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ABSTRACT
In this paper we consider the problem of managing and ex-
ploiting schedules in an uncertain and distributed environ-
ment. We assume a team of collaborative agents, each re-
sponsible for executing a portion of a globally pre-established
schedule, but none possessing a global view of either the
problem or solution. Each individual agent is aware of de-
pendencies between its scheduled actions and those of other
agents (providing a basis for online coordination), and each
agent is also provided with a set of local contingency (fall-
back) options. The goal is to maximize the joint quality
obtained from the actions executed by all agents, given that
unexpected events will force changes to some prescribed ac-
tions and reduce the utility of executing others as execution
unfolds. We describe an agent architecture for solving this
problem that couples two basic mechanisms: (1) a “flexible
times” representation of the agent’s schedule (using a Simple
Temporal Network (STN)), which hedges against temporal
uncertainty by promoting execution from a set of feasible
solutions, and (2) an incremental rescheduling procedure,
which acts to revise the agent’s schedule when execution
is forced outside of this set of solutions or when execution
events reduce the expected value of this feasible solution set.
Two layers of coordination augment this core local problem-
solving infrastructure. Basic coordination with other agents
is achieved simply by communicating schedule changes to
those agents with inter-dependent actions. Then, as time
permits, the STN is used to drive an inter-agent option gen-
eration and query process, aimed at identifying opportuni-
ties for solution improvement through joint change. Using a
simulator to model the uncertain execution environment, we
compare the performance of our multi-agent system with an
expected optimal (but non-scalable) centralized MDP solver
over a range of problem instances.
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1. INTRODUCTION
The practical constraints of many application environments
require distributed management of executing plans and sched-
ules. Such factors as geographical separation of execut-
ing agents, limitations on communication bandwidth, con-
straints relating to chain of command and the high tempo of
execution dynamics may all preclude any single agent from
obtaining a complete global view of the problem, and hence
necessitate collaborative yet localized planning and schedul-
ing decisions. In this paper, we consider the problem of
managing and executing schedules in an uncertain and dis-
tributed environment as defined by the DARPA Coordina-
tors program. We assume a team of collaborative agents,
each responsible for executing a portion of a globally pre-
established schedule, but none possessing a global view of
either the problem or solution. The team goal is to maximize
the total quality of all actions executed by all agents, given
that unexpected events will force changes to pre-scheduled
actions and reduce the utility of executing others as execu-
tion unfolds. To provide a basis for distributed coordination,
each agent is aware of dependencies between its scheduled
actions and those of other agents, and each agent is also
provided with a pre-computed set of local contingency (fall-
back) options.

We take an incremental flexible-times scheduling framework
as our starting point for specifying a multi-agent architec-
ture for solving this problem. In a flexible-times represen-
tation of an agent’s schedule, the execution intervals asso-
ciated with scheduled actions are not fixed, but instead are
allowed to float within imposed time and action sequenc-
ing constraints. A flexible times representation provides the
basic advantage that it allows the explicit use of slack as a
hedge against simple forms of executional uncertainty (e.g.,
action durations), and its underlying implementation as a
Simple Temporal Network (STN) model provides efficient
updating and consistency enforcement mechanisms. The
advantages of flexible times frameworks have been demon-
strated by previous work in various centralized planning and
scheduling contexts (e.g., [11, 7, 8, 9, 10]). However their
use in distributed problem solving settings has been quite
sparse ([6] is one exception), and prior approaches to multi-
agent scheduling (e.g., [5, 12] have generally operated with
fixed-times representations of agent schedules.

We define a local agent infra-structure centered around in-
cremental management of a flexible times schedule, and use
the STN-based representation to loosen the coupling be-
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Figure 1: A two agent C TAEMS problem.

tween executor and scheduler threads, to retain a basic abil-
ity to absorb unexpected executional delays (or speedups),
and to provide a basic criterion for detecting the need for
schedule change. Local change is accomplished by an in-
cremental scheduler, designed to maximize quality while at-
tempting to minimize schedule change. To this schedule
management infra-structure, we add two mechanisms for
multi-agent coordination. Basic coordination with other
agents is achieved by simple communication of local sched-
ule changes to other agents with inter-dependent actions.
Layered over this is a non-local option generation and eval-
uation process, aimed at identification of opportunities for
global improvement through joint changes to the schedules
of multiple agents. This latter process uses analysis of de-
tected conflicts in the STN as a basis for generating options.

The remainder of the paper is organized as follows. We be-
gin by briefly summarizing the general distributed schedul-
ing problem of interest in our work. Next, we introduce the
agent architecture we have developed to solve this problem
and sketch its operation. In the following sections, we de-
scribe the components of the architecture in more detail,
considering in turn issues relating to executing agent sched-
ules, incrementally revising agent schedules and coordinat-
ing schedule changes among multiple agents. We then give
some experimental results to indicate current system per-
formance. Finally we conclude with a brief discussion of
current research plans.

2. THE COORDINATORS PROBLEM
As indicated above the distributed schedule management
problem that we address in this paper is that put forth by
the DARPA Coordinators program. The Coordinators prob-
lem is concerned generally with the collaborative execution
of a joint mission by a team of agents in a highly dynamic
environment. A mission is formulated as a network of tasks,
which are distributed among the agents by the MASS sim-
ulator such that no agent has a complete, “objective” view
of the whole problem. Instead, each agent receives only a
“subjective view” containing just the tasks for which it is re-
sponsible and the remote tasks that have interdependencies
with these local tasks. A pre-computed initial schedule is
also distributed to the agents, and each agent’s schedule in-
dicates which of its local tasks should be executed and when.

Figure 2: Subjective view for Agent 2.

Each task has an associated quality value which accrues if
it is successfully executed within its constraints, and the
overall goal is to maximize the quality obtained during ex-
ecution. As execution proceeds, agents must react to unex-
pected results generated by the simulator (e.g., task delays,
failures) as well as changes to the mission (e.g., new tasks,
deadline changes), recognize when scheduled tasks are no
longer feasible or desirable, and coordinate with each other
to take corrective, quality-maximizing rescheduling actions
that keep execution of the overall mission moving forward.

Problems are formally specified using a version of the TAEMS
language (Task Analysis, Environment Modeling and Sim-
ulation) [4] called C TAEMS [1]. Within C TAEMS, tasks
are represented hierarchically, as shown in the example in
Figure 1. At the highest, most abstract level, the root of
the tree is a special task called the task group. On succes-
sive levels, tasks constitute aggregate activities, which can
be decomposed into sets of subtasks and/or primitive ac-
tions, termed “methods.” Methods appear at the leaf level
of C TAEMS task structures and are those that are directly
executable in the world. Each declared method m can only
be executed by a specified agent (denoted by ag : AgentN
in Figure 1) and each agent can be executing at most one
method at any given time (i.e. agents are unit-capacity re-
sources). Method durations and quality are typically spec-
ified as discrete probability distributions, and hence known
with certainty only after they have been executed.1 It is
also possible for a method to fail unexpectedly in execution,
in which case the reported quality is zero.

For each task, a quality accumulation function qaf is defined,
which specifies when and how a task accumulates quality as
its subtasks (methods) are executed. For example, a task
with a min qaf will accrue the quality of its child with low-
est quality if all its children execute and accumulate pos-
itive quality. Tasks with sum or max qafs acquire quality
as soon as one child executes with positive quality; as their
qaf names suggest, their respective values ultimately will be
the total or maximum quality of all children that executed
respectively. A sync-sum task will accrue quality only for
those children that commence execution concurrently with

1For simplicity, Figures 1 and 2 show only fixed values for
method quality and duration.
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the first child that executes, while an exactly-one task ac-
crues quality only if precisely one of its children executes.

Inter-dependencies between tasks/methods in the problem
are modeled via non-local effects (nles). Two types of nles
can be specified: “hard” and “soft.” Hard nles express
causal preconditions: for example, the enables nle in Figure
1 stipulates that the target method M5 can not be executed
until the source M4 accumulates quality. Soft nles, which
include facilitates and hinders, are not required constraints;
however, when they are in play, they amplify (or dampen)
the quality and duration of the target task.

Any given task or method a can also be constrained by an
earliest start time and a deadline, specifying the window in
which a can be feasibly executed. a may also inherit these
constraints from ancestor tasks at any higher level in the
task structure, and its effective execution window will be
defined by the tightest of these constraints.

Figure 1 shows the complete “objective” view of a simple 2
agent problem. Figure 2 shows the subjective view available
to agent 2 for the same problem. In what follows, we will
sometimes use the term activity to refer generically to both
task and method nodes.

3. OVERVIEW OF APPROACH
Our solution framework combines two basic principles for
coping with the problem of managing multi-agent schedules
in an uncertain and time stressed execution environment.
First is the use of a STN-based flexible times representa-
tion of solution constraints, which allows execution to be
driven by from a “set” of schedules rather than a single
point solution. This provides a basic hedge against tempo-
ral uncertainty and can be used to modulate the need for
solution revision. The second principle is to first respond
locally to exceptional events, and then, as time permits, ex-
plore non-local options (i.e., options involving change by 2
or more agents) for global solution improvement. This pro-
vides a basic means for keeping pace with execution, and for
tying the amount of effort spent in more global multi-agent
solution improvement to the time available. Both local and
non-local problem solving time is further minimized by the
use of a core incremental scheduling procedure.

Our solution framework is made concrete in the agent ar-
chitecture depicted in Figure 3. In its most basic form, an
agent comprises four principal components - an Executor, a
Scheduler, a Distributed State Manager (DSM), and an Op-
tions Manager - all of which share a common model of the
current problem and solution state that couples a domain-
level representation of the subjective c taems task structure
to an underlying STN. At any point during operation, the
currently installed schedule dictates the timing and sequence
of domain-level actions that will be initiated by the agent.
The Executor, running in its own thread, continually mon-
itors the enabling conditions of various pending activities,
and activates the next pending activity as soon as all of its
causal and temporal constraints are satisfied.

When execution results are received back from the environ-
ment and/or changes to assumed external constraints are re-
ceived from other agents, the agent’s model of current state
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Figure 3: Agent Architecture.

is updated. In cases where this update leads to inconsis-
tency in the STN or it is otherwise recognized that the cur-
rent local schedule might now be improved, the Scheduler,
running on a separate thread, will be invoked to revise the
current solution and install a new schedule. Whenever local
schedule constraints change either in response to a current
state update or through manipulation by the Scheduler, the
DSM is invoked to communicate these changes to interested
agents (i.e., those agents that share dependencies and have
overlapping subjective views).

After responding locally to a given state update and com-
municating consequences, the agent will use any remaining
computation time to explore possibilities for improvement
through joint change. The Option Manager utilizes the
Scheduler (in this case in hypothetical mode) to generate
one or more non-local options, i.e., identifying changes to
the schedule of one or more other agents that will enable the
local agent to raise the quality of its schedule. These options
are formulated and communicated as queries to the appro-
priate remote agents, who in turn hypothetically evaluate
the impact of proposed changes from their local perspec-
tive. In those cases where global improvement is verified,
joint changes are committed to.

In the following sections we consider the mechanics of these
components in more detail.

4. THE SCHEDULER
As indicated above, our agent scheduler operates incremen-
tally. Incremental scheduling frameworks are ideally suited
for domains requiring tight scheduler-execution coupling:
rather than recomputing a new schedule in response to every
change, they respond quickly to execution events by localiz-
ing changes and making adjustments to the current schedule
to accommodate the event. Schedule stability is maintained,
providing better support for the continuity in execution.
This latter property is also advantageous in multi-agent set-
tings, since solution stability tends to minimize the ripple
across different agents’ schedules.

The coupling of incremental scheduling with flexible times
scheduling adds additional leverage in an uncertain, multi-
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agent execution environment. As mentioned earlier, slack
can be used as a hedge against uncertain method execution
times. It also provides a basis for softening the impact of
inter-dependencies across agents.

In this section, we summarize the core scheduler that we
have developed to solve the Coordinators problem. In sub-
sequent sections we discuss its use in managing execution
and coordinating with other agents.

4.1 STN Solution Representation
To maintain the range of admissible values for the start
and end times of various methods in a given agent’s sched-
ule, all problem and scheduling constraints impacting these
times are encoded in an underlying Simple Temporal Net-
work (STN)[3]. An STN represents temporal constraints
as a graph G < N, E >, where nodes in N represent the
set of time points of interest, and edges in E are distances
between pairs of time points in N . A special time point,
called calendar zero grounds the network and has the value
0. Constraints on activities (e.g. release time, due time,
duration) and relationships between activities (e.g. parent-
child relation, enables) are uniformly represented as tempo-
ral constraints (i.e., edges) between relevant start and finish
time points. An agent’s schedule is designated as a total
ordering of selected methods by posting precedence con-
straints between the end and start points of each ordered
pair. As new methods are inserted into a schedule or exter-
nal state updates require adjustments to existing constraints
(e.g., substitution of an actual duration constraint, tighten-
ing of a deadline), the network propagates constraints and
maintains lower and upper bounds on all time points in the
network. This is accomplished efficiently via the use of a
standard all-pairs shortest path algorithm; in our implemen-
tation, we take advantage of an incremental procedure based
on [2]. As bounds are updated, a consistency check is made
for the presence of negative cycles, and the absence of any
such cycle ensures the continued temporal feasibility of the
network (and hence the schedule). Otherwise a conflict has
been detected, and some amount of constraint retraction is
necessary to restore feasibility.

4.2 Maintaining High-Quality Schedules
The scheduler consists of two basic components: a quality
propagator and an activity allocator that work in a tightly in-
tegrated loop. The quality propagator analyzes the activity
hierarchy and collects a set of methods that (if scheduled)
would maximize the quality of the agent’s local problem.
The methods are collected without regard for resource con-
tention; in essence, the quality propagator optimally solves
a relaxed problem where agents are capable of performing
an infinite number of activities at once. The allocator se-
lects methods from this list and attempts to install them in
the agent’s schedule. Failure to do so reinvokes the quality
propagator with the problematic activity excluded.

The Quality Propagator - The quality propagator per-
forms the following actions on the C TAEMS task structure:

• Computes the quality of all activities in the task struc-
ture: The quality qual(m) of a method m is computed
from the probability distribution of the execution out-

comes. The quality qual(t) of a task t is computed by
applying its qaf to the assessed quality of its children.

• Generates a list of contributors for each task: methods
that, if scheduled, will maximize the quality obtained
by the task.

• Generates a list of activators for each task: methods
that, if scheduled, are sufficient to qualify the task as
scheduled. Methods in the activators list are chosen
to minimize demands on the agent’s timeline without
regard to quality.

The first time the quality propagator is invoked, the quali-
ties of all tasks and methods are calculated and the initial
lists of contributors and activators are determined. Subse-
quent calls to the propagator occur as the allocator installs
methods on the agent’s timeline: failure of the allocator to
install a method causes the propagator to recompute a new
list of contributors and activators.

The Activity Allocator - The activity allocator seeks
to install the contributors of the taskgroup identified by
the quality propagator onto the agent’s timeline. Any cur-
rently scheduled methods that do not appear in the con-
tributors list are first unscheduled and removed from the
timeline. The contributors are then preprocessed using a
quality-centric heuristic to create an agenda sorted in de-
creasing quality order. In addition, methods associated with
a “and” task (i.e., min, sumand) are grouped consecutively
within the agenda. Since an “and” task accumulates quality
only if all its children are scheduled, this biases the schedul-
ing process towards failing early (and regenerating contribu-
tors) when the methods chosen for the min cannot together
be allocated.

The allocator iteratively removes the first method mnew

from the agenda and attempts to install it. This entails
first checking that all activities that enable mnew have been
scheduled, while attempting to install any enabler that is
not. If any of the enabler activities fails to install, the alloca-
tion pass fails. When successful, the enables constraints link-
ing the enabler activities to mnew are activated. The STN
rejects an infeasible enabler constraint by returning a con-
flict. In this event any enabler activities it has scheduled are
uninstalled and the allocator returns failure. Once schedul-
ing of enablers is ensured, a feasible slot on the agent’s time-
line within mnew’s time window is sought and the allocator
attempts to insert mnew between two currently scheduled
methods. At the STN level, mnew’s insertion breaks the se-
quencing constraint between the two extant timeline meth-
ods and attempts to insert two new sequencing constraints
that chain mnew to these methods. If these insertions suc-
ceed, the routine returns success, otherwise the two extant
timeline methods are relinked and allocation attempts the
next possible slot for mnew insertion.

5. THE DYNAMICS OF EXECUTION
Maintaining a flexible-times schedule enables us to use a
conflict-driven approach to schedule repair: Rather than re-
acting to every event in the execution that may impact the
existing schedule by computing an updated solution, the
STN can absorb any change that does not cause a conflict.
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Consequently, computation (producing a new schedule) and
communication costs (informing other agents of changes that
affect them) are minimized.

One basic mechanism needed to model execution in the
STN is a dynamic model for current time. We employ a
model proposed by [6] that establishes a ’current-time’ time
point and includes a link between it and the calendar-zero
time point. As each method is scheduled, a simple prece-
dence constraint between the current-time time point and
the method is established. When the scheduler receives a
current time update, the link between calendar-zero and
current-time is modifed to reflect this new time, and the
constraint propagates to all scheduled methods.

A second basic issue concerns synchronization between the
executor and the scheduler, as producer and consumer of the
schedule running on different threads within a given agent.
This coordination must be robust despite the fact that the
executor needs to start methods for execution in real-time
even while the scheduler may be reassessing the schedule to
maximize quality, and/or transmitting a revised schedule.
If the executor, for example, slates a method for execution
based on current time while the scheduler is instantiating
a revised schedule in which that method is no longer next-
to-be-executed, an inconsistent state may arise within the
agent architecture. This is addressed in part by introduc-
ing a “freeze window;” a short specified (and adjustable)
time period beyond current time within which any activity
slated as eligible to start in the current schedule cannot be
rescheduled by the scheduler.

The scheduler is triggered in response to various environ-
mental messages. There are two types of environmental
message classes that we discuss here as “execution dynam-
ics:” 1) feedback as a result of method execution - both
the agent’s own and that of other agents, and 2) changes in
the C TAEMS model corresponding to a set of simulator-
directed evolutions of the problem and environment. Such
messages are termed updates and are treated by the sched-
uler as directives to permanently modify parameters in its
model. We discuss these update types in turn here and de-
fer until later the discussion of queries to the scheduler, a
’what-if’ mode initiated by a remote agent that is pursuing
higher global quality.

Whether it is invoked via an update or a query, the sched-
uler’s response is an option; essentially a complete sched-
ule of activities the agent can execute along with associated
quality metrics. We define a local option as a valid schedule
for an agent’s activities, which does not require change to
any other agent’s schedule. The overarching design for han-
dling execution dynamics aims at anytime scheduling be-
havior in which a local option maximizing the local view
of quality is returned quickly, possibly followed by globally
higher quality schedules that entail inter-agent coordination
if available scheduler cycles permit. As such, the default
scheduling mode for updates is to seek the highest quality
local option according to the scheduler’s search strategy, in-
stantiate the option as its current schedule, and notify the
executor of the revision.

5.1 Responding to Activity Execution

As suggested earlier, a committed schedule consists of a se-
quence of methods, each with a designated [est, lst] start
time window (as provided by the underlying STN represen-
tation). The executor is free to execute a method any time
within its start time window, once any additional enabling
conditions have been confirmed. These scheduled start time
windows are established using the expected duration of each
scheduled method (derived from associated method duration
distributions during schedule construction). Of course as ex-
ecution unfolds, actual method durations may deviate from
these expectations. In these cases, the flexibility retained
in the schedule can be used to absorb some of this unpre-
dictability and modulate invocation of a schedule revision
process.

Consider the case of a method completion message, one of the
environmental messages that could be communicated to the
scheduler as an execution state update. If the completion
time is coincident with the expected duration (i.e., it com-
pletes exactly as expected), then the scheduler’s response
is to simply mark it as ’completed’ and the agent can pro-
ceed to communicate the time at which it has accumulated
quality to any remote agents linked to this method.

However if the method completes with a duration shorter
than expected a rescheduling action might be warranted.
The posting of the actual duration in the STN introduces
no potential for conflict in this case, either with the lsts of
local or remote methods that depend on this method as an
enabler, or to successively scheduled methods on the agent’s
timeline. However, it may present a possibility for exploiting
the unanticipated scheduling slack. The flexible times rep-
resentation afforded by the STN provides a quick means of
assessing whether the next method on the timeline can begin
immediate execution instead of waiting for its previously es-
tablished est start time. If indeed est of the next scheduled
method can “spring back” to current-time once the actual
duration constraint is substituted for the expected duration
constraint, then the schedule can be left intact and simply
communicated back to the executor. If alternatively, other
problem constraints prevent this relaxation of the est, then
there is forced idle time that may be exploited by revising
the schedule, and the scheduler is invoked (always respecting
the freeze period).

If the method completes later than expected, then there
is no need for rescheduling under flexible times scheduling
unless 1) the method finishes later than the latest start time
(lst) of the subsequent scheduled activity, or 2) it finishes
later than its deadline. Thus we only invoke the scheduler
if, upon posting the late finish in the STN, a constraint
violation occurs. In the latter case no quality is accrued
and rescheduling is mandated even if there are no conflicts
with subsequent scheduled activities.

Other execution status updates the agent may receive in-
clude:

• method start - If a method sent for execution is started
within its [est, lst] window, the response is to mark it
as ’executing’. A method cannot start earlier than
when it is transmitted by the executor but it is possi-
ble for it to start later than requested. If the posted
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start time causes an inconsistency in the STN (e.g. be-
cause the expected method duration can no longer be
accommodated) the duration constriant in the STN is
shortened based on the known distribution until either
consistency is restored or rescheduling is mandated.

• method failure - Any method under execution may fail
unexpectedly, garnering no quality for the agent. At
this point rescheduling is mandated as the method may
enable other activities or significantly impact quality
in the absence of local repair. Again, the executor will
proceed with execution of the next method if its start
time arrives before the revised schedule is committed,
and the scheduler accommodates this by respecting the
freeze window.

• current time advances An update on ’current time’
may arrive either alone or as part of any of the previ-
ously discussed updates. If, when updating the current-
time link in the STN (as described above), a conflict
results, the execution state is inconsistent with the
schedule. In this case, the scheduler proceeds as if ex-
ecution were consistent with its expectations, subject
to possible later updates.

5.2 Responding to Model Updates
The agent can also dynamically receive changes to the agent’s
underlying C TAEMS model. Dynamic revisions in the out-
come distributions for methods already in an agent’s sub-
jective view may impact the assessed quality and/or du-
ration values that shaped the current schedule. Similarly,
dynamic revisions in the designated release times and dead-
lines for methods and tasks already in an agent’s subjective
view can invalidate an extant schedule or present opportu-
nities to boost quality. It is also possible during execution
to receive updates in which new methods and possibly en-
tire task structures are given to the agent for inclusion in
its subjective view. Model changes that involve temporal
constraints are handled in much the same fashion as de-
scribed for method starts and completions, i.e, rescheduling
is required only when the posting of the revised constraints
leads to an STN conflict. In the case of non-temporal model
changes, alternatively, rescheduling action is currently al-
ways initiated.

6. COORDINATING WITH OTHER AGENTS
Having responded locally to an unexpected execution result
or model change, it is necessary to communicate the conse-
quences to agents with inter-dependent actions so that they
can align their decisions accordingly. Responses that look
good locally may have a sub-optimal global effect once align-
ments are made, and hence agents must have the ability to
seek mutually beneficial joint schedule changes. In this sec-
tion we summarize the coordination mechanisms provided
in the agent architecture to address these issues.

6.1 Communicating Non-Local Constraints
A basic means of coordination with other agents is provided
by the Distributed State Mechanism (DSM), which is re-
sponsible for communicating changes made to the model
or schedule of a given agent to other “interested” agents.
More specifically, the DSM of a given agent acts to push

any changes made to time bounds, quality, or status of a lo-
cal task/method to all the other agents that have that same
task/method as a remote node in their subjective views. A
recipient agent treats any communicated changes as addi-
tional forms of updates, in this case, modifying the current
constraints associated with non-local (but inter-dependent)
tasks or methods. These changes are handled identically
to updates reflecting schedule execution results, potentially
triggering the local scheduler if the need to reschedule is
detected.

6.2 Generating Non-Local Options
As mentioned in the previous section, the agent’s first re-
sponse to any given query or update (either from execution
or from another agent) is to generate one or more local op-
tions. Such options represent local schedule changes that are
consistent with all currently known constraints originating
from other agents’ schedules, and hence can be implemented
without interaction with other agents. It many cases, how-
ever, a larger-scoped change to the schedules of two or more
agents can produce a higher-quality response.

Exploration of opportunities for such coordinated action by
two or more agents is the responsibility of the Options Man-
ager. Running in lower priority mode than the Executor
and Scheduler, the Options Manager initiates a non-local
option generation and evaluation process in response to any
local schedule change made by the agent if computation time
constraints permits. Generally speaking, a non-local option
identifies certain relaxations (to one or more constraints im-
posed by methods that are scheduled by one or more remote
agents) that enable the generation of a higher quality local
schedule. When found, a non-local option is used by a co-
ordinating agent to formulate queries to any other involved
agents in order to determine the impact of such constraint
relaxations on their local schedules. If the combined qual-
ity change reported back from a set of one or more relevant
queries is a net gain, then the issuing agent signals to the
other involved agents to commit to this joint set of schedule
changes. The Option Manager currently employs two ba-
sic search strategies for generating non-local options, each
exploiting the local scheduler in hypothetical mode.

Optimistic Synchronization - Optimistic synchroniza-
tion is a non-local option generation strategy where search
is used to explore the impact on quality if optimistic as-
sumptions about currently unscheduled remote enablers are
made. More specifically, the strategy looks for “would be”
contributor methods that are currently unscheduled due to
the fact that one or more remote enabling (source) tasks/methods
are not currently scheduled. For each such local method, the
set of remote enablers are hypothetically activated, and the
scheduler attempts to construct a new local schedule under
these optimistic assumptions. If successful, a non-local op-
tion is generated, specifying the value of the new, higher
quality local schedule, the temporal constraints on the local
target activity, and the set of must-schedule enabler activ-
ities that must be scheduled by remote agents in order to
achieve this local quality. The needed queries requesting the
quality impact of scheduling these activities are then formu-
lated and sent to the relevant remote agents.

To illustrate, consider again the example in Figure 2. The
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Figure 4: A high quality task is added to the task
structure of Agent2.

Figure 5: If M4, M5 and M7 are scheduled, a conflict
is detected by the STN.

maximum quality that Agent1 can contribute to the task
group is 15 (by scheduling M1, M2 and M3). Assume
that this is Agent1’s current schedule. Given this state, the
maximum quality that Agent2 can contribute to the task
group is 10, and the total taskgroup quality would then be
15 + 10 = 25. Using optimistic synchronization, Agent2
will generate a non-local option that indicates that if M5
becomes enabled, both M5 and M6 would be scheduled,
and the quality contributed by Agent2 to the task group
would become 30. Agent2 sends a must schedule M4 query
to Agent1. Because of the time window constraints, Agent1
must remove M3 from its schedule to get M4 on, result-
ing in a new lower quality schedule of 5. However, when
Agent2 receives this option response from Agent1, it deter-
mines that the total quality accumulated for the task group
would be 5 + 30 = 35, a net gain of 10. Hence, Agent 2
signals to Agent1 to commit to this non-local option.

Conflict-Driven Relaxation - A second strategy for gen-
erating non-local options, referred to as Conflict-Directed
Relaxation, utilizes analysis of STN conflicts to identify and
prioritize external constraints to relax in the event that a
particular method that would increase local quality is found
to be unschedulable. Recall that if a method cannot be fea-
sibly inserted into the schedule, an attempt to do so will
generate a negative cycle. Given this cycle, the mechanism
proceeds in three steps. First, the constraints involved in
the cycle are collected. Second, by virtue of the connections

in the STN to the domain-level C TAEMS model, this set is
filtered to identify the subset associated with remote nodes.
Third, constraints in this subset are selectively retracted to
determine if STN consistency is restored. If successful, a
non-local option is generated indicating which remote con-
straint(s) must be relaxed and by how much to allow instal-
lation of the new, higher quality local schedule.

To illustrate this strategy, consider Figure 5 where Agent1
has M1, M2 and M4 on its timeline, and therefore est(M4) =
21. Agent2 has M5 and M6 on its timeline, with est(M5) =
31 (M6 could be scheduled before or after M5). Suppose
that Agent2 receives a new task M7 with deadline 55 (see
Figure 4). If Agent2 could schedule M7, the quality con-
tributed by Agent2 to the task group would be 70. How-
ever, an attempt to schedule M7 together with M5 and M6
leads to a conflict, since the est(M7) = 46, dur(M7) = 10
and lft(M7) = 55 (see Figure 5). Conflict-directed relax-
ation by Agent 2 suggests relaxing the lft(M4) by 1 tick
to 30, and this query is communicated to Agent 1. In fact,
by retracting either method M1 or M2 from the schedule
this relaxation can be accommodated with no quality loss
to Agent1 (due to the min qaf). Upon communication of
this fact Agent 2 signals to commit.

7. EXPERIMENTAL RESULTS
An initial version of the agent described in this paper was
developed in collaboration with XYZ Corporation and sub-
jected to the independently conducted Coordinators pro-
grammatic evaluation. This evaluation involved over 2000
problem instances randomly generated by a scenario gen-
erator that was configured to produce scenarios of varying
durations within six experiment classes. These classes, sum-
marized in Table 1, were designed to evaluate key aspects of
a set of Coordinators distributed scheduling agents, such as
their ability to handle unexpected execution results, chains
of nle’s involving multiple agents, and effective scheduling
of new activities that arise unexpectedly at some point dur-
ing the problem run. Year 1 evaluation problems were con-
strained to be small enough (3 -10 agents, 50 - 100 methods)
such that comparison against an optimal centralized solver
was feasible. The evaluation team employed an MDP-based
solver capable of unrolling the entire search space for these
problems, choosing for an agent at each execution decision
point the activity most likely to produce maximum global
quality. This established a challenging benchmark for the
distributed agent systems to compare against. The hard-
ware configuration used by the evaluators instantiated and
ran one agent per machine, dedicating a separate machine
to the MASS simulator.

As reported in Table 1 the year 1 prototype agent clearly
compares favorably to benchmark on all classes, coming
within 2% of the MDP optimal averaged over the entire
set of 2190 problems. These results are particularly no-
table given that each agent’s STN-based scheduler does very
little reasoning over the success probability of the activity
sequences it selects to execute. Only simple tactics were
adopted to explicitly address such uncertainty, such as the
use of expected durations and quality for activities and a
policy of excluding from consideration those activities with
failure likelihood of >75%. The very respectable agent per-
formance can be at least partially credited to the fact that
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Problem Class Description Agent
Class Quality
OD ‘Only Dynamics’. No NLEs. 0.979
(390 probs) Actual task duration & quality

vary according to distribution.
INT ‘Interdependent’. Frequent & 1.000
(360 probs) random NLEs (esp. facilitates)
CHAINS Activities chained together via 0.995
(360 probs) sequences of enables NLEs

(1-4 chains/prob)
TT ‘Temporal Tightness’. Release - 0.949
(360 probs) Deadline windows preclude preferred

high quality (longest duration)
tasks from all being scheduled.

SYNC Problems contain range of .971
(360 probs) different Sync sum tasks
NTA ‘New Task Arrival’. cTaems model .990
(360 probs) is augmented with new tasks

dynamically during run.

OVERALL AVE: .981
(2190)

Table 1: Performance of year 1 agent over Coordi-
nators evaluation. ‘Agent Quality’ is % of ’optimal’

the flexible times representation employed by the scheduler
affords it an important buffer against the uncertainty of ex-
ecution and exogenous events.

The agent turns in its lowest performance on the TT (Tem-
poral Tightness) experiment classes, and an examination
of the agent trace logs reveals possible reasons. In about
half of the TT problems the year 1 agent under-performs
on, the specified time windows within which an agent’s ac-
tivities must be scheduled are so tight that any scheduled
activity which executes with a longer duration than the ex-
pected value, causes a deadline failure. This constitutes a
case where more sophisticated reasoning over success prob-
ability would benefit this agent. The other half of under-
performing TT problems involve activities that depend on
facilitation relationships in order to fit in their time windows
(recall that facilitation increases quality and decreases du-
ration). The limited facilitates reasoning performed by the
year 1 scheduler sometimes causes failures to install a heav-
ily facilitated initial schedule. Even when such activities
are successfully installed they tend to be prone to deadline
failures -If a source-side activity(s) either fails or exceeds its
expected duration the resulting longer duration of the target
activity can violate it’s time window deadline.

8. STATUS AND DIRECTIONS
Our current research efforts are aimed at extending the ca-
pabilities of the Year 1 agent and scaling up to significantly
larger problems. Year 2 programmatic evaluation goals call
for effectively solving problems on the order of 100 agents
and 10,000 methods, placing much higher computational de-
mands on all of the agent’s components. We have recently
completed a reimplemention of the prototype agent designed
to address some basic recognized performance issues. In ad-
dition to verifying that the performance on Year 1 problems
is matched or exceeded, we have recently run some successful
tests with the agent on a few 70 agent problems.

To fully address various scale up issues, we are investigat-
ing a number of more advanced coordination mechanisms.
To provide more global perspective to local scheduling deci-
sions, we are introducing mechanisms for computing, com-
municating and using estimates of the non-local impact of
remote nodes. To better address the problem of establishing
inter-agent synchronization points, we expanding the use of
task owners and qaf-specifc protocols as a means for direct-
ing coordination activity. Finally, we plan to explore the use
of more advanced STN-driven coordination mechanisms, in-
cluding the use of temporal decoupling [6] to insulate the
actions of inter-dependent agents and the introduction of
probability sensitive contingency schedules.
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