifies the proof of Theorem 3.

We describe the code 7 as a tree. In this tree, every internal node represents a “y”
or “n” response sent by the client in the protocol Round-efficient (the other bits sent
by the client do not effect the code 7). Every left branch represents the transmission
of a “y”, every right branch represents the transmission of an “n”, and every leaf
represents a string. The subtree found by starting at the root, taking 0 <k <r—2
right branches, followed by a single left branch, contains exactly the strings in %, ;.
This portion of the code 7 is identical to the “y” and “n’ bits sent by the client.
Within each subtree, we use any code with the following property: at any internal
node of the tree, either the probability of taking the left branch is between } and 2
(we call such a node a balanced node), or the branch with higher probability is a
leaf of the tree. Examples of such codes are those defined by the bits sent by the
client in protocol Computation-efficient, and Fano codes [4].

Let E(7) be the expected codeword length using the code T on a string x; drawn
from the distribution D. Using an argument similar to the proof of Theorem 1, we
show that E(7) = O(H(D)+1). We first point out that along any path from the
root to a leaf, there can be at most one branch that occurs with probability greater
than 3. We call such a branch a weighty branch. Note that none of the right
branches taken before entering a subtree containing the strings in a set Z; can be
weighty. The first left branch taken (when entering the subtree) may be weighty, but
only if the set %; consists of a single string. In that case, the first left branch is the
only weighty branch on the path to that string. If the first left branch is not
weighty, then there can only be one node on the path from root to leaf that is not
balanced: the last node. Again, there is at most one weighty branch on the path
from root to leaf. Therefore, the depth of leaf x; is at most 1+log,/; D(x;). This
implies that E(7) is at most Y. D(x;)(1+log,; D(x;))=1+H(D)/log()~
1.71H(D) +1.

We next show that E(A), the expected number of bits sent by the client on the
distribution D, is O(E(7)). We first derive a lower bound for E(T) that will be
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useful in proving an upper bound on E(A). We assume that there is more than one
string x; such that D(x;) > 0, since when this is not the case, the number of bits sent
by the client can easily be seen to be O(l). We derive an expression for the
minimum depth of any string in %; in 7. The depth of the string in Z; is at least 1;
this suffices for the case where 4; = 1 (recall that 4, = |X;|). When £, > 1, let x,, be a
minimum-depth leaf in %;, where in case of a tie, x,, is the leaf with lowest proba-
bility. Let ; be the root of the subtree induced by %;. Since there are no leaves at a
smaller depth than Xx,,, all the nodes on the path from r; to x;, with the possible
exception of the last node, are balanced. Either the last node is balanced, or the
branch taken from that node to reach x,, occurs with probability > 2 Thus, every
branch on the path from r; to x,, occurs with probability >

Let g; =3 ca, D(x;), the probability of reaching r;. The length of the path from
r; to x,, is at least log; — D( =max, .4 D(x;) be the maximum probability of
any string that appears in 3&” Smce m; = D(xm), we see that

ED)=Y ¢ max<1, log, ﬂ).
j=1 m;

We next bound the expected number of bits sent by the client. The client sends
three kinds of bits: bits that represent the image of a hash function, bits that repre-
sent a “y” or “n” answer to a list of strings sent by the server, and, after a “y”
answer, bits that represent the index of the correct string within that list. The index
is only sent once. Since we have a pairwise independent hash function, the proba-
bility that any given string hashes to the same value as x is % when Xx is in the set Z;.
By linearity of expectation, the expected number of collisions with the client’s string
is h’ ! and so the expected number of strings in the list is less than 2. Thus, the
total expected number of index bits is 1. When the client finds out that the string it
holds is not in any of the first j—1 sets %] ---%;_;, it may be required to transmit
some additional bits of the hash function image, but never more than [log /;] addi-
tional bits. This occurs with probability s, =1—-3/_ l q;, where we define s, = 1.

Thus, the expected number of bits sent by the client is at most

r—1

E(4)=), s;(logh;+0(1)).

i=

Here, the O(1) term accounts for the index bits, the “y” or “n” bits, as well as the
rounding of log 4;. In order to compare this expression with that derived for E(7),
we use the following facts:

1. g >%
2. Whenh; > 1,5, <9q,,,.
3. Whenh; > 1, b, < 2!

miy1”

Fact 1 follows directly from the fact that in constructing the set %}, we used as
close to half the remaining probability weight as possible. When 4; > 1, we see that
since the strings are partitioned in order from most weight to least weight, ¢; <32,
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Thus, since s;,; =5, —¢;, 5,41 =73 . By Fact 1, ¢;,; >%#, which gives us Fact 2. To
prove Fact 3, note that since every string in the set Z; occurs with greater probabil-
ity than any string in the set %;,,, we have m, | < ,% Since ¢; <3s; combined with
Fact 2 implies that ¢; < 6q;,,, Fact 3 follows.

To apply these Facts to E(A), there are two cases for each term of the summation.
When 4 =1, then Fact 1 implies that s;(logh; +0O(1)) =0(g;). In the case
that A, > 1, Facts 2 and 3 give us that s;(log &+ O(1)) <9¢,,,(log 6,Zij11+0(1)).
Combining both cases, we see that

6.
s;(log h; +0(1)) < 9qi+1<logﬂ+ 0(1)>+0(q,~)-

m; iy

This implies that

E(4) = Z 0<q,. <log%+1>>.

This implies that E(A4) = O(E(7)), which in turn implies that E(4) = O(H(D)+1).

The expected number of rounds required by this protocol is 6, which follows
from the fact that to process each set Z;, only 2 rounds are required. Conditioned
on the fact that no previous set has contained the string held by the client, each set
contains this string with probability at least 1, and thus the expected number of sets
Z; that must be processed is 3.

The server sends three kinds of bits to the client: bits that represent the number
[log &;], bits that describe the hash function to be used, and bits that represent
strings that map to the same image of the hash function as x. For any set #, the
number of bits required to represent [log /;] is loglog 4;+o(loglog h;) <logn+
o(log n). The number of bits required to describe the hash function is 2n. Since we
have a pairwise independent hash function, for each examined set Z;, the expected
number of strings that map to the same image as x;, not counting x; itself, is at
most one. The expected number of sets Z; examined is 3, and thus the expected
total number of bits representing strings other than the string x is 3x#. In addition,
the string x is sent when processing the last set. Thus, the total expected number of
bits sent by the server is 6n+o(n). |

Improvements. We also point out that although the constants provided by this
proof are larger than the constants we provide for protocol Computation-efficient,
in the case that for all x;, D(x;) is an inverse power of 2, protocol Round-efficient
can be made into a [(3+¢) n+o(n), 4H(D)+O(1 +log?), 2", 3]-protocol, for any
0 <& < 1. Furthermore, if a shared source of randomness is allowed (i.e., if the
hash function is chosen beforehand), then this can be further improved to a
[(1+¢) n+o(n), 4H(D)+O(1 +log 1), 2n, 3]-protocol, for any 0 < ¢ < 1.

We first describe how to improve the expected number of server bits to these
values. Without a shared source of randomness, the server still sends the two
randomly chosen n-bit coefficients a and b, i.e., 2n bits. In the last round, the
server sends the #-bit string for a total of 3n bits. The &n bits are used to send strings
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that collide with the client’s string (i.e., have the same hash value.) In the original
protocol, we assumed that there would be one collision per round, i.e., z bits per
round. But by using a slightly larger hash table, we can reduce the expected number
of collisions. In particular, for every bit that we add to the size of the hash value,
the size of the hash table doubles, and the chance of a collision falls in half. Thus,
by adding log 1+2 bits to the size of the hash value, we can get the expected
number of collisions down to & over the entire protocol.

The bound on the expected number of bits sent by the client relies on the fact
that probabilities are inverse powers of two. In this case, each set Z; contains
exactly 3 of the remaining probability weight. This changes the bounds in Facts 1,
2, and 3 as follows:

1. g 2%
2. Whenh; > 1,5, <4q,,,-
3. When h, > 1, h, <241

mit1

Also, there must be a comparison code in which all nodes are perfect ;—3 splits, so

that our lower bound on E(7) becomes

E®) =) g max<1, log, ﬁ)
i=1 m;

f)

Otherwise, the analysis of the expected number of bits sent by the client follows
along the lines of the proof of Theorem 2.

For the bound of 3 on the number of rounds, note first that we can guarantee 4
expected rounds easily, since each set Z; requires 2 rounds to process, and when
each set %; contains exactly 5 of the remaining probability weight, the expected
number of sets examined is 2. This can be improved to 3 by combining the second
round of the process for examining the set Z; with the first round for examining the
set Z;,1-

Furthermore, we can guarantee that the server never sends more than O(n) bits
(instead of just O(n) bits in expectation) without changing the other performance
measures by more than a constant factor. We process the set %; as follows: if
h; =|%|>=n, then we increase the number of hash bits used from [logh,] to
[3 log A4, ]. This increases the total number of client bits by no more than a factor of
3, and ensures that the probability that any string in Z; — x hashes to the same value
as x is at most 5 . After O(log n) sets Z; have been processed, the total probability
of the remaininng possible strings is less than ©, and so in this case the client can
send x in its entirety. Thus, the probability that there is any set %; considered in the
protocol with a string in % — x that hashes to the same value as x is at most .. This
means that if the candidate string sent from the server to the client does not match
x, the total contribution, to the expected number of bits sent by the client, of
sending the entire string x is O(1).

For this technique to ensure that the probability of a string in Z; —x hashing to
the same value as x is no larger than 1/n, the client must send 2(log n) bits to the
server. However, when /; << n, this may require the client to send too many bits.
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Thus, in the case where /; < n, we send the additional bits in the other direction. In
particular, the server, prior to sending a candidate string to the client, hashes it to a
[3 log n]-bit value, and sends the hashed value and the hash function to the client.
The client informs the server if x hashes to the same value, and the server only then
sends the actual candidate string. The probability that x hashes to the same value as
any string in %; is less than %, and so if x does not agree with a candidate string
that has been sent, the client can again send x in its entirety. Since we only need to
process O(log n) sets Z;, the total bits sent by the server for this additional hash
function is o(n). Also, the total number of additional bits sent by the client is one
per round.

Neither of the previous protocols are optimal in terms of both the number of
black box queries required and the number of rounds required. We next show that
we can smoothly trade off between the number of black box queries and the
number of rounds.

2.3. Protocol Computation-Rounds-Tradeoff(c)

For c a positive integer between 1 and », if H(D) <%, use protocol Computation-
efficient. Otherwise repeat the following until the server knows the entire string:

* Conditioning on all information known thus far, the server finds a prefix of
the unknown bits that either occurs with probability between 3 and %, or, if that is
not possible, extends to the end of the string.

e If the length of this prefix is < ¢ and the prefix does not extend to the end of
the string, then protocol Round-efficient is used to determine the next ¢ unknown
bits, where probabilities are conditioned on all information transmitted by the client
so far.

e Otherwise, the server sends the prefix to the client.

— If the prefix matches the client’s string exactly, the client responds with a

“y”’; otherwise the client responds with an “n”.
THEOREM 3. Protocol Computation-Rounds-Tradeoff(c) is an [O(n), O((H(D)),
0("%), O(min(H(D)+ 1, %)) ]-protocol.

Proof. We first show that the expected number of bits sent by the client is
O(H(D)+1). The bits sent by the client define a tree v. We compare the expected
codeword length of v to the expected codeword length of a related code ¥ for the
distribution D. In order to define v, we first need to define some notation. For a
given distribution D, let k,, ..., k, be some canonical ordering of all possible calls to
Round-efficient over all possible executions of the protocol when the server has
distribution D. In k;, there is some distribution D, on the ¢ bits to be determined,
where D, depends on D, and on what information about the string held by the
client has been determined by the server prior to the call k;. Let 7; be the subset of
the nodes of v that can be reached during call k; on some string held by the client.
Note that the 7,’s are disjoint.
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Let 7, be the comparison code (as defined in the proof of Theorem 2) for the
distribution D;. The code ¥ is produced by starting with the code v, and replacing each
set of nodes 7; with the comparison code 7;. The nodes of v that are descendents of
the leaf of 7, representing the c-bit string x; become descendents of the leaf in 7,
that also represents x;. We saw in the proof of Theorem 2 that the expected height
of any tree 7, is at most a constant factor larger than that of the corresponding tree
7;, and thus the expected codeword length of the code v is at most a constant factor
larger than the expected codeword length of v.

We next show that the expected number of bits used in the code v is
O(H(D)+1). In the proof of Theorem 1, we saw that if there was at most one
unbalanced node on the path from the root to any leaf in the tree representing a
code, then the expected codeword length of that code is O(H(D)+1). The proof
here is complicated by the fact that a path may pass through one unbalanced node
for each set of nodes 7, that it passes through.

However, we only make a call to Round-efficient if we have found a prefix of the
¢ bits in question that occurs with probability at most 3. This implies that given
that we enter 7;, the maximum likelihood leaf of 7; occurs with probability <3.
This means that for all i, the root node of 7; is balanced. This in turn implies that
on any path of length / from the root of ¥ to a leaf of 7, the only way to have two
consecutive unbalanced nodes is if the second node corresponds to a prefix of the
unknown bits that occurs with probability greater than 2 and extends to the end of
the string. However, the higher probability branch of such a node must be a leaf.
Thus, for a path of length /, the number of unbalanced nodes is at most [§ ]+ 1. The
number of balanced nodes on any path from the root to a leaf x; is at most
log,/; D(x;), and thus the length of the path to x; is O(log ﬁ+ 1). It follows that
the expected number of bits used in the code v is O(H(D)+1).

To see that the expected number of bits sent by the server is O(n), it is easy to
bound the expected number of bits sent by calls to Round-efficient, and by the
remainder of the protocol separately, using the techniques developed in the proofs
of Theorems 2 and 1 respectively. Specifically, the expected number of bits trans-
mitted by the server when using Computation-efficient is O(1) for each bit of the
string held by the client, for a total of O(n). Also, for each use of Round-efficient,
the expected number of bits sent by the server is O(c), and there can be at most 2
uses of this protocol.

The bound on the number of black box queries follows from the fact that the
expected number of black box queries used to determine prefixes of the string is at
most O(n), and the expected number of black box queries used for each of at most
" calls to Round-efficient is at most 2¢. Since "X > n, the number of black box
queries is 0("72B).

To bound the number of rounds required, note that this number can never be
larger than the number of bits sent by the client, and hence the O(H (D)) term. The
total expected number of rounds required for all calls to Round- efficient is at most
O(n/c). Since each of the prefixes either has length at least ¢ or extends to the end
of the string, and each one is a success with probability at least j, the expected
number of prefixes sent is also at most O(n/c). Note that the expected number of
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prefixes extending to the end of the string is O(1), since each one is a success with
probability >5. |

3. LOWER BOUNDS ON THE NUMBER OF BITS SENT

Shannon’s Theorem directly gives us a lower bound on the expected number of
bits sent by the client. Note that Shannon’s Theorem typically assumes that (a)
both the client and the server know D, and (b) the communication is only one-way
(from the client to the server). However, if the client knows D in advance, then the
server has no information that is not known to the client, and so the channel from
the server to the client never needs to be used. Thus, Shannon’s Theorem still
applies if the client knows D, but communication is two-way. If the client does not
know D at the start of the protocol, then the expected number bits sent by the client
cannot be less than the expected number of bits sent when the client does know D,
and thus Shannon’s Theorem still holds in our scenario. This gives us the following:

THEOREM 4 (SHANNON [24]). For any distribution D, the expected number of
bits sent by the client is at least H(D).

For all our protocols the expected number of bits sent by the client is O(H (D)),
and thus Theorem 4 implies that our protocols are optimal in terms of this measure.
Shannon’s lower bound holds even if both the client and the server know the
distribution. In our scenario, only the server knows the distribution, and this can
only increase the number of bits required. In the lower bounds proved from this
point forward, it will be crucial that the client does not know the distribution.

We next prove a lower bound on the number of bits that must be sent by the
server. To do this, we show that when the distribution is chosen from a broad class
of distributions, the expected total number of bits that must be sent is at least n.
This demonstrates that all of our algorithms are existentially optimal, in terms
of the number of bits sent by the server, for any protocol where the client sends
<3 bits.

DErFINITION 1. A distribution D over strings {0, 1}” is onto, if for any string
x; € {0, 1}", D(x;) > 0. A set of distributions & is onto if every distribution D € & is
onto.

DErFINITION 2. A set of distributions & is balanced if, when D is chosen
uniformly from 2, and then x is chosen using the distribution D, the a priori
distribution on x is uniform.

THEOREM 5. For any protocol P, if a distribution D is chosen uniformly at random
from any onto and balanced set of distributions, the expected total number of bits
exchanged by the client and the server using P is at least n.

Proof. The proof follows from the following theorem:
THEOREM 6 (ORLITSKY [20]). For any protocol P, if the distribution D on the

string x is chosen randomly from any set of distributions 9, where for every D € 9,
the set {xs.t. D(x) >0} is the same, then the total number of bits that must be
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exchanged for the client to communicate x to the server using P is the entropy of the
distribution on x prior to the choice of the distribution D. |

Note that for any 4, we can construct a balanced and onto set of distributions &,
such that every D € 9, has entropy exactly 4. An example of such a set contains 2"
distributions on n-bit strings, where in the ith distribution, the string with the n-bit
binary representation of i has probability p occurring, and the remainder of the
strings are distributed uniformly. By setting p appropriately, such a distribution has
entropy A, for any 4, 0 < A < n. This gives us the following.

CoROLLARY 1. For any protocol P and entropy h, 0 < h < n, there is a distribution
with entropy h such that the expected number of bits that must be exchanged between
the client and the server is at least n.

3.1. Minimizing the Number of Bits Sent

Theorem 5 shows that the protocols we have presented are existentially optimal.
That is, for many natural sets of distributions given to the server, the protocols are in
fact optimal. The whole picture, on the other hand, is more involved. Distributions
do exist where the optimal number of bits exchanged between the client and the
server is actually much smaller than n. For example, in any distribution where only
two strings are possible, it is sufficient for the server to send a log n-bit description
of a bit position where the strings differ, and the client to send the value of that
bit.> Thus, none of the protocols we have presented are guaranteed to use the
optimal total number of bits, or even within a constant factor of the optimal
number of bits, on these distributions.

A natural question to ask is: does there exist a protocol that uses the optimal
number of bits on every distribution? We next show that this is not possible. In fact,
we show that any function that provides even a non-trivial approximation to the
optimal number of bits for every distribution D is not even recursive! Thus,
although our protocols are guaranteed to be optimal only for broad classes of
distributions and not for all distributions, our protocols provide the best type
of general guarantee possible.

As a means of comparison to the optimal protocol, we use the following type of
protocol: based on the distribution D, the server sends to the client a description
of a Turing machine M (D). The client simulates running this Turing machine with the
input x (the client’s string), and when the Turing machine halts, the client responds
to the server with the string of bits remaining on the tape. We require that M (D)
always halts and that at the end of the protocol the server always knows the string
x. We define OPT,,..(D) as the minimum, over all possible Turing machines for
M (D), of the total expected number of bits exchanged between the client and the
server by such a protocol. We use the same fixed format for describing M (D) for all
distributions.

3 Note that this example motivates the onto requirement in Theorem 5. The set of distributions must
also be balanced, since otherwise the client and server could agree on a static Huffman encoding based
on the a priori distribution.
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Note that for every distribution D, OPT,, (D) <n+ O(1), since the server can
always send the client a Turing machine that halts immediately, causing the client
to send its string without any encoding. It is possible that there are distributions
where using multiple rounds or more complicated computation at the client can
lead to a protocol that exchanges less than OPT,, (D) bits. Nevertheless, in order
for any fixed protocol to use close to the optimal number of bits for every distribution,
the protocol cannot use much more than OPT,, (D) on any distribution. We shall
demonstrate that this is not possible, even if we define “much more than” quite
loosely.

We show that OPT,,. (D), or even any approximation to OPT,, (D), is not a
recursive function. For such a proof, we use Kolmogorov complexity: the following
proof uses the technique developed by Kolmogorov (see for example [12]) to show
that the Kolmogorov complexity of a string is not a recursive function. Recall that
the Kolmogorov complexity of a string x, which we denote #'(x), is the minimum
description length of the string x. We define #°(x) to be the size of the smallest
description of a Turing machine with a work tape but no input tape that can
produce the string x on an output tape. We also define J#(i), for an integer i, to be
A (x;), where x; is the string representing i in binary.

Our proof also uses the set of distributions 2, which contains a distribution D,
for each integer i >2. D, is the distribution over n=|logi]-bit strings where
the string corresponding to the binary representation of j=i—2""¢" occurs with
probability 1—272"¢/l All other strings occur with equal probability. For any
i>2,H(D;)<1. Also, note that there cannot be two distributions, D, and D;
on strings of length #n, such that the transcripts of bits exchanged by the client and
the server are identical when the client has the most likely string in each of the
distributions. Thus, a simple counting argument gives us that for any integer m,
there is always some i such that OPT,,..(D;) = m.

THEOREM 7. Let (D) be any function from distributions D to R such that (D) <
OPT,,..(D), and for any integer m, there is some integer i such that f(D,)>=m.
No such function f(D) is recursive.

Proof. Let f(D) be any such function. We assume that f(D) is recursive and
reach a contradiction. Using the distributions D,, and the function f, we define a
new function, F(m), defined for any natural number m. F(m) is the smallest i such
that f(D;) =m. F(m) is well defined by the assumption that there is always some
integer i such that f(D,)) =>m. |

Claim 1. A (F(m)) = m—c, for some constant c.

Proof (of Claim). By our construction, OPT,, (D) =m, so it suffices to
show that for all i, (i) = OPT,,,.(D;)—c for some constant c¢. This follows from
the fact that OPT),,.(D;) is at most the expected number of bits used in the following
protocol: if the distribution received by the server is one of the D;, the server sends
the client a Turing machine M that first produces the string i on a work tape.
M then converts i to the string j =i —2!°¢") and this is then compared to the input
string x. If the two strings are equal, then the input tape is erased and replaced with
a 1, after which M halts. Otherwise, the entire contents of the input tape is shifted
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one position right, and a 0 is added to the beginning of the tape, after which M
halts. This is sufficient to inform the server of the client’s string, and the expected
number of client bits used is less than two. When the distribution received by the
server is not one of the D,, the server sends the client any other Turing machine that
leads to a valid protocol. In such a protocol, when the server has a distribution D,
we can minimize the expected total number of bits exchanged by defining M so that
the portion of M used to produce the string i has description size (i), and the
description of the remainder of M has constant size. Thus, the total expected bits
exchanged is at most #'(i) + ¢, for a constant c. ||

However, by the assumption that f(D,) is recursive, we can describe the string
F(m) simply by the value m. This is sufficient to determine F(m), since we can
compute for each i, in increasing order, f(D;) until we find the first i such that
f(D,)) =zm. Thus, A (F(m))<logm+c', for some constant ¢'. Since F(m) is
defined for all natural numbers m, we have reached a contradiction. |

For any protocol P, let P(D) be the expected number of bits used by P on
the distribution D. For nonnegative integers i, let a(i) be A(i, i), where 4 is
Ackermann’s function (see [5], p. 175). Let o~ be the inverse of a, defined here as
a~!(j) is the minimum nonnegative integer i such that a(i) > j.

COROLLARY 2. There does not exist any fixed protocol P, such that for all D,
P(D) < a(OPT,,.(D)).

Proof. If any such protocol P exists, then we can use the protocol to compute
the function P(D). If we define the function f(D) =« '(P(D)), then we can also
use the protocol P to compute f(D). However, f(D)<a {(a(OPT,.(D))) <
OPT,,..(D). Let B, be the set of all 2" distributions D, over n-bit strings. The set B,
is both balanced and onto, and thus, by Theorem 5, for the protocol P, there is
some i such that P(D,) > n. Thus, for any m, there is some i such that f(D;) > m.
This implies, by Theorem 7, that the function f(D;) is not recursive, which in turn
implies that there can be no such protocol. |

COROLLARY 3. There does not exist any fixed protocol P', such that P' uses n—1
bits for distributions D on n bit strings where OPT,, (D) < a™(n).

In other words, we cannot guarantee to use only 1 bit less than the existential
lower bound given in Theorem 5, even if we only guarantee that we do so for those
distribution where the best possible protocol uses much less than # bits.

Proof. If any such protocol P’ exists, then we can use P’ to define (and
compute) the function f’(D), where if P’ uses < n— 1 expected bits on the distribution
D over n-bit strings, then f'(D)=0, and if P’ uses >n—1 expected bits on a
distribution D over n-bit strings, then f’(D)=oa"'(n). It must be the case that
f'(D) < OPT,,, (D). Furthermore, by Theorem 5, there is some distribution D, in
the set of distributions B, (as defined in the proof of the previous corollary), such
that P'(D;) =n. This implies that for any integer m, there is some i such that
f(D;) = m. This implies that the function f’(D) is not recursive, and thus no such
protocol P’ can exist. ||
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4. LOWER BOUNDS ON COMPUTATION AND ROUNDS

We show that in any protocol that requires the client to send less than ; bits, the
server must make at least 5 black box queries. Thus, protocol Computation-efficient
is existentially within a constant factor of the best possible in terms of the number
of black box queries required, for any protocol that does not require a large
number of bits to be sent by client.

THEOREM 8. For any entropy h, there is a set of distributions %, all with entropy
h, such that for any protocol P, when D is chosen uniformly at random from 2,, the
number of bits sent by the client plus the number of black box queries performed by
the server is at least n.

Proof. The set 4, consists of 2" distributions: one for each # bit string x;. In the
ith distribution D,, string x; occurs with probability p, and all remaining strings
occur with probability 21,,_—_”1, where p is chosen so that the resulting entropy of D; is
exactly A. For this set of distributions, the response to any black box query is
always one of two results, both of which are known by the server a priori, provided
that the server knows the set of distributions being used. Specifically, if the query
specifies any k bit prefix (leaving n—k bits unspecified), then the two possible
answers are 2" . 21[”1 and (2" F—1)- 21["1 + p. The first occurs in the case where the
single likely string does not match the query, and the second in the case where it
does.

The actions of the server can be viewed as a binary decision tree, where each
node of the tree represents either a bit received from the client or a black box query,
and each leaf represents an output produced by the server. The client is equally
likely to hold each of the 2" possible strings, and each string must result in the
server reaching a different leaf in the decision tree. Thus, the expected height of the

leaf reached must be at least n. ||

We next turn to the question of how many rounds are required for a protocol to
be efficient in terms of both client bits and server bits. The expected number of
rounds required by Protocol Round-efficient is trivially within a constant factor of
optimal. Is it possible to do better than Round-efficient? The best that we could
hope for is a single-round protocol: a protocol where the server sends some number
of bits to the client, and the client responds with some number of bits back to
the server, at which time the server knows the string held by the client. Next, we
demonstrate that any single round protocol will require either the expected number
of bits sent by the client to be much larger than the minimum, or the expected number
of bits sent by the server to be much larger than the minimum.

THEOREM 9. Let h be any entropy and let P be any single-round protocol where the
expected number of bits sent by the client is at most c - h, where c-h <55 . There is a set
of distributions %), all with entropy h, such that when D is chosen uniformly at random
from B, the expected number of bits sent by the server using P is at least 4 n2".

Proof. By Theorem 4, we can assume that ¢ > 1. We show that the Theorem is
true for the following set of distributions %). There are (;k) distributions,
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k=|h—1], one for each subset of 2% of the 2" strings. Call such a subset a likely
subset. For each distribution, the chosen string is one of the strings in the likely
subset with probability p, and one of the other strings with the remaining probability.
The strings in the likely subset each occur with equal probability, as do the strings
not in the likely subset. The value p is chosen so that the entropy of each distribu-
tion is exactly h: p~ 1—1 .

We show that any single-round protocol P for this set of distributions where the
server sends a small number of bits would imply a protocol for the following
problem that violates an easy lower bound for that problem.

DerINtTION 3. The subset identification problem: the server has an M-bit binary
string I, containing exactly m 1’s, where M and m are known in advance by both
the server and the client. The server is allowed to send bits to the client, but no bits
pass in the other direction. The task is to inform the client of the string 7.

Note that since there are (¥) possible inputs to the problem, the average number
of bits sent by the server to the client, over all possible inputs, must be at least

log().

LeMMA 1. Any single-round protocol A for the set of distributions %), where the
expected number of bits the server sends to the client is at most b, and the expected
number of bits the client sends to the server is at most c-h < 35, implies a protocol B
for the subset identification problem with M =2" and m =2*, where the expected
number of bits the server sends to the client is at most b+ n2*.

Using the facts that (%) > (%)™, and that k<% we see that when M =2" and
m=2% log(¥) > n2* This gives us b= n2* Since k=h—1, this gives us
b > 2 n2". Thus, this lemma directly implies the Theorem.

Proof (of Lemma). The protocol B proceeds on any given input as follows. The
server examines the M = 2"-bit input string I and determines the m = 2F bits that
are set to 1. The server then sends the bits to the client that would be sent to the
client during protocol 4 with the distribution that has the likely subset containing
the strings corresponding to the location of the 1’s in 7.

The client and the server then separately determine the same 2”-bit string I’, that
is an approximation to the string /. I’ is determined as follows: for each of the 2"
n-bit strings Xx;, if in protocol A4, the client responds with at most 5ch bits, then the
ith bit in I’ is set to a 1, and otherwise it is set to a 0. The server then sends the
client enough information to correct I’ to I, which can be done efficiently because
of the following:

CLAM 2. The number of 1’s in I' is at most 2°?". Furthermore, the number of bits
k
that are s in I that are not s in I' is at most %; .

Proof (of Claim). Since the server always knows what string the client has at
the end of protocol A4, and it is possible for the client to have every string, the client
must send a different set of bits on each string. Thus, the number of strings where
the client sends at most 5ck bits is at most 2. Since the expected number of bits
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that the client sends is at most ch, the expected number of bits sent by the client,
given that the string is a likely string, is at most % ch. For n> 5, this is less than ] ch.
Thus, by Markov’s inequality, the fraction of likely strings where the client sends

m

ore than 5ch bitsis <4. |

It is sufficient for the server to send the client the location of the 1’s in I that are

0’s in I', and the location of the 1’s in / within the 1’s in /'. The former requires at

m
is

10.

11.

12.

13.

14.

15.

16.

17.

18.

ost 2 log 2" =1 n2 bits, and the latter requires at most 2* log 25 < 1 n2* bits. This
at most § n2* bits. ||
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