Physically Based M odeling
CS15-863 Spring 1997
Assignment 1: Differential Equations
Due Thursday Jan 30

The purpose of thisassignment is to introduce you to the idea of differential equationsaslive,
squirmy things you can interact with, and to explore some basic properties of numerical solutions.
An ulterior motive isto let you make sure you can draw on the screen, read the mouse, etc.

Theideais to implement a 2-D animated particle x with position p = (pyx, py) Wwhose motion
(Px. Py) isgoverned by oneor another differential equation, using Euler’smethod to solvethe equa-
tion. You' Il animate the particle by updating the display after each timestep.

First, try an “integral curve” mode: each time the mouse is clicked, take the mouse position
(My, My) asaninitia value for (py, py). Then, as you march forward through time, draw aline
from the previous position to the new one, so that the particle leaves atrail. Start anew curve each
time the mouse is clicked. Don’t bother erasing—that way you'll be able to compare bunches of
curves. Try the equations p, = —Kpy, Py = Kpx, where k is a constant, at a variety of step sizes.
Alsotry px = —kpx, py = —kpy, also fiddling with the step nzsize. Blends of these two functions
(i.e. px=—kipy — kopxand p, = ky px — ka py for various values of k; and k) are also interesting.
In vector notation, we' d write thislast as

_{ p®
x(1) = < Dy (1))

o _ —kapy(t) — ko px(t)
X(t) = f(x(t),t) = (Ky pxzt) — kapy(t)) '

Next, switch to “movie” mode: draw a spot at the current position, after erasing the old spot.
Implement a*“mouse spring,” as follows: if the mouse position is (My, My), add a mouse term to
the differential equation of theform p, = kn(My — py), Py = km(My — py) with ky, > O which will
pull the particle toward the mouse. If possible, use a mouse button to control the spring, enabling
it only when the button isdown. (You can simplify your code by just making k., zero whenever the
mouse button is not pressed. Also, it helpsto draw aline between the mouse and the particle when
the spring is enabled.) What happens if you make the mouse a repulsor, by making k., negative?
(Canyouthink of abetter function for py and p, to implement arepulsor?) Try the mouse spring by
itself, with the equations from the previous exercise, and with the equation p, = 0 and p, = —kp,.

Once you get all that working, you can make the particle more interesting by moving it into a
“second-order” dynamicsworld. Sofar, you' ve been computing the velocity of the particledirectly,
by choosingp = f(p, t). Now we'd like the particle to behave according to the rulep(t) = F(t),
where F(t) = (F(t), Fy(t)) isthetotal force acting on our particle at timet. (We' re assuming the
particle has unit mass.) We'd like to continue to work only with first-order ODE’s, so the “ state”
of the particle hasto be enlarged. We now let x be avector (py, py, vx, vy) Where (vy, vy) =V =p

and

isthe particle’'s velocity. Thisleads usto the first-order “ coupled” equation

Px Ux
EX — E py _ Vy
di” dt| v || K
Uy Fy

Numerically, solving thisequation is as easy solving any other ODE. What'sdifferent isthat the
initial conditions now require four parameters to be fully specified, not two: in simulating a New-
tonian particle, you must supply theinitial position (py, py) of the particle along with the velocity
(vy, vy).

To make things simple, you can let the particle have zero velocity initially. Go back and do
integral curve mode again. Try the force function F = —p = —(px, —py) again. Try this with
damping: use F = —p + kyv and play around with both positive and negative values for kg.

Now try movie mode. You can implement a mouse spring the same as you did before: let the
“mouse force” Fy be computed by Fy = kn(My — px, My — py) with ky, > 0. In order for your
simulation not to get out of control, you' [l want to add a damping force F4 of theform Fy = —Kkgv
where kg > 0, so that the total force F isF = Fy; + Fp. For even more fun, combine the func-
tions from integral-curve mode with movie mode e.g. |et the particle experience aforceF = —pin
addition to the mouse-spring force.

Another thing that’ sinteresting to do with second-order behavior (but pretty boring infirst-order
mode) isto simulate some orbital mechanics. Given your single moving particle, let it be attracted
to some location s on the screen with force

~ lp-=sllp—si> llp—s|®"

See if you can give the particle an initial velocity so that it has a stable orbit. (You might want to
draw some indication of wheresis.) To make it interesting, define several source pointss, s;, and
sum the force exerted on the particles by each source, to find a total net force. You should be able
to come up with a configuration of points, values of k, and initial conditions so that the particle’s
journey traces out an interesting path on the screen. For the ambitious, find a non-symmetric ar-
rangement of 3 or 4 source points that results in a stable orbit (an orbit where the particle doesn’'t
decay into the center of asource, resulting in anumerical explosion, nor isthe particle flung off the
screen, never to return). Note that stability may be difficult if not impossible using Euler’s method
for your integeration.

Programming hints: for modularity (later assignments!), try to structure your program as fol-
lows. Encode the function f (x(t), t) asaroutinedxdt which, in C, might be specified as

voi d dxdt (doubl e t, double x[], double xdot[])
{

/* Extract data fromthe state array x[] to get x(t) */

/* Conpute x(t) */

[* Stuff Xx(t) into the array xdot[] */

Thisway, the method you use to solve the ODE can be completely decoupled from the ODE you’re
actually trying to solve. Write your Euler method so that it calls the function dxdt . If you feel
ambitious, modify your program to use the midpoint method instead of Euler: if you've coded up

dxdt assuggested, the change to the midpoint method shouldn’t require more than about aminute
or two of programming.

