Aa%y33  HH $d 6666ff@  d Footnote TableFootnote**. . / - :;,.!?reaper& _ aTHeadingBiMessuriOmnidirectionality Rappellercgcomputationally f,mf,mr,r f,mr,mf,rmgmgho"sreorient timeframe waypoint waypointsx"s   EquationVariables^@ 5 zp [zr zs o.zu Jvzv @zx zy :%z{ ȋz| o>z~ .9z ˞z  dz E_z pdz {nz QS| ? |K } }  }  } ~ H~ ~X ~ 2 Bn ]h 6 U u U @         <$lastpagenum> <$monthname> <$daynum>, <$year> &<$daynum><$shortmonthname><$shortyear> ;<$monthname> <$daynum>, <$year> <$hour>:<$minute00> <$ampm> &<$daynum><$shortmonthname><$shortyear> <$monthname> <$daynum>, <$year> "<$monthnum>/<$daynum>/<$shortyear>  <$fullfilename>  <$filename>  <$paratext[Title]>  <$paratext[Heading]>  <$curpagenum>q  <$marker1>  <$marker2> Pagepage <$pagenum>[zr Heading & Page(<$paranum><$paratext> on page <$pagenum> FigureFigure <$paranumonly>9 Section & Page%section <$paranum> on page <$pagenum>z Equation <$paranum> Heading<$paranum><$paratext>  SeeFigure(See Figure <$paranumonly>.)  SeeEquation(See Equation <$paranum>.)  (Continued) + (Sheet <$tblsheetnum> of <$tblsheetcount>)  u~ u 3 3Av ) )w - -x 2 2Ay 6 6z 7 7{ 8{Aite| 4 4} 5 5AImoz d, z "z /um{" a1.z az i>z tez z H]>{#   ag{(  2.2|M a{K 2.1>[z e{; a2.a{T   nu! i3.5$p{Q"  {W#   se{p$ a2.3$p% {q&  a{r'  npa{( a3.{w)   F}*  ay>|O+ eio},  u<${-   {. ){/  2.4 o{0  t){1 u{2 {3 {4 {5 {6  {7 {8 3.1{9 {: {;  <  8{= 3.4 4{>  {? 5{@ I{A {B }C  {"}D  ~}E  a{F i{G  teH {I  H]>{J   ag}K  ~M  Ma|N  K|O |P |Q }R  nu}T i}U Q}V W }W pa}X  }Y  }Z  }[  }\  }]  }^ a }_ e }` u }a  }b ) }c   }d  }e  }f  }g  }h  }i  }j  }k  }l  }m  }n  }o  }p  }q  }r  .}s  }t  }u  |Qv |Sw |Ux  |Wy  |Yz  |[{  |]|  |_}  |a~  |c  |e  |g  |i  |k  |  |o  |q  |s  }  |w  |y  |{  |}  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | | | | |  }  ~Q  }  ~ } } }  }  ~  ~  ~  ~  ~   ~   ~   ~  ~  j  `  -     x   y z    {   S &      J    3.2    =  w(  5 7 9 ; = ? A  -C  -F  -I  -N P  -R  -T  -V  -Z \  -` e  o  s  | 3.3}   edz   7 3 dz   ) 2 6$ z   6$  x ) BB\` J  6R z  6R B  -UUh L~ /afs/cs/project/lri/MRD-97/doc/IntDesign/sensors/sensors.intDesign.txt.fm5  on  26Mar97  5 / 11  dz !  " H;3K ^z " $ ! H;3K ^H H PFootnote66z #  66   2BB\` J HE;? ^z $ " % ! HE;? ^HMHM P Single Line H'%Dffz % $ ' ! & &Footnotez & %FE< ^z ' % v ! FE< ^FEPFEP P Blank LineHHz (  HHz6R 3Bz+d b 6$ { ) -  6$ lff  vtDedz * 5 4 5 67R z + * 67R K 4KUUl LFoW/usr/dsw/.../ sensors.intDesign.txt.fm5  on  19Mar97  # / 11  66z , * B66  " % ! 5d M 6R { - ) 2  '6R lff wHUV z .  HUV z 6z+d bE PH$ z /  zH$   7z+d b dz 0 { 8 66z 1 0 66@|&&5 8& ` gIcebreaker Sensors 9UT UT` dR Introduction O  MaThe Icebreaker spacecraft will need sensors in order to accomplish its mission. The major tasks 5] M7Ythat required sensing are landing the spacecraft, traversing the lunar surface, remotely k M]detecting ice, and sensing while performing sampling. This chapter will be organized around y M ']these major tasks and will detail (eventually) the sensing alternatives considered and those  Mcoptions that were settled upon for this iteration of the Icebreaker design. Terms that are defined H@ MzTin the Mission Operations/Scenario dated March 20, 1997 are used in this chapter. UR UT` dSpacecraft Landing  " MzaThe spacecraft will fly to a general landing area, choose a landing location (aided or unaided), @" M1servo to the landing spot and touch down gently. ` eGross positioning ker   MUT_The spacecraft must arrive at the general area of the desired landing spot with an appropriate ord Mtsbvelocity and trajectory to allow a landing to be made in the desired area. Gross positioning will % MarZbe accomplished by using the tracking ability of the Deep Space Network (DSN) to estimate 3 Mwi^position. This will be done by ground based operations and course corrections will be sent to A Mve]the spacecraft to achieve a desired trajectory. Positioning will be augmented by an Inertial O@ Mde2Measurement Unit (IMU) and Star Tracking camera. a` epeChoose specific landing spot ,w # MthiA 16 km h2 M square area will be designated on the lunar surface as the landing area. Once the solid o# M a`rocket motor has decelerated the spacecraft, its position will be roughly 8 km above the lunar t # Mtlasurface. At this point a belly camera will be used to image the lunar surface and images will be # Mf ^transferred to ground control to allow operator assistance in locating a landing spot. In the # Mo ]absence of an area designated by operations, the Icebreaker will automatically choose a spot i# Mil\determined by processing the images to find lighted patches with constant texture (implying on@# Mop+level ground) within the area of interest. to `$ eveServo to the landing spot  & MryhThe landing spot will be a patch of terrain within the 16 km h2 M area that appears to be level. As ki& M^the Icebreaker descends it will automatically process images, choose features and track these & MonYfeatures to servo to the landing spot indicated by ground operations. Range from a radar h& M s^altimeter, position and attitude from the IMU, and position fixes from a Star Tracker will be +& Mlybincorporated with feature tracking to allow this capability. A gentle landing on the surface will 9@& Ml be accomplished. K`/ engLanding Sensors n a`0 M#0The following sensors will be used for landing: ttAE_; 1 M aVRadar Altimeter - The unit currently being considered for the mission is the box that E_;1 MheXappears on the presentation materials from the Mars 98 Lander review. More information iAE_;@1 MHneeds to be located for what the possible choices are for this sensor. sp66{ 2 -   66lff # #xMHH{ 3 6 ay HHlff ( (uB67R { 4 5 * di67R lff + +|&66{ 5 4 * e 66lff , ,}HUV { 6 7 3 go HUV lff . .y9H$ { 7 6 H$ lff / /zng 66{ 8 0E_;66lff ; 1 1{ed d{ 9 ;1 ; ; ntio66{ : 9 .or66E((e locate ; p(EE_; 2 Mis\Belly Camera - This will be a standard CCD camera with the ability to focus at infinity and E_;2 M #Zperhaps the ability to focus at shorter ranges as the spacecraft nears the surface of the $EE_;2 M (Tmoon. The range information from the altimeter will be used to focus the camera, if 2E_;@2 M needed. &E EE_; 3 MWInertial Measurement Unit (IMU) - Similar to the units used on the Clementine mission. S!E_;@3 MMThis sensor is described in more detail in the section on position sensors. e7EE_; 4 MXStar Tracker Camera - A unit identical to the unit used on the Clementine mission. This sLE_;@4 MHsensor is described in more detail in the section on position sensors. T UT`( d 1Lunar Surface Traversal  ) M_As described in the mission scenario, the Icebreaker must allow several control modes. Sensing @) M0must be provided to enable these control modes. Eԫ`- MBeESensors used during surface traversal fall into the following areas: ubCE_;`9 MTerrain Sensors #wE_;`: MitPositioning Sensors a CE_;`. MraRemote Ice Detection E_;`5 M2Sensing during Sampling rm/CE_;`7 Mim!Monitoring Spacecraft Subsystems rA~`8 e_;Terrain Sensors &W~ ; MeSeveral possibilities exist for terrain sensors on a robotic vehicle. In this design we have strived ;e~; Mso\for simplicity, redundancy, and ruggedness. The terrain sensors on the Icebreaker will be a Ts~; MunScombination of cameras and short range radar units to allow obstacle avoidance and Hse~; Min\autonomous operation in the situations where autonomy is required. The terrain sensors will sa~@; M) include: sE_;`? Mio1 Panospheric Color? Camera t CE_;`@ MroE2 Monochrome CCD cameras directed toward the front, 1 meter baseline eE_;`A MED2 Monochrome CCD cameras directed toward the rear, 1 meter baseline thCE_;`B M u:8 forward radar units, 94 GHz, with 10 degree x 5 degree #E_;`F Mor58 rear facing radar units (identical to front units) E G MYA panospheric camera will provide immersive video which in this mission is probably most 8 G MorYimportant for allowing Icebreakers ground operators the ability to view the surrounding cG M w^terrain and find promising locations for ice and to avoid possible communication dropouts due )G Mea\to the surrounding terrain. The panospheric camera is also expected to be used to image the lo7G Mce^horizon and determine when Icebreaker has descended (on a slope or in a crater) to a point in EG Mrs]which the area surrounding it is in permanent darkness. The panospheric camera will be the CSG M2 Xsame as the cameras currently used for the Atacama desert trek. (Need to get a detailed 2 a@G Merdescription of this.) w I Min]The front and rear pair of CCD cameras will be used to provide the operator with a 3-D image ;I Mac^of the lunar surface. Waypoints can be designated on the 3D image and checked for consistency I Mo Zbefore they are sent to the vehicle. A depth map can be computed from these stereo images I Mto]using computers at the ground station on the earth. Either the depth map, the fused 3D image o66{ ; 9i d66lff 8 > : :{ Thd{ <  ed > > G66{ = < s 66or! in E >rs !@I M i[or a combination of them can be used for designating waypoints for the vehicle to follow. ca J Med]The CCD cameras will be monochrome, 640x480 pixel format, auto iris, auto gain control, auto i,J MI[focus. (Will auto-focus cause a problem with 3-D viewing? Need to investigate dark current ima:@J MI+compensation - what is the issue here?) desP 6 MYA number of radar units mounted on the front and rear of the Icebreaker will be used for A^6 Mco]obstacle avoidance and to build a range map of the lunar surface during traversal. Radar has tl@6 Mhe!the following design advantages: ~EE_; O M{]Travels through dust particles clinging to the surface of the sensor and dust particles that E_;@O M .are thrown into space as the vehicle travels. EE_;`H MORadar works in darkness. It also works when the sun is low on the horizon. in E_; P MrsVRadar can be configured to contain no moving parts or at least use simple slow moving EE_;@P Mhe actuation. oll!E_; Q MSOverlapping of the sensors in the configuration with several spot sensors provides ain7EE_;@Q M!redundancy if the sensors fail. -LE_;  MleZDelicate optical devices are not required, easing the possibility of damaging the primary bEE_;@ M hQterrain sensors during launch, when jettisoning rocket motors, or when landing. rwE_; % MkeREases computing requirements for building a terrain map when compared with stereo EE_;@% Mfa cameras. r4 N M tZTwo possible configurations have been considered to meet the needs of terrain sensing and BN Mli^obstacle avoidance for the Icebreaker mission. One configuration includes several radar units PN Mic[rigidly mounted to Icebreaker and configured to cover an area which is roughly a 0.5 meter on^N Mn ^strip centered about 3 meters from the machine. They will allow a range map to be computed as lN ME^Icebreaker travels forward. At speeds of 0.3 m/s, this will allow approximately 10 seconds of zN Mt \reaction time. In a second configuration the range sensors are mounted on a pan table. This leN M d^reduces the number of sensors required and covers a larger area (or allows higher resolution) @N MZby scanning two lines instead of one, however it adds a motor to accomplish the panning.  M M f]First the fundamental equations governing radar will be given to justify the frequency being @M Mib8suggested for the radar units in these configurations. f  hC Md _To achieve a desired beam width, a radars aperture is governed by the following equation:  eve. * Mlwhere D is the aperture size,  sl M, the wavelength of the EM energy, and  sq M is the desired beam on<@* Mn width. entR D Ms \The table below lists common frequencies for radar (devices exist to produce radar at these er`@HD MAt_frequencies), and the required aperture (in millimeters) to achieve the given beam widths.  me.66{ > <sre66lff ; m = ={ th66| ? aer Y Bsotid| @ s B as 66| A @ 66nding rada   Bn  ? t  M ]Another consideration with radar is that although the beam will be shown as a pencil beam (a C M d`cone) this shape is not a true representation of the radar beam. There are two issues here. One *$ Mhe`issue is that there are side lobes and the edges of the "beam" are really the half-power points 2 Mwi\which occur on the main lobe with most aperture distributions. The second issue is that the t @ Mt ]beam doesnt disperse in the fan shape until it has traveled into the far field which occurs vN Mid]several aperture diameters from the radar unit. The far field point is given by the equation \ H M = below:    M fwhere D is the aperture size and  sl  Mis the wavelength. From the table given above for aperture  M\sizes, this could become an issue when the aperture size becomes greater than 100 mm. While  M \sensing can be accomplished in the near field the beam is not well formed at this point. If h @ Mho]desired, a radar lens (made from plastic) can be used to shape the beam within this region. t E Mre^For this version of the design, the frequency used will be 94 GHz. This may have implications E Mrebfor cost and availability of components, but this is the frequency allocated for vehicle radar in @E MheZJapan (need to check this) and one of the two frequencies (77 GHz and 94 GHz) in the US. ,  M i_One of the configurations being considered for Icebreaker is shown in Figure 3. It consists of nit: Min`several single beam radar units mounted to the structure of the vehicle. A single radar unit is heH H M shown in Figure 2.  . 6  M]The housing has been drawn to scale. The cross-section is based on the required aperture and iD M tZwill have to grow slightly to accommodate mounting hardware. The 127 mm (5 inch) depth is R  Moraestimated. Either a waveguide or a strip antenna  could be mounted behind the radome which is ` Mwi_depicted at the right side of the unit. The associated radar transmission and receive hardware ben Mhaaand processing electronics may possibly fit in the rest of the tube. One method for transmitting u| M vYthe radar beam is to modulate the frequency around a continuous signal at 94.5 GHz. This c M G`method is shown in Figure 4. The return signal is combined with the signal being transmitted to s MItZform a beat frequency signal. This signal can be transformed into the power domain via a  M Abfourier transform and this signal can be thresholded to extract the range to targets in the beam. 66| B @con66lff m A A{Zwi*$*X} C I N ?nng*$*X7 m(5*U|U$"Uc*m}P D J ?agu"Uc*mtenǀ(r *} E R F ?hh ǀ(r * I RJ%UZ}( F E [ ?tThJ%UZr tnsJ%JUUyUV| G K H ?resUyUVmay**UV| H G I ?mho**UVg uU|UV| I H C ? O EmulU|UV ar|UrU-])}R J D S ?c|UrU-])P*lUg?U`} K G ?ialP*lUg?U` thƀZUV ~ L X ?UXƀZUV ZZLkm*}I M _ ?daiLkm*Lk(*&*X} N C O ?tex*&*Xge*U~*&ǀ(ǀ(*X} O N P ? I R Econǀ(ǀ(*Xǀ(Uǀ()z*X} P O Q ?})z*Xnng)z*êU~ƪ*X} Q P R ?}PU~ƪ*XaguU~ƪGր+U|*X} R Q E ? O EhU|*X * RU|~E'bե-])}T S J T ?UZ'bե-])fQ}V T S W ?*UVZ՘t" ~ U ? Z՘t" Z՘UZ՘U M0.63 mԀ#< ~ V  X ?UVԀ#< )* %D}_ W T a ?`%Di%U:U_~ X V L ?U:U_UO* m+T  Y  ? m+T vv r Figure 3  }- Z  ^ ? tex '' M0.5 m(՟U{UZ}* [ F \ ?n(՟U{UZ(՟U{՟Ҫ~UZ}, \ [ ] ?)~UZng)~*u6a}9 ] \ d ? d fPU~AUVguU }0 ^ Z _ ? EU Uɀ)Uɀ) M0.5 m|՞; }2 _ ^ M ? T՞; ՞Հ՞Հ M0.5 mu8\Y}r ` ?UVu8\Y bUV}e a W b ? b bUVM 4Va*X}f b a c ? a c  4Va*XԀ# 4Va~7+ *X}g c b ? b  *XDb} Q ,\)F}: d ] e ? ] e f,\)FU_,\0O\d}; e d f ? d fO\d+TO\~ c!&Ǚ1}< f e ? ^*U}r * ] e60l|L g hyU{60l \z Kn(` i Component 0l|N h g iy0lUZz K~`+ iNumber of Units d0l|P i h jy0lz K EU`v i)Mass )z0l|R j i nyMz0lz KՀ՞`w iu8Power d|@ k  m m }e66|A l k  466 Va* m 4 w , M}g`Another issue with radar is whether it reflects diffusely or specularly. The Rayleigh criterion ] H, MZstates that a surface reflects incident energy specularly (rather than diffusely) if:    MO\mwhere h is the amplitude of the surface corrugation,  sl M is the wavelength, and  sa M is the angle  M^between the surface and the ray. A possible geometry for sensors mounted at 1 meter above the @ Mground is shown in Figure 1.  h M+b The amplitude of the surface corrugation for this geometry and the frequencies listed in the   Matable above is given below. These values indicate this it is possible that the lunar surface may K M^appear specular to radar with frequencies at or below 10.5 GHz, but it is almost certain that  M[micrometeriorite activity on otherwise smooth rocks or the granularity of the regolith has m  M Xresulted in enough surface roughness for radar at frequencies above 10.5 GHz to reflect rl@H Mitdiffusely.  66|C m kcen66lff > B l l{6Gl|T n j oyuac6GlMz Laveng `x j|LRadar Altimeter Gl|V o n pya AGl sz Lunt a `y je 1 Gl|X p o qy Gl z Llite `z jru2 kg fzGl|Z q p ry tzGlz Lbovis `{ je 12 W i6Zl|\ r q sysfa6Zlz Mearpe `| jh Landing Belly Camera Zl|^ s r tyZlerz Mtivy `} jh 1 Zl|` t s uyZlltz Mughur `~ j r1 kg zZl|b u t yyzZly.z M6 ` j 6 W Hz %z v ' ! w x Double Line z w x v aveng  1z x w v|V1a A116ml|d y u zy 1 6ml|Xz Ny ` jIMU ml|f z y {y fml|Zz Ny ` j1 ml|h { z |y 12mlz Nq s ` j0.65 kg zml|j | { }yainzmlz N|^ ` j13 W 6l|l } | ~y6lz O|` ` j Star Tracker l|n ~ } yr1 lz Ot y ` j1 l|p  ~ y l%z Ov  ` j0.5 kg zl|r  yzlz O  ` j 3 W  6l|t y|V6l Az P1   jForward/Rearward @ jCameras |Xl|v yl z P ` j4 l|x y l z P ` j4 kg zl|z ykzl|jz Py ` j24 W 6l|| y3 6l|lz Qy ` jTerrain Radar Units |`l|~ yl z Qr1 ` j16 z l| ylz Q  ` j%16 kg zl| yzl z Q ` j80 W 6l| yL6l z R|V ` jDrill Belly Camera l| ylz R ` j1 l| y lz R ` j1 kg zl| yzlz R ` j6 W 6l| y6lz S ` j Encoders l| ylr z S ` j 10 yl| yQrlz S ` j 1 kg zl| yQ zl%z Sz ` j 1 W 6l| yQ6lz T6   j Unknown remote ice 6@ j sensor l| yal|z Ty ` j1 l| y1 l|z Ty ` j2 kg zl| y zl|z Ty ` j15 W 6l| y 6l|z Uy ` j l| yEnlz U  ` j HT%  z v ! Single Line   z S     Hz !S Blank LineGihpDf ^z ! |GihpDf ^Gr&Gr& P Double Linez HZz !te TableFootnotel| yl z U ` j1  zl| y zl z U ` j2  6l| y 6l|z Vy` iTotal l| y l|z Vy` i l| yEnlz V  ` i 28.15 kg %zl| yzlSiz V ` iz126 W נ-A }> f ?  . UVHܪa}? ? Hܪa Blk Hܪ}f, TB/^}@ ? pf TB/^r& TBvS tyZB }A ?teNGr * .~  ?|.,ۈ*}E ?  ݢnUVj1 Q 8 ]U}F ?  Q 8 ]UQ yM=g+j8/e>}G ? j8/e> j8/o!++ H7SO,}H D ?*^r * ux. }J M ? ux. uUsuUs M1.5 m:#<`}K ?:#<`l:#:U$e9 }L U  ? $e9 $eU~$eU~ M1.0 mZ* }N ? Z* Z* Z* M}>Z*  }O K ? HZ*  Z*_Z*_ M b r *}h c ? ` Tb r * a c4-A^}i ? ^IUV ta}j ? LNa.{™q&[s/:}k ? ,™q&[s/:  ™u7q&[pZB^}l ? `F 9:r * u()Y}m ? j8/"UV {DX ][}n ?  j{DX ][+ H7w[{Dg\ʅ>}o ? .g\ʅ>  gsnf\\1H7SO+Y}p ` ? `L6ur * j }u ` ? j j j M}LiE }v ? eU~iE iE_iE_ MU}%U}w ?*U}%U}>*U}%Un՛%U2-J" }x ? *2-J" 26g26g M2.6 mhO*`/~ L U ?c4O*`/}i O*`~`'*MNUc*}z ?}j'*MNUc*LN'*ʀTuGMx՝^$3}{ ? }kx՝^$3x՝x՝ M5 ho M elevation beam[$dl }| ? F $dl $d'Ud$d'Ud h.5=}} ? V .5=@Uh@Uh l TOP DOWN VIEW3 }~ ? ʅ3 3!3! hg&fnN˩=}  ? H7&fnN˩=&xG&xG l SIDE VIEWr=Z=} B @ =Z==l*=l* l I+X  I+X  MFigure 1d} * U}U66} 666 mhO* ? ?  ? 2  M*\ The downrange resolution is determined in part by the bandwidth of the modulation. In a Uc MTStypical configuration this bandwidth could be 600 MHz and give a 0.25 m down range 66} 66lff B {'Ud} H@q$'-equal[char[D],over[char[lambda],char[Theta]]]< H} < = } 6l} <G&6l = A=`K iFreq\Beam Width H} <H = AIX`R i15 to reH} <H = AU`T i}10 to 2H} <2H ? = A ?`U i5 to \ zH} < rtzHhe = Aon.n `V i h2 to icaH} < z H r = A6`W i 1 to 6l} <6lUd = B `X j94 GHz H} <Hha = B,ch[T `Y j12 mm H} <=H = B} `Z j&18 mm 2H} <K2H = BH `[ j37 mm zH} <zHt = B `\ j 92 mm H} <H10 = B2 `] j 184 mm 6Ml} k ?6Ml5 l Cz `^ j 77 GHz MH} k.n MH l C `_ j 15 MH} kAMH l C `` j}22 2MH} kB2MHX l CGHz `a j44 zMH} ka zMH l C12m `b j112 MH} k MH l C18m `c j224 6`l} k 6`l l D37m `d j60 GHz `H} kB`H\ l Dmm  `e j}19 `H} kB`H] l D mm `f j29 2`H} k 2`H l D77Hz `g j58 }z`H} kz`H l Dj 15 `h j143 `H} k `H l Dj}22 `i j286 6sl} kX6sl l Ej44 `j j30 GHz sH} k sH l E11 `k j38 sH} k sH l E22 `l j57 2sH} k 2sH l E60Hz `m j114 }zsH} k\zsH l Ej}19 `n j286 }sH} k]sH l Ej29 `o j572 }6l} k6l l Fj58 `p j 10.5 GHz H} k H l F14 `q j109 H} k H l F28 `r j164 2H} k 2H l F30Hz `s j328 }zH} kzH l Fj38 `t j819 }H} kH l Fj57 `u j1,638 } # m $}'5lessthan[char[h],over[char[lambda],sin[char[alpha]]]]<H} kn l }6]} k6] l Gj57` i Frequency ]} k ] l G 10 G` iSurface Corregation (h) 6t} k6t l HH ` j94 GHz t} kt l H ` j1.3 mm 26~ k6 l I} ` j77 GHz ~ kt l I} ` j1.5 mm H6~ ku6 l J  ` j#60 GHz ~ kcr[in l Jha]] ` j2.0 mm 6~ k}6} l Wk ` j30 GHz ~ key } l Wk ` j4.0 mm 6~ kCo6 l X} ` j 10.5 GHz ~ k l X} ` j11 mm d~   66~ 66N77 GHz 2 2  2~ MVresolution. It is anticipated that the downrange resolution that could be improved by @ M 5centroiding the return signal as shown in Figure 7.   M#[The range map that could be achieved by the configuration drawn in Figure 3 is depicted in ha] M\Figure 5. The resolution will probably be more coarse than a typical range map with a laser W  Mascanner, however it should still provide a useful range map. The cross range resolution could be W. MWimproved to 0.25 meter possibly by just averaging readings from two adjacent beams and < Maincluding this in a 0.25 meter cross range bin. Terrain maps can be built in a similar manner to J M[the method used by Kelly to construct range maps for the cross-country navigation problem. 66~  66lff ! {GHz6O~ k  l Bpad  xI ~>    pr xI  ( ( M3 m th)*({m~*   )*({m ra;-])~+    gat;-])0U1;PY-])~,    Fi0U1;PY-])9Q~-    ticUJ"zUV a 53&j=6~.   v i53&j=6ovi a53&{/dkL*'o8~?    *'o8rov t*'o*`#~?/ ~@   ce~?/ ~HUt~HUt M1 mlud2U4ePbD~1  eai2U4ePbDlt  a2U4ePbUxePb#ՏN**~B  yel#ՏN*UZ-#ՏN***Qe=$3~C *Qe=$3*]**]* M18 howUjwD ~4 HzwUjwD wUjwUj Mu}" ~5  Iu}" ugug Mprs{~6   h*s{~* s{x*s{* ~7    ~+* PoPo M~V  Fi$j.I$ 'Yequal[indexes[0,1,char[R],char[F]],over[power[char[D],num[2.00000000,"2"]],char[lambda]]]<H~W   @   A *>TՎ~  Z ?~/*>TՎ 0>8 ~   ?t~0>8 2U4Pb0*'*>'P ~    ? a'P 0A0A M ApproximatelyJ|s59d~  V ?J|s59d$3J|s53|c ~    ? 3|c << M3 m turning radius4U *~    ?4*UX4U *ZZU=*au~    ?rU=*au~6 Ui՚=*pF/ `q$3~    ? pF/ `q$3pF;pF; M10 ho M azimuth beam6~   @V "| A Rj. uc~    ?  [de ؼUVharǦ,F~    ?   ]haǦ,FǦ^.}Eql&z:~    ?  ql&z:ql|(&z P1c~   Y ?r *  d~  * ! ! ~ 66~  A66y   V ] ] !   MJ|aThe sensors may also lend themselves to the type of processing done by Mo ravec with evidence  M4`grids. The slow speed of the vehicle and the fact that the radar units could be sampled at very  M]fast rates (500 Hz if needed) should allow more information than using just the width of the * M$3\sensor footprint on the ground. This has not been investigated. Synthetic Aperature Radar 8@ MS(SAR) uses this principle to achieve much higher accuracies than the beam width. N  M YA second configuration being considered for the Icebreaker mission is to mount 2 forward \ Mql\pointing units and 2 rear pointing units on pan tables and direct them downward in the same rj Maway with one unit scanning a line of data in the same location as the set of 8 units shown above x M_and the second unit scanning slightly closer to the machine. See Figure 6. Because of the slow aTh M l]speed of the vehicle, the pan table could move at a very slow speed. Using 2 sensors in each 4@ MspQdirection would give a measure of redundancy if one of the sensors should fail. 66~ ! d) 66lff E {e x՜n${Uj~ " $ hgrx՜n${Uj-*mY9~ # $ %  da-*mY9@-*m*m n${Uj~ $ " # eth n${Uj-*UYՏ~ % # & ira-*UYՏerefo-*UJU-*Yw*~ & % ' -*Yw*its*UYC ~ ' & ( irs՛$*UYC Z*Yw > ~ ( ' ) le ~Ul}*Yw > yYw#~ ) ( * anVS*F UXyYw#Rmx~ * ) +  e RmxRmRՁQ2$1& ~ + * ,  e sQ2$1& YwYw M37 mmn՛**~ , + - ef n՛** ofhen՛#UY*(-1& ~ - , .  Y*(-1& Y*mY*m M18.5 mm)e.`;~ . - / ~)e.`;hgr)e.U.#@ ~ / . 0  da#@ #Յ#Յ MmլQ2 ~ 0 / 1  ethլQ2 լYwլYw M~&I*1& ~ 1 0|  efo&I*1& &0&0 M127 mm66~ 2  3} R.f~ 3 4 2.f~.f.f*.fd*՘~ 4 3 5 2.fd*՘~.fd*d*.f6Ug-]-]~ 5 4 8 2.f6Ug-]-]~.fd*\6Ug]7*P~ 6 @ A 2RՁ]7*P~]7*]*.f3A`A`~ 7 9 < 237.f3A`A`*.ftqp3]*6fPcPc~ 8 5 ; 2U]*6fPcPc ]*$6f/UeEh-]-]~ 9 ; 7 2m/UeEh-]-].;/Ues]*EhL_  ~ : A} 2 reL_  LL M> d is distance to target, c = speed of lightr4dPcPc~ ; 8 9 2ethr4dPcPcլwrU{4d],Ue*~ < 7 = 2efo],Ue*&0],Uep,Ue :$ ~ = < > 2  :$  Bi Bi MFreq.LkI/ ~ > = ? 2 fLkI/ LtLt MTime՘fI[" ~ ? > @ 2 ՘fI[" ff MT]L ~ @ ? 6 2 g]L L$L$ M5T = 2*d/c, where T is the round-trip propagation timeq*3P~ A 6 : 2~q*3P37q*3q*6p B  C~ G D R*fd C ]] E E m66 D C _66@}     B E    M i^Another option is to mount only two units on the vertical mast that extends above Icebreaker.  M^The units could be panned 360 degrees giving panoramic concentric circles around the vehicle. $@ M;This configuration will also be analyzed in future work. Bi: h< MI    $` M f6` ePositioning Sensors TiL` M"Positioning sensors will include ^EE_;` MIMU pE_;` MStar Tracker Camera EE_;` M$Wheel, steering, and bogie encoders c,@  Mun`The Inertial Measurement Unit (IMU) for the Icebreaker mission could be a similar unit to those *@@ M>supplied by Litton and Honeywell for the Clementine mission. 66 E C66lff ! ` D D{ 4I"K  F H I B }4I"K =1=1 MPower .f G H Bpon.f twun.f.f*.fd*՘ H G F B.fd*՘ uns .fd*d*q  I F J B cs q zz MFreq.hEUiPF 4 J I K B ureEUiPF EUiYUEUiYU M.....xZ6 K J M BPoxZl`UWF L S U Brwil`UWE_;l`lhUpB8 M K N BEB$: N M O B$6< O N P Bcre66> P O Q B6fZ@ Q P R BiiofZHB R Q S BHZD S R L BKZUze7#[h T [ \ B1Uze7#[.fUze7UzՒ~`UWH U L V Bwun~`UW.f*~`~hUp`UWT V U W Bns `UW`hUp`UWZ W V X B`UWq.hUi`hUp`UW\ X W Y BUi`UW...`hUp`UW^ Y X Z B`UWF`hUp`UWd Z Y [ BUp`UW8`hUp`UWf [ Z T B:`UW`hUpCi i \ T B creCi CC MBCentroid signal above a threshold to choose range between FFT bins6Bm ]  i~ dp ^ D ` ` 66q _ ^ 66[''~` ` H'` M[The Litton IMU consisted of a three axis fiber optic gyroscope and silicon accelerometer.   M\The Honeywell IMU consists of three ring laser gyroscopes (RLGs) and 3 accelerometers. Both Up, M\IMUs were not originally designed for a radiation environment, but through minor electronic :@ MKcomponent changes, they were able to function in a radiation environment. P  MbOne issue affecting the design of the IMU that is unique to this mission is the fact that the IMU ^ Mbwill be required to function within both a flying and driving vehicle. The dynamics of the flight l M cZspacecraft will certainly be different than the dynamics present in the surface traversal z MYapplication. This could present a range or resolution difference required when reporting  MYangular rates. For instance, in the Clementine mission, the Honeywell IMU was altered to ' M_report rates of +/- 360 deg/sec. The vehicle dynamics on the lunar surface need to be analyzed @ MThJto determine if the same range and resolution will suffice in this case.  ( MWA Star Tracker Camera such as the two flown on the Clementine mission could be used to ugh( M cprovide an inertial reference for the spacecraft by comparison of star field with an on-board star P@( MOnmap. Specifications: eEE_;`5 MatMass: 0.29 kg E_;`7 MfaSize: 12 x 12 x 14 cm  EE_;`9 M b Power: 4.5 W uE_;`; M aField of View: 29 x 43 degrees dyn1 EE_;`= Mt Pixel Format: 384 x 576 cC!E_;`? My Environmental: thU7EE_;`A M i?Structural Requirements for Clementine mission were listed as: oulgLE_;`C MorO steady-state 100 g's each axis , no testing for this analysis only es.ybEE_;`F MthW random vibration, 14 g rms, 60 s, tested a qualification unit to 19.8 g rms, 60 sec. s owE_;`I M TJ pyro-shock 84 g's, peak accel, no testing done, analysis only EE_;`N MmiTemperature Limits: ndE_;`P Mufoperating and non-operating EE_;`R Mra& min max E_;`T Mn CCD -15.8 C 27.1 C EE_;`V Man!lens -26.1 C 30.8 C aE_;`Z Mf Voltage, steady-state  EE_;`\ MB+ 15 (+/- 0.25), - 15 (+/- 0.25), +5 (+0.25/-0.15), -5 (+/- 0.25) #E_;`` M7DDirect Sun Viewing: Brief exposures ok, but this is not recommended E1 e Md ZThe Clementine Star Tracker ran Stellar Compass software on it's R3000 processor for star ?e Ml:]matching and quaternion generation. The measured rotation (quaternion) accuracy (1 sigma) is Me M Y80 microRad x 80 microRad x 400 microRad. Using an assumption that this angular accuracy ;[e M vacan be converted to an accuracy in meters on the lunar surface by using the product of the lunar Ti@e M radius and the angle. no ` Mys#80 microRad * 1738 km = 139 meters tur`o ME%400 microRad * 1738 km = 695 meters n66s ` ^m 66lff E{ _ _{.1 G`mp%t a b e ] b e gC G`mp%E(M UWUXw b c a ] c a gE_;(M UWUX/- 25M(`TMUhp%v c i b ] i b gE_;TMUhp%Sun?t6*:U_} d f h ] f h gore?t6*:U_'q* UWUXy e a f ] a f gera'q* UWUX sowaU~q*'HhMh UWUX{ f e d ] e d gahiHhMh UWUX geraV*MhHh`*?MUhUka g h k ] ?MUhUka i hut6*:U_ h d g ] d g inut6*:U_^6*:U_ i c ] c ge v^6*:U_kEp  j q p ] q p rcekEp ducofkEpJpdՙy* k g m ] m  dՙy*#80icdՙ*kEydC  l m o ] m o ioRdC 5 merdCIHzUp* m k l ] k l iHzUp*HzUpkEp * n o q ] o q e bkEp *`mkEpkEyrk*y  o l n ] l n (k*y k*yyj` UX p j s ] j s Uhj` UXt*jpxG`՟pUo * q n j ] n j UW՟pUo *a f a՟pUo՟yNUuY * r w y ] w y hUWNUuY *e d ec*uNU!_ UX s p t ] p t hUk_ UXh kpUoK_w^l  t s u ] s u  gw^l uw^l*^lKa * u t v ] t v Ka * KaKj*U]* v u w ] u w EU]**UkkL]F\Ul  w v r ] v r *F\Ul  F\UlL\UlpFvX x z | ] z | CpFvX*pFvpFoUY * y r z ] r z oUY ***oUNՓ  z y x ] y x ENՓ  NՓoUP@#  { | } ] | } P@#  UXP@#pF#OtX | x { ] x { OtX*OtO<=Y } { ~ ] { ~ Uo<=YY*PՖ<=*SU$UZ * ~ }  ] }  uSU$UZ * UXo$SUH[mUV  ~ ] ~ UoH[mUV *[mH_*N\  ]  lN\*N\Ns*Ne* ] KNe**Ns**e*eo* ] k*eo* *eo*t*` ] FUl*`X*uէ`M`n ] FvM`nY*`nM`n:U&* ] :U&* :U&WA&#4z ] #4z##*##* vOne Set of ReadingsP@7Ց* ] t7Ց*x { xUA7Ց* ] Y*{ ~ {:Ր&* ] $UZ&*}  }:Ց&ɀ(0** ] m0**~  ~**0*Ջ* ] Ջ*  :;ՋՆ** ] Ն**  Ն*5*0[mm ]o0[mm k Uy\<UrdgX  ]oUy\<Urdg *OՑ6*:U_ ] *OՑ6*:U_;>p% ]  ;>p%`n!?= UWUX ] !?= UWUX]  Ux?=!QU.R*p% ] .R*p%] bB UWUX ]  bB UWUXing@wbB t՚0Ua?* UWUX ] 0Ua?* UWUX7Ց=?*0UaQ=' eU6*:U_ ] ' eU6*:U_nUneՖ6*:U_ ]  nUneՖ6*:U_' >Uka ]' >Uka nEr* ] 0nEr*nE՝u*rtC* ] ՋtC**UtCm  ] 5m mm*tՙs*  ] rgtՙs* ]tՙs*Us*u*jU * ] u*jU *OՑ*u*jUu*sEKjB * ] KjB *YUXKjBKs*u*jU  ] x=u*jU pu*jUjUtUY UX ] BUWtUY UX  tUjUYUYU UX ] UWUYU UX  UjBYUUX?  ] *UX?   UX?աX?*Z * ]  *Z *eՖ**Z*cՕLWU* ] UkLWU**Le>WUV?  ] E՝V? *V?*V?XAHY * ] *XAHY * l՚HXAyE*Y * ] yE*Y * ՞*yEUX?U  ] *X?U *X?UyEUz*IX ] Uz*IX*z*Iz*UYUGX ] BYUGX YUGYUUY  ] UY  UXYz*EUY ] UEUY UXZBUEգ]B*UZ * ] B]B*UZ * yU*]BU*U@UV ] ?*U@UV*՟U@*XՖ*VU ] *VU**VU*lՙ*^* ] L>*^* *lՙզ^զ_B* ] ?զ_B*Y*զ_BզmզY ] HզYY*զoUÀSYZA ] *ZA UZAZAD>* ] ?UD>*XD>a*A=U* ] IA=U*X^UA=U&7U* ] G&7U* CU&7U'UU* ] 'UU*Y'UUD<U'U** ] BU'U**UZ*D=*'U* գ* ] * գ*UV'Ռգ ե 2զ* ] @ 2զ* 2զ(զ U@m ]U U@m OUtE* ] OUtE*lՙզOU*V@tEoCuU* ] BoCuU*_BզoCEv*uUN>G  ] N>G oUSN>GoDGUtD  ] AUtD ZAUtDv*tDV@k * ] *V@k **V@kV@t՚uUkU * ] *uUkU *U=uUkUuUtCV@k  ] *V@k U7V@kvEkU*[@ UX ] *U*[@ UXU<U*kbB[@v*Z UX ] *v*Z UX*Uv*kUFZb*YՔ  ] *b*YՔ գb*YՔYՔF\> * ] *F\> *զF\>Fe*՛X* ] @՛X**՛fՓGXjAWU  ] *jAWU *jAWUGWU8Ր՝Y * ] CE8Ր՝Y * M՝8ՐIYՔFY * ] >GYՔFY * nFYՔ9U  ] D9U *9UYՔ[A՞X ] @[A՞X*[A՞[A:*՜X ] U:*՜X :*՜:*:;K  ] @:;K  UX:;K[AK&8Y ] &8Y UX;U&8*=ՑLUZ * ] U=ՑLUZ * Z*L=ՑjCVՕUV ] ՔjCVՕUV*kVՕjCZ*IW ] F>IW*IWIn*I`A* ] ՓI`A* In*`A`՗* ] AU`՗*Y*`՗oD[@ ] ՝[@Y*pU[@H[Ֆ ] FH[Ֆ *[ՖH[Ֆ$ՍN* ] $ՍN*X$ՍNB<N"U* ] A՞"U*X?<"UU* ] ՜U* $6U** ] ;K**Y*%U*N* ] *N*UZ*%UN*ĀP+** ] L+**UV*+*U** ] ՕU**U* 0*+VՕm ]I+VՕm 2}* ] A2}*n*2՝9U}R<* ] R<*`՗R<՚X0*G  ] @0*G pU0*GPG9ՌD  ] 9ՌD [ՖH9ՌDZUDH9lU 8 ] N*H9lU N<H9lUi>lUG*\< UX: ] *G*\< UXUG*lT=\<C>r[ ] *C>rC>4C>4 v*;9l* UX ] *;9l* UXU;9|ՙHUl*Xm? UX ] N*Xm? UXN*X~*f?m?Q*\=  ] *Q*\= *+Q*\=q\=l*= ] *l**0z* *le^** ] e^***elUlU^*9mUZ*> ] ՝9mUZ**9{@UomUZ4UY *! ] <՚4UY * 1ՍU4I;8Y *" ] G;8Y * PU;8՝ W51_ 8 0 D W51 W* W* v e5uZ ] 9Ue5ue *e * vCombined with Previous Readings@*\ ] [@*@*@* vUU & ] UU *UU;ՏUUIY' ] UIYN**IUK՟UZ *( ] ՟UZ **;9՟KՁa ~  ]=Ձ*ՁUՁ{ ? ] { { 9*{ hl @ ] >hl ՝hl@Unl *\* UXA ] ! *\* UX<՚ *l\-\*@Un[ UXB ] "@Un[ UXG@UnkM[4P* C  ] _4P*  D4P*U*P*U*/ ] ZU* 9UU"ՊU*K*0 ] sea*K* UK*M*J*1 ] *J* UJ*L*M*2 ] U*M*Y*M*M*ա*3 ] I*ա*UZ**ա*գUyK*4 ] 9՟UyK*)KUyM*N*5 ] Ձ*N* *NU~NJP*D  ]  JP* J^UPP{_Y *E  ]h{_Y * UXi{_ ${Y *F  ]\${Y * UX8m{$ G  ]n  $%*`XH  ]*%*`X*%*`%*Ue^XI  ]UUe^X*Ue^Ue J  ]K * %* YK  ]JY**UZ *L  ] *MUZ **$Uk4*NWUVM  ] ա4*NWUV*5nNW4*R* *N   ]  )K **  * *O   ]  N **  р*P   ]  Uр*Y*рU\*Q   ] i_U\*Y*U\ U\*R   ] mU\*  U\**S  ]**X[****T  ]`**X*Ӫ*,\UV U  ]e^,\UV  ,\UVL\UV(*P* UXV  ] (*P* UXY(*`X5P*NWmW  ]NWm Ո" b ~  ] UZՈ" Ո/Ո/ M0.65 m#9)*c ~ ]UV#9)*4**#9*>>)6*gd d ~~ ] 6*gd 6*ڀ-6*ڀ- M0.5 m, or 0.25m with overlap6tg B C D B  =*W ~IJIJ=*W!A6*:U_ !!A6*:U_Iv0p% ! Iv0p%*1W UWUX !1W UWUXLO1WCeL81: UWUX !UV>L81: UWUXVK1:>L8CW4We6*:U_   !*4We6*:U_|LEW6*:U_ !!|LEW6*:U_40Uka!  "40Uka ZLi\e*" !##DZLi\e*)ZLija`\ezw]*# "$"$D~zw]*gdzwk!]Ywke $ #%#%DYwke   BYwkeyke`\ % $&$&DW`\ IJ`\!\`T] *& %'%'D`T] *A*`T]`]; LoS *' &(&(DLoS * UWUXLoSLo\`T] ( ')')DOW`T] p`T]wT]`!Ce UX) (*(*D\UW`!Ce UX`!T]mwCe!CX UX* )+)+DUW!CX UX!SwCXm!B; + *,*,D*m!B;  m!B;B;De *, +-+-D!De *W*DeMYpAU*- ,.,.DUkpAU**pO;wAUuw? . -/-/Diauw? *uw??Cel; Y */ .0.0DCel; Y * Xl; CeuedikY *0 /1/1DedikY * ykdiuaDLcua 1 0202DDLcua *DLcuadiuaev; X2 1313D]ev; X*ev; eeE!t; X3 2424DoE!t; X E!t; E!cEwe 4 3535D]Ewe  UXEweee1w eY5 4646D]1w eY UXFLfe1w gHfUZ *6 5757DHfUZ * e!Hfgt?;UV7 6868D;t?;UV*v?;tBZ@Z8 7979De@Z*@ZV]He*9 8:8:Dp;He* V]HeI;*: 9;9;DI;*Y*I;WeCe; :<:<D; CeY*Y^LwCewD;< ;=;=DwD; !D;wD;/be*= <><>Dca/be*X/beLe-Lag*> =?=?D; -Lag*XJwg-LaiL[f*? >@>@D; L[f* /w fL[h!i*@ ?A?ADe!i*Y!i0L`i!*A @B@BDfe!*UZ*0La!wg*B ACACDwg*UVgwiLVj*C BDBD;LVj*LVjwjw?;mD CEZw?;m"C!;E ~DF!;V]!; \;LX/" F ~EG LX/" LXLX M0.65 mw e*G ~FHw e*Lwew m3e+/gd H ~GI +/gd ++ M0.5 m, or 0.25m with overlapcLL7TvQI HJLag9UP7T oJ LX7T oI=$3 K PR L[=$3 OPv%:vQL JMMNAa'MUP!y+բ*WM ~LNLN*y+բ*W@By%: oN MOay%: oLM=$RQVO NPPK,*>L'cUGgC**WP ~OKOKBDC**W*'=xiZQ TV'=xiZ'=-Ր 0L47RQVR KSST0g:9TUG5Ua=L*WS ~RTRT5Ua=L*W0L473 T SQ0.0L473 RS*+UtC U x**+UtC 3e*+U7Ւnկ9w [;*V QWWxd9w [;*M0.9w ie@![;Y\Z*W VXVXxY\Z*9Yj`Lh\Z8j; X WYWYxT8j; $38j; Y!j; ?a[ Y XZXZx:?a[ L M?a[`Lg[@!R *Z Y[Y[x ~@!R **y@!R@!\\_wRY *[ Z\Z\xa_wRY *LM_wRY_w[@!R \ [][]xGg@!R @!R`R?LcB; UX] \^\^x?LcB; UX?LcRLB;`LgA UX^ ]_]_x`LgA UXST`LgRYmALLdAV _ ^`^`xRTLLdAV *WLLdAVliAVn!C; *` _a_ax3n!C; *t n!C;n!Len?*a `b`bxUn?**nNUu?T>V b acacx eT>V *T>Vu!>V" k_Y *c bdbdx" k_Y * 7bk_" t; C jY *d cecex; C jY * XfjC s#ws e dfdfxa#ws *#wsC sE!u`Xf egegxE!u`X*E!u`E!$L^s^Xg fhfhxY$L^s^XNP$L^s^$L^$; h gigix$;  UX$; E!; Yi hjhjxcY UX%w e' UZ *j ikikxgY' UZ * DLd' T!>WUVk jljlxdVT!>WUV*Ug>WT!Aew!>l kmkmx;w!>*w!>w!Uew!G;*m lnlnxUw!G;* w!Ue}nG;}nHY*n momoxV}nHY*Y*}nHY}nV;}nB;o npnpxb_}nB;Y*}nWwB;tCXp oqoqxftCX LqCXtCX;*q prprx;*X;,!; w*r qsqsx` w*X) wv*s rtrtxK^v* vLU*t susux; LU*YLUwLU*u tvtvx LU*UZ*wLUաe*v uwuwxdաe*UVTeաeve*w vxvxgWve*veeա>Wmx wUա>WmVwdy {{ ;n66z y Vn66n g { n s MaIf this calculation is correct, then this will not give particularly accurate fixes on the lunar qs M;^surface. This will not allow complete position-based navigation over long periods of time and $s Mq\navigation will require using other sources of information. The Star Tracker system will be K2@s M4similar to using single-ended CA code GPS on earth. uD`| eLURemote Ice Detection UZ  M[Our team has not pursued the problem of remote ice detection, therefore no sensor has been h@ Mu identified. z`= eUVSensing during Sampling * > Mx`A belly camera will be provided for viewing the drilling activity when in a cold trap during an > M`EarthDay. The range map from the radar units, although coarse, may be useful for finding a flat @> M`area in which to drill, particularly if the sampling is being done in a Cold Trap Earthshadow. ` Mhi a`! ect Subsystem Mass and Power Budget ar@h' MonQ The mass power budget for the sensing system is provided in the table below. s66{ y 66lff `zz{ ofI+X | 1  xKI+X  MFigure 2enI+X } : 2 |LUI+X  MFigure 4Ou+X ~  ] ece+X EE MFigure 5I+X  U =I+X  MFigure 6>I+X  \ B iinI+X  MFigure 7riF# n ngF# nF,2F,2 e ayd laLeftd h Right d ! i Referenceid 0d * Landscapesd 9ard < pudd k iidd @d d d ofId C xd ^d yX % ' f eT   TableTitleT:Table : . f    CellHeading. @ LftV Footer. @ J Footnote. @ ` ToFrom. @ H  Heading1 H:.\t. @ HQ  . Heading2 H:.\tBody. @ dH Heading1 H:.\t.  f P TitleBody. @9@ E @List2-\tList2. @  Footnote. @ LFooter. @ eHQ  Heading2 H:.\tBody. @  Footer. f gP TitleBody. $@ ME $List1\tList1. $$@ D @IndentBody2. $@ E $List1\tList1e. 2ff@ EE 2ff Enumerate2E:..< 0>\t Enumerate2. @  Header. f   Reference. @  Indent1Bold\t. @  From. $$@  Indent2Bold\t. @ H .<+33 EquationH:.< >< >< >< >Body1. Vff9@ EE Vff Enumerate3E:...\t Enumerate3. ff@ EE @ff Enumerate0E:.< 0>< 0>\t Enumerate1. @9@  ME @List2 -\tList2. f  Body. 333333@ HE  Figure!H:Figure.< >< >< >< >Body. 333333@  MHE Figure!H:Figure.< >< >< >< >Body. f  M Body. f   CellBody2 . f E  CellBody1 E:. . f  i   CellHeading. @ b Footnote. f  jE Fi >CellBody cellbody. f E  CellBody cellbody. $@ EE $ Enumerate1E:.< 0>< 0>\t Enumerate1. I y a% 3w Isymbol )` J ) K  Boldrmsub)` L )` M) N Big 1 3)` OEmphasis vk P 3[ Q Big 2 R Boldڝ SSmall ) T Big 3 ) U  Emphasis 2 ڝ VBody W rome i_mF X  Fixed-Width `f Y  Fixed-Width Bold i_mF Z Fixed-Width Italic>\ # [Symbol \ Boldrm 3ڝ ] Underline  # ^Italic _ Subscript 3)` ` Superscript ڝ b cEquationVariables) d  ) e ) g  )` h $թ| i  )` j$թ| l  ڝ r w s $թ| t $թ| v         n    Z   Z  Z   Z  Zi  Z  Z  Z  Z  Z Z  Z|  Z  Z  Z|  Z  Z  Z  Z ~ Z  Z|M]RMThinNMediumODoublePThick@Q Very Thin MMMMMMMMMO             Format A MMMMMMMMMO             Format A MNMMMMMN H   H   H   H   H   Format B_ AFl   H   H   |H   H   H    KV l   l   l   l    _ GX   |   AaY6AB = A A A A@ A A6BAC = B B BMM B B B 6MCBD l C  C C CM CMM C6`DCE l D Dmat D D D DNM6sEDF l E E E E E E6FE l F  F FH F F F6] GH l  G G 6t HGI la H H6 IHJ l I I@6 JIW l JAC J60KLzM  gK  hK  iK6 jK6GLKMz  nL  oL  pL  qL 6ZMLNzE rM  sM  tM  uM 6mNMOz yN zNl {N  |N 6ONPz }O ~O O Ol6POQz P P P P]6QPRz Q Qt Q Ql6RQSzB R Rl R  R 6SRTzW S  S  S6 S6TSUz h T i T j T6 T6UTVz o U p U q U6 U6VUz s V t V u V6 V6 WJX l z W { W |6 XW lP X } X ~%Commentzq zt zw  zz  z} z z z d  BlackT!WhiteddARed ddGreendd BluedCyand Magenta6 d YellowYiY Times-Bold Palatino-BoldPalatino-Roman Times-Roman Times-ItalicSymbolSymbolHelvetica-Narrow-BoldHelvetica-BoldCourier Courier-BoldCourier-ObliqueCourierTimes HelveticaSymbolPalatino NarrowRegularWRegularW BoldRegularObliqueItalicG_u3t) V(I2X^-l/uY׏v6vY(.9FL}v˞zX d&2_$iE_ѹgȭ/ pdpWdո{n