AN INTRODUCTION TO
SEPARATION LOGIC

1. An Overview

John C. Reynolds
Carnegie Mellon University

January 7, 2011

©2011 John C. Reynolds

A Program for In-place List Reversal

LREV € = nil;

whilei = nildo (k:=[i4+ 1];[i+ 1] :=j;j:=i;i:=k).
To prove {list i} LREV {list o j}, the invariant

Ja, B. listai Alist Bj A al = of -3,

(where list € i det i = nil and list(a-«) i det dj. i — a,j A list a)

IS inadequate.

An adequate invariant (in Hoare logic):

(Ba, 8. listai Alist Bj Al = af-g)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil).

An adequate invariant (in separation logic):

(3, B. list i = list B)) A of) = af-8.

where x is the separating conjunction.

To prove {list i * list yx} LREV {list af j list v x} in Hoare
logic, we need the stronger invariant:

(Ja, B. listavi Alist Bj A ach) = of-53)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil)
A list v x
A (Vk. reachable(x, k)
A (reachable(i, k) V reachable(j, k)) = k = nil).

But in separation logic, we can use:

(B, B. listai * list B * listyx) A al = al-B).

Framing

Actually, in separation logic, from
{list i} LREV {list o' j},
we can use the frame rule to infer directly that

{listai * listyx} LREV {list ! * list v x}.

Overview of Separation Logic

e Low-level programming language
— Extension of simple imperative language

— Commands for allocating, accessing, mutating, and deal-
locating data structures

— Dangling pointer faults (if pointer is dereferenced)
e Program specification and proof
— Extension of Hoare logic
— Separating (independent, spatial) conjunction (*) and
implication (—x)
e Inductive definitions over abstract structures

Early History

e Distinct Nonrepeating Tree Systems
(Burstall 1972)
e Adding Separating Conjunction to Hoare Logic
(Reynolds 1999, with flaws)
e Bunched Implication (BI) Logics
(O’Hearn and Pym 1999)
e Intuitionistic Separation Logic
(Ishtiag and O’Hearn 2001, Reynolds 2000)
e Classical Separation Logic (Ishtiag and O’Hearn 2001)
e Adding Address Arithmetic (Reynolds 2001)
e Concurrent Separation Logic (O’Hearn and Brookes 2004)

States

Without address arithmetic (old version):

Values = Integers U Atoms U Addresses
where Integers, Atoms, and Addresses are disjoint

nil € Atoms
Storesyy = V — Values

Heaps = U (A — Values™)
A C Addresses

Statesy = Storesy x Heaps
where V' is a finite set of variables.

With address arithmetic (new version):

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil € Atoms
Storesy = V — Values

Heaps = U sp, (A — Values)
A C Addresses

Statesy = Storesy x Heaps
where V is a finite set of variables.

(We assume that all but a finite number of nonnegative integers
are addresses.)

The Programming Language: An Informal View

The simple imperative language:

= skip ; if — then — else — while — do —
plus:
Store: x:3,y:4
Heap : empty
Allocation x :=cons(1,?2) ; [}

Store : x:37,y:4

Heap: 37:1, 38:2
Lookup y = [x] ; ()

Store : x:37,y:1

Heap: 37:1,38:2
Mutation x4+ 1] :=3; (3

Store : x:37,y:1

Heap: 37:1, 38:3
Deallocation dispose(x + 1) [}

Store : x:37,y:1

Heap: 37:1

Note that:

e EXxpressions depend only upon the store.
— no side effects or nontermination.
— comns and [—] are parts of commands.

e Allocation is nondeterminate.

Memory Faults

Store . x:3,y:4

Heap : empty
Allocation x:=cons(1,2) ; (%

Store: x:37,y:4

Heap : 37:1, 38:2
Lookup y:=[x]: J

Store: x:37,y:1

Heap: 37:1,38:2
Mutation [x+2]:=3; N2

abort

Faults can also be caused by out-of-range lookup or dealloca-
tion.

Assertions

Standard predicate calculus:

N V — = \vd -

plus:
e emp (empty heap)
The heap is empty.
o ci— ¢ (singleton heap)
The heap contains one cell, at address e with contents ¢’.
® p1 * Po (separating conjunction)

The heap can be split into two disjoint parts such that p
holds for one part and p, holds for the other.

® p1 —* P> (separating implication)
If the heap is extended with a disjoint part in which p; holds,
then p> holds for the extended heap.

Some Abbreviations

def :
e— — = Jx!/. e— 2’ where 2’ notfreeine
def
e —e = e e x true
def
er—el,...,ep — er»e1 x---xe+n—1—ep
def
e—el,...,en — e—e1 *x---xe+n—1—ey

iff er—eq1,...,en * true

Examples of Separating Conjunction

1. x — 3,y asserts that x points to an adjacent
pair of cells containing 3 and y.

2.y — 3,x asserts that y points to an adjacent
pair of cells containing 3 and x.

3. x— 3,y *x y+— 3, x asserts that situations
(1) and (2) hold for separate parts of the heap.

4. x — 3,y Ay — 3,x asserts that situations
(1) and (2) hold for the same heap, which can
only happen if the values of x and y are the
same.

5. x — 3,y Ay — 3,x asserts that either
(3) or (4) may hold, and that the heap may
contain additional cells.

<W

6lw

An Example of Separating Implication
Suppose p holds for

Store : xia, ... X— 3
Heap: a:3,a+1:4, ... 4
Then (x — 3,4) — p holds for

Store : xia, ... X
Heap :

andx— 1,2 * ((x+— 3,4) — p) holds for
Store : xia, ... Xx—1
Heap: a:l,a+1:2, ... 2
In particular,

ryS 5N 5 5N 85 5

Rest
of
Heap

Rest
of
Heap

Rest
of
Heap

{x— 1,2 x ((x—3,4) =«p)} [x] :=3; [x+ 1] :=4 {p},

and more generally,

{x— — — %x ((x—3,4) = p)}t [x] :=3; [x+ 1] : =4 {p}.

Rules and Axiom Schemata for = and —x
pP1 * p2 <> P2 * P1
(p1 * p2) * p3 < p1 * (P2 * p3)
p *x emp < p
(p1VDp2) * g (p1 * @) V(P2 * q)
(p1Ap2) * g= (p1 * @) N(p2 * q)
(Jx. p1) * po < Jx. (p1 * po) when z not free in po
(Vz. p1) * po = Vx. (p1 * po) wWhen z not free in po

P1 = P2 q1 = g2
P1 * q1 = P2 * Q2

(monotonicity)

* = : = —k
PL* P2 = P3 (0 ving) P2 (p2 —* p3) (
p1 = (p2 —* p3) p1 * p2 = P3.

decurrying)

Two Unsound Axiom Schemata
p = p *x p (Contraction — unsound)
eg.px—1
Pk q=0p (Weakening — unsound)
eg.px—1
q:yr— 2

Some Axiom Schemata for —
€1I—>6/1/\62I—>€/2<:>61I—>6/1/\61262/\6/126,2
e] €] *x ep— e, =e] F ep
emp < Vo, (x — —)
(e—=e)Ap=(e—¢€) x ((e—e) —p).
(Regrettably, these are far from complete.)

Specifications

e {p}c{q} (partial correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.

e [plc[q] (total correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.
— Every execution of c terminates.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.

The Differences with Hoare Logic

e Specifications are universally quantified implicitly over both
stores and heaps,

e Specifications are universally quantified implicitly over all
possible executions.

e Any execution (starting in a state satisfying p) that gives a
memory fault falsifies both partial and total specifications.
Thus:

e ¢ o \Well-specified programs don’t go wrong. e e e

— and memory-fault checking is unnecessary.

Enforcing Record Boundaries

The fact that specifications preclude memory faults acts in con-
cert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, in

co;x:=cons(1,2);¢c1;[x+2]:=7,

no allocation performed by the subcommand cg or ¢; can be
guaranteed to allocate the location x 4 2.

As long as cg and ¢y terminate and c¢q does not modify x, the
above command may abort.

It follows that there is no postcondition that makes the specifica-
tion
{true} cg;x:=cons(1,2);c1;[x+2]:=7 {7}

valid.

On the Other Hand (Gluing Records)

fxim =y —)
if y = x4 1 then skip else
if x=y+ 1 then x .=y else
(dispose x ; dispose y ; x ;= cons(1,2))

{X =, _}'

Hoare’s Inference Rules

The command-specific inference rules of Hoare logic
remain sound, as do structural rules such as
e Strengthening Precedent
p=q {q}c{r}
{p}c{r}.

e Weakening Consequent

{ptcie} qg=r

{p}edrt.

e Existential Quantification (Ghost Variable Elimination)

{p} c{q}

{Fv. p} ¢ {Fv. q},
where v is not free in c.

e Conjunction

{p} c{a1} {p}c{ax}

{p} c{q1 A q2},

e Substitution

{r} c{q}
{p/6} (c/d) {q/é},
where § is the substitutionvy — eq,...,vn — €en, v1,...,Un
are the variables occurring free in p, ¢, or g, and, if v; is mod-

ified by ¢, then ¢; is a variable that does not occur free in any
other e;.

The Failure of the Rule of Constancy

On the other hand,
e Rule of Constancy

{r}; c{q}
{pAryci{gnr,
where no variable occurring free in r is modified by c.

IS unsound, since, for example
= =} X =4 {x— 4}
{x——-Ay—=3}] =4 {x—4Ay— 3}
fails when x = y.

The Frame Rule

Instead, we have the
e Frame Rule (O’'Hearn)

{p} c{q}

{p * r}cig x r},
where no variable occurring free in r is modified by c.

The frame rule is the key to “local reasoning” about the heap:

To understand how a program works, it should be pos-
sible for reasoning and specification to be confined to
the cells that the program actually accesses. The value
of any other cell will automatically remain unchanged.
(O’'Hearn)

Local Reasoning

e The set of variables and heap cells that may actually be
used by a command (starting from a given state) is called
its footprint.

e If {p} c {q} isvalid, then p will assert that the heap contains
all the cells in the footprint of ¢ (excluding the cells that are
freshly allocated by c).

e If p asserts that the heap contains only cells in the footprint
of ¢, then {p} c {q} is a local specification.

e If ¢/ contains ¢, it may have a larger footprint described, say,
by p * r. Then the frame rule is needed to move from

{p} c{q}to{p * r}c{q * r}.

Inference Rules for Mutation

e Local

{er— —} [e] :i=¢€ {e— €'}

e Global

{(er> =) * r}le] =€ {(ere) * r}.

e Backward Reasoning

{(e— =) x ((e—¢€) —p)} [e] :=¢ {p}.

Inference Rules for Deallocation

e Local

{e — —} dispose e {emp}.

e Global, Backwards Reasoning

{(e — —) % r} dispose e {r}.

Inference Rules for Nonoverwriting Allocation

e Local
{emp} v := cons(e) {v — €},
: . _ def
where vis notfreeine = eq,...,en.
e Global

{r} v:=cons(e) {(v—¢€) * r},
where v is not free in € or r.
(We postpone more complex rules with quantifiers.)

An Example of an Annotated Specification: Gluing
Records

{x — — % Y —}
if y=x+ 1 then
{X'_> _a_}
skip
else if x =y + 1 then
{y = _7_}
X.:=y
else
(fx—— % y— -}
dispose x ;
{y— —}
dispose y ;
{emp}
x:=cons(1,2))
{x— —, —}.

Another Example: Relative Pointers

{emp}

x .= cons(a,a) ;

{x — a,a}

y := cons(b,b) ;
{(x+—a,a) * (y— b,b)}
{(x—a,=) « (y—b,—)}

x+ 1] ==y —x;
{(x—a,y—x) * (y—b,—)}
ly+1] :=x—vy,

{(x—a,y—x) * (y = b,x—y)}
{Jo. (x — a,0) * (x4+o0+—b, —0)}.

Singly-linked Lists

list v i
| — 1 aD o,
O"/ O’/ R /nil
is defined by
list € def emp A i = nil
list (a-0) i = Jj. i a,j * listaj,
where

e c is the empty sequence.
e «-(is the concatenation of « followed by 3.
One can also derive an emptyness test:

istai= (i =nil & a =¢).

Reversing a List

{list ag i}
{list agi * (emp A nil = nil)}
j:=mnil;
{listagi * (emp Aj=nil)}
{list agi * listej}
(3o, 8. (listai * list B)) A) = of-8}
while i = nil do
({33, 0, 8. (list (a-a) i * list Bj) A afy = (a-a)T-8}
{Ja,a, B, k. (i+— a,k *x listak * list 3j) A OéJ(r) — (a-oz)Tﬁ}
k:=[i+1];
{(Fa,a,B. (i — a,k * listak * list 3j) A o) = (a-a)'-5)
i+ 1]:=j;
{Fa,a, 5. (i—a,j * listak x list j) A ag — (a-a)T-ﬁ}
{Fa, o, 6. (list ak * list(a-3)i) A o% — oﬂL-a-ﬁ}
(3a, B. (listak * list 3i) A o) = ol-5)
ji=i;i:=k
{Ja, 6. (list ai * list Bj) A Oég — Oﬂ.ﬁ})
{3, B. list Bj A o% =aol-BAra=¢
{list af j}

S-expressions (a la LISP)

T € S-exps iff
T € Atoms
or 7 = (71 - ™) Where 71, 7 € S-exps.

Representing S-expressions by Trees (no sharing)

For 7 € S-exps, we define the assertion
tree 7 (1)
by structural induction:
treea (7) iffemp Ai = a

tree (71 -) (2) iff
Fi1,90. 1+ i1,1> x tree T (i1) * tree 7o (io).

Representing S-expressions by Dags (with sharing)

For 7 € S-exps, we define
dag 7 (7)
by:
daga (2) iff i = a

dag (7’1 : 7’2) (Z) iff
Ji1,90. 1+ i1,1o * (dag 71 (1) Adagm (in)).

Array Allocation

(comm) ;i=---

x .= allocate y

Store :
Heap :

Store :
Heap :

| (var) := allocate (exp)

x:3,y: 4

empty

U

x:37,y.4
37—, 338: —,39: —, 40: —

lterated Separating Conjunction

(assert) i=--- | ©® \e/>;|?> (exp) (assert)

Let I be the contiguous set
I={v]|e<v<e}

of integers between the values of e and ¢’. Then @glzep(v) IS
true iff the heap can be partitioned into a family of disjoint sub-
heaps, indexed by I, such that p(v) is true for the vth subheap.

An Inference Rule

{r} v := allocate e {(@;‘-’:f_li — —) * T},

where v does not occur free in r or e.

A Cyclic Buffer

We assume that an n-element array has been allocated at ad-
dress |, e.g., by | := allocate n, and we use the variables

m number of active elements
i address of first active element
j address of first inactive element.

Then when the buffer contains a sequence «, it should satisfy
O<m<nAIlI<i<lI+nAlI<j<I+n A
J=1iémA m=FHa A
(OpZyidk— a1 * (O ek — —)),

wherex Dy =x+ymodulon,and I <x Py < |4 n.

Proving the Schorr-Waite Marking Algorithm (Yang)

e We abandon address arithmetic, and require all records to
contain two address fields and two boolean fields.

e Only reachable cells are in heap.

Let

def
allocated(x) = x— —, —, —, —

def
markedR = Vx. allocated(x) = x — —, —, —, true

noDangling (x) det (x = nil) V allocated(x)

noDanglingR det vx,Lr. (x = Lr—,—)=

noDangling(l) A noDangling(r).
Then the invariant of the program is

noDanglingR A noDangling(t) A noDangling(p) A

(IistMarkedNodesR(stack, p) *
(restoredlistR(stack, t) — spansR(STree, root))) A

(markedR * (unmarkedR A (Vx. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x)))))

Proving Schorr-Waite (continued)

noDanglingR A noDangling(t) A noDangling(p) A
(IistMarkedNodesR(stack, p) *

(restoredListR(stack,t) — spansR(STree, root))) A
(markedR * (unmarkedR A (‘v’x. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x))))).

restoredListR(stack, t): listMarkedNodesR (stack, p):

root root

Shared-Variable Concurrency
(O’Hearn and Brookes)

Without Critical Regions
Hoare (1972):
{p1}c1{a1} {p2} 2 {q2}

{p1 Ap2}c1lea{q1 Nga},
when the free variables of p1, ¢1, and g7 are not modified by c»,
and vice-versa.

O’Hearn (2002):
{p1} c1{ea} {p2} c2{q2}

{p1 * po} c1 [l 2 {q1 * g2}
(with the same side condition as above).

With Critical Regions: A Simple Buffer

{emp}
{emp * emp}
{emp} {emp}
x:=cons(...,...); get(y) ;
{x—— -} | {y—— -}
put(x) ; “Usey”;
{emp} {y———}
disposey ;
{emp}

{emp * emp}
{emp}
Behind the scenes:
put(x) = with buf when —full do (c:=x; full := true)
get(y) = with buf when full do (y := ¢ ; full := false)

The Resource Invariant

RE (full Acs —, =) v (= full A emp).
put(x) = get(y) =
{x—— -} {emp}

with buf when —full do (with buf when full do (
{(R x x— —,—)A~full} {(R x emp) A full}

{emp * x+— —, —} {c— —, — x emp}

{X'_> _7_} {C'_> _7_}

c:=x: full := true y :=c; full := false

{ful Ac+r— —, -} {=full ANy — — —}

{R} {(=full ANemp) * y+— —, —}
{R * emp}) {R x y— —,—})

{emp} {y——,-}

The Overall Program

{R x emp}
resource buf in
{emp}
{emp * emp
: | :
{emp * emp
{emp}
{R *x emp}

Fractional Permissions (Bornat, following Boyland)
We write e = ¢/, where z is a real number such that 0 < z < 1,
to assert e points to e’ with permission z.

1 . -
e ¢ = ¢’ is the same as e — €/, so that a permission of one
allows all operations.

e Only lookup is allowed when z < 1.

Then
e e x erie’iffeziiz,e’
and
{emp}v :=cons(eq,...,en){e N €1,-.-,en}t

{e N —}dispose(e){emp}
fe= —}el :=efe =€)
{e S Yv:=[e]{e = e Nv="{¢}

(with appropriate restrictions on variable occurrences).

