
AN INTRODUCTION TO

SEPARATION LOGIC

1. An Overview
John C. Reynolds

Carnegie Mellon University

January 7, 2011

c©2011 John C. Reynolds

—

1

A Program for In-place List Reversal

LREV
def
= j := nil;

while i 6= nil do (k := [i + 1] ; [i + 1] := j ; j := i ; i := k).

To prove {list α i}LREV {list α† j}, the invariant

∃α, β. list α i ∧ list β j ∧ α†0 = α†·β,

(where list ε i
def
= i = nil and list(a·α) i

def
= ∃j. i ↪→ a, j ∧ list α j)

is inadequate.

—

2

An adequate invariant (in Hoare logic):

(∃α, β. list α i ∧ list β j ∧ α†0 = α†·β)

∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil).

An adequate invariant (in separation logic):

(∃α, β. list α i ∗ list β j) ∧ α†0 = α†·β.

where ∗ is the separating conjunction.

—

To prove {list α i ∗ list γ x}LREV {list α† j ∗ list γ x} in Hoare
logic, we need the stronger invariant:

(∃α, β. list α i ∧ list β j ∧ α†0 = α†·β)

∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil)

∧ list γ x

∧ (∀k. reachable(x, k)

∧ (reachable(i, k) ∨ reachable(j, k))⇒ k = nil).

But in separation logic, we can use:

(∃α, β. list α i ∗ list β j ∗ list γ x) ∧ α†0 = α†·β).

—

Framing
Actually, in separation logic, from

{list α i}LREV {list α† j},

we can use the frame rule to infer directly that

{list α i ∗ list γ x}LREV {list α† j ∗ list γ x}.

—

3

Overview of Separation Logic

• Low-level programming language
– Extension of simple imperative language
– Commands for allocating, accessing, mutating, and deal-

locating data structures
– Dangling pointer faults (if pointer is dereferenced)

• Program specification and proof
– Extension of Hoare logic
– Separating (independent, spatial) conjunction (∗) and

implication (−∗)
• Inductive definitions over abstract structures

—

4

Early History

• Distinct Nonrepeating Tree Systems
(Burstall 1972)
• Adding Separating Conjunction to Hoare Logic

(Reynolds 1999, with flaws)
• Bunched Implication (BI) Logics

(O’Hearn and Pym 1999)
• Intuitionistic Separation Logic

(Ishtiaq and O’Hearn 2001, Reynolds 2000)
• Classical Separation Logic (Ishtiaq and O’Hearn 2001)
• Adding Address Arithmetic (Reynolds 2001)
• Concurrent Separation Logic (O’Hearn and Brookes 2004)

—

5

States
Without address arithmetic (old version):

Values = Integers ∪Atoms ∪Addresses

where Integers, Atoms, and Addresses are disjoint
nil ∈ Atoms

StoresV = V → Values

Heaps =
⋃
A

fin
⊆Addresses

(A→ Values+)

StatesV = StoresV ×Heaps

where V is a finite set of variables.
—

6

With address arithmetic (new version):

Values = Integers

Atoms ∪Addresses ⊆ Integers

where Atoms and Addresses are disjoint
nil ∈ Atoms

StoresV = V → Values

Heaps =
⋃
A

fin
⊆Addresses

(A→ Values)

StatesV = StoresV ×Heaps

where V is a finite set of variables.

(We assume that all but a finite number of nonnegative integers
are addresses.)

—

The Programming Language: An Informal View
The simple imperative language:

:= skip ; if − then − else − while − do −

plus:

Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1,2) ; ⇓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 1] := 3 ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 3

Deallocation dispose(x + 1) ⇓
Store : x: 37, y: 1
Heap : 37: 1

—

7

Note that:

• Expressions depend only upon the store.
– no side effects or nontermination.
– cons and [−] are parts of commands.

• Allocation is nondeterminate.

—

Memory Faults
Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1,2) ; ⇓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ⇓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 2] := 3 ; ⇓
abort

Faults can also be caused by out-of-range lookup or dealloca-
tion.

—

8

Assertions
Standard predicate calculus:

∧ ∨ ¬ ⇒ ∀ ∃

plus:

• emp (empty heap)
The heap is empty.
• e 7→ e′ (singleton heap)

The heap contains one cell, at address e with contents e′.
• p1 ∗ p2 (separating conjunction)

The heap can be split into two disjoint parts such that p1

holds for one part and p2 holds for the other.
• p1 −∗ p2 (separating implication)

If the heap is extended with a disjoint part in which p1 holds,
then p2 holds for the extended heap.

—

9

Some Abbreviations

e 7→ − def
= ∃x′. e 7→ x′ where x′ not free in e

e ↪→ e′
def
= e 7→ e′ ∗ true

e 7→ e1, . . . , en
def
= e 7→ e1 ∗ · · · ∗ e+ n− 1 7→ en

e ↪→ e1, . . . , en
def
= e ↪→ e1 ∗ · · · ∗ e+ n− 1 ↪→ en

iff e 7→ e1, . . . , en ∗ true

—

10

Examples of Separating Conjunction

1. x 7→ 3, y asserts that x points to an adjacent
pair of cells containing 3 and y. y

3-x

2. y 7→ 3, x asserts that y points to an adjacent
pair of cells containing 3 and x. x

3-y

3. x 7→ 3, y ∗ y 7→ 3, x asserts that situations
(1) and (2) hold for separate parts of the heap. ◦

3-x
◦
3 � y*Y

4. x 7→ 3, y ∧ y 7→ 3, x asserts that situations
(1) and (2) hold for the same heap, which can
only happen if the values of x and y are the
same.

◦
3

HHj
��*

x
y

y

5. x ↪→ 3, y ∧ y ↪→ 3, x asserts that either
(3) or (4) may hold, and that the heap may
contain additional cells.

—

11

An Example of Separating Implication
Suppose p holds for
Store : x:α, . . .

Heap : α: 3, α+ 1: 4, . . . 4
3-x
� ◦
� ◦

�

�

�

�

Rest
of
Heap

Then (x 7→ 3,4) −∗ p holds for
Store : x:α, . . .

Heap : . . .

-x
� ◦
� ◦

�

�

�

�

Rest
of
Heap

and x 7→ 1,2 ∗ ((x 7→ 3,4) −∗ p) holds for
Store : x:α, . . .

Heap : α: 1, α+ 1: 2, . . . 2
1-x
� ◦
� ◦

�

�

�

�

Rest
of
Heap

In particular,

{x 7→ 1,2 ∗ ((x 7→ 3,4) −∗ p)} [x] := 3 ; [x + 1] := 4 {p},

and more generally,

{x 7→ −,− ∗ ((x 7→ 3,4) −∗ p)} [x] := 3 ; [x + 1] := 4 {p}.

—

12

Rules and Axiom Schemata for ∗ and −∗
p1 ∗ p2 ⇔ p2 ∗ p1

(p1 ∗ p2) ∗ p3 ⇔ p1 ∗ (p2 ∗ p3)

p ∗ emp⇔ p

(p1 ∨ p2) ∗ q ⇔ (p1 ∗ q) ∨ (p2 ∗ q)
(p1 ∧ p2) ∗ q ⇒ (p1 ∗ q) ∧ (p2 ∗ q)
(∃x. p1) ∗ p2 ⇔ ∃x. (p1 ∗ p2) when x not free in p2

(∀x. p1) ∗ p2 ⇒ ∀x. (p1 ∗ p2) when x not free in p2

p1 ⇒ p2 q1 ⇒ q2

p1 ∗ q1 ⇒ p2 ∗ q2
(monotonicity)

p1 ∗ p2 ⇒ p3

p1 ⇒ (p2 −∗ p3)
(currying)

p1 ⇒ (p2 −∗ p3)

p1 ∗ p2 ⇒ p3.
(decurrying)

—

13

Two Unsound Axiom Schemata
p⇒ p ∗ p (Contraction — unsound)

e.g. p : x 7→ 1

p ∗ q ⇒ p (Weakening — unsound)
e.g. p : x 7→ 1

q : y 7→ 2

—

14

Some Axiom Schemata for 7→
e1 7→ e′1 ∧ e2 7→ e′2 ⇔ e1 7→ e′1 ∧ e1 = e2 ∧ e′1 = e′2
e1 ↪→ e′1 ∗ e2 ↪→ e′2 ⇒ e1 6= e2

emp⇔ ∀x. ¬(x ↪→ −)

(e ↪→ e′) ∧ p⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).

(Regrettably, these are far from complete.)

—

15

Specifications

• {p} c {q} (partial correctness)

Starting in any state in which p holds:
– No execution of c aborts.
– When some execution of c terminates in a final state,

then q holds in the final state.

—

16

• [p] c [q] (total correctness)

Starting in any state in which p holds:
– No execution of c aborts.
– Every execution of c terminates.
– When some execution of c terminates in a final state,

then q holds in the final state.

—

The Differences with Hoare Logic

• Specifications are universally quantified implicitly over both
stores and heaps,
• Specifications are universally quantified implicitly over all

possible executions.
• Any execution (starting in a state satisfying p) that gives a

memory fault falsifies both partial and total specifications.
Thus:

• • •Well-specified programs don’t go wrong. • • •

— and memory-fault checking is unnecessary.

—

17

Enforcing Record Boundaries
The fact that specifications preclude memory faults acts in con-
cert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, in

c0 ; x := cons(1,2) ; c1 ; [x + 2] := 7,

no allocation performed by the subcommand c0 or c1 can be
guaranteed to allocate the location x + 2.

As long as c0 and c1 terminate and c1 does not modify x, the
above command may abort.

It follows that there is no postcondition that makes the specifica-
tion

{true} c0 ; x := cons(1,2) ; c1 ; [x + 2] := 7 {?}

valid.

—

18

On the Other Hand (Gluing Records)

{x 7→ − ∗ y 7→ −}
if y = x + 1 then skip else

if x = y + 1 then x := y else

(dispose x ; dispose y ; x := cons(1,2))

{x 7→ −,−}.
—

19

Hoare’s Inference Rules
The command-specific inference rules of Hoare logic
remain sound, as do structural rules such as

• Strengthening Precedent

p⇒ q {q} c {r}
{p} c {r}.

• Weakening Consequent

{p} c {q} q⇒ r

{p} c {r}.
—

20

• Existential Quantification (Ghost Variable Elimination)

{p} c {q}
{∃v. p} c {∃v. q},

where v is not free in c.

• Conjunction

{p} c {q1} {p} c {q2}
{p} c {q1 ∧ q2},

• Substitution
{p} c {q}

{p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en, v1, . . . , vn

are the variables occurring free in p, c, or q, and, if vi is mod-
ified by c, then ei is a variable that does not occur free in any
other ej.

—

The Failure of the Rule of Constancy
On the other hand,

• Rule of Constancy

{p} c {q}
{p ∧ r} c {q ∧ r},

where no variable occurring free in r is modified by c.

is unsound, since, for example

{x 7→ −} [x] := 4 {x 7→ 4}
{x 7→ − ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3}

fails when x = y.

—

21

The Frame Rule
Instead, we have the

• Frame Rule (O’Hearn)

{p} c {q}
{p ∗ r} c {q ∗ r},

where no variable occurring free in r is modified by c.

The frame rule is the key to “local reasoning” about the heap:

To understand how a program works, it should be pos-
sible for reasoning and specification to be confined to
the cells that the program actually accesses. The value
of any other cell will automatically remain unchanged.
(O’Hearn)

—

22

Local Reasoning

• The set of variables and heap cells that may actually be
used by a command (starting from a given state) is called
its footprint.

• If {p} c {q} is valid, then p will assert that the heap contains
all the cells in the footprint of c (excluding the cells that are
freshly allocated by c).

• If p asserts that the heap contains only cells in the footprint
of c, then {p} c {q} is a local specification.

• If c′ contains c, it may have a larger footprint described, say,
by p ∗ r. Then the frame rule is needed to move from
{p} c {q} to {p ∗ r} c {q ∗ r}.

—

23

Inference Rules for Mutation

• Local

{e 7→ −} [e] := e′ {e 7→ e′}.

• Global

{(e 7→ −) ∗ r} [e] := e′ {(e 7→ e′) ∗ r}.

• Backward Reasoning

{(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p}.

—

24

Inference Rules for Deallocation

• Local

{e 7→ −} dispose e {emp}.

• Global, Backwards Reasoning

{(e 7→ −) ∗ r} dispose e {r}.

—

25

Inference Rules for Nonoverwriting Allocation

• Local

{emp} v := cons(e) {v 7→ e},

where v is not free in e def
= e1, . . . , en.

• Global

{r} v := cons(e) {(v 7→ e) ∗ r},

where v is not free in e or r.

(We postpone more complex rules with quantifiers.)

—

26

An Example of an Annotated Specification: Gluing
Records

{x 7→ − ∗ y 7→ −}
if y = x + 1 then

{x 7→ −,−}
skip

else if x = y + 1 then

{y 7→ −,−}
x := y

else

({x 7→ − ∗ y 7→ −}
dispose x ;

{y 7→ −}
dispose y ;

{emp}
x := cons(1,2))

{x 7→ −,−}.

—

27

Another Example: Relative Pointers

{emp}
x := cons(a, a) ;

{x 7→ a, a}
y := cons(b, b) ;

{(x 7→ a, a) ∗ (y 7→ b, b)}
{(x 7→ a,−) ∗ (y 7→ b,−)}
[x + 1] := y − x ;

{(x 7→ a, y − x) ∗ (y 7→ b,−)}
[y + 1] := x− y ;

{(x 7→ a, y − x) ∗ (y 7→ b, x− y)}
{∃o. (x 7→ a, o) ∗ (x + o 7→ b, − o)}.

—

28

Singly-linked Lists
list α i:

◦

α1-i

◦

α2

nil

αn* *

· · ·
*

is defined by

list ε i
def
= emp ∧ i = nil

list (a·α) i
def
= ∃j. i 7→ a, j ∗ list α j,

where

• ε is the empty sequence.

• α·β is the concatenation of α followed by β.

One can also derive an emptyness test:

list α i⇒ (i = nil⇔ α = ε).

—

29

Reversing a List

{list α0 i}
{list α0 i ∗ (emp ∧ nil = nil)}
j := nil ;

{list α0 i ∗ (emp ∧ j = nil)}
{list α0 i ∗ list ε j}
{∃α, β. (list α i ∗ list β j) ∧ α†0 = α†·β}
while i 6= nil do

({∃a, α, β. (list (a·α) i ∗ list β j) ∧ α†0 = (a·α)†·β}

{∃a, α, β, k. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†0 = (a·α)†·β}
k := [i + 1] ;

{∃a, α, β. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†0 = (a·α)†·β}
[i + 1] := j ;

{∃a, α, β. (i 7→ a, j ∗ list α k ∗ list β j) ∧ α†0 = (a·α)†·β}

{∃a, α, β. (list α k ∗ list (a·β) i) ∧ α†0 = α†·a·β}

{∃α, β. (list α k ∗ list β i) ∧ α†0 = α†·β}
j := i ; i := k

{∃α, β. (list α i ∗ list β j) ∧ α†0 = α†·β})
{∃α, β. list β j ∧ α†0 = α†·β ∧ α = ε}

{list α†0 j}

—

30

S-expressions (à la LISP)

τ ∈ S-exps iff
τ ∈ Atoms

or τ = (τ1 · τ2) where τ1, τ2 ∈ S-exps.
—

31

Representing S-expressions by Trees (no sharing)
For τ ∈ S-exps, we define the assertion

tree τ (i)

by structural induction:

tree a (i) iff emp ∧ i = a

tree (τ1 · τ2) (i) iff
∃i1, i2. i 7→ i1, i2 ∗ tree τ1 (i1) ∗ tree τ2 (i2).

—

32

Representing S-expressions by Dags (with sharing)
For τ ∈ S-exps, we define

dag τ (i)

by:

dag a (i) iff i = a

dag (τ1 · τ2) (i) iff
∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)).

—

33

Array Allocation
〈comm〉 ::= · · · | 〈var〉 := allocate 〈exp〉

Store : x: 3, y: 4
Heap : empty

x := allocate y ⇓
Store : x: 37, y: 4
Heap : 37:−, 38:−,39:−, 40:−

—

34

Iterated Separating Conjunction

〈assert〉 ::= · · · |
⊙〈exp〉
〈var〉=〈exp〉 〈assert〉

Let I be the contiguous set

I = { v | e ≤ v ≤ e′ }

of integers between the values of e and e′. Then
⊙e′
v=e p(v) is

true iff the heap can be partitioned into a family of disjoint sub-
heaps, indexed by I, such that p(v) is true for the vth subheap.

—

35

An Inference Rule

{r} v := allocate e {(
⊙v+e−1
i=v i 7→ −) ∗ r},

where v does not occur free in r or e.

—

36

A Cyclic Buffer
We assume that an n-element array has been allocated at ad-
dress l, e.g., by l := allocate n, and we use the variables

m number of active elements
i address of first active element
j address of first inactive element.

Then when the buffer contains a sequence α, it should satisfy

0 ≤ m ≤ n ∧ l ≤ i < l + n ∧ l ≤ j < l + n ∧
j = i⊕ m ∧ m = #α ∧
((

⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ (

⊙n−m−1
k=0 j⊕ k 7→ −)),

where x⊕ y = x+ y modulo n, and l ≤ x⊕ y < l + n.

—

37

Proving the Schorr-Waite Marking Algorithm (Yang)

• We abandon address arithmetic, and require all records to
contain two address fields and two boolean fields.

• Only reachable cells are in heap.

—

38

Let

allocated(x)
def
= x ↪→ −,−,−,−

markedR
def
= ∀x. allocated(x)⇒ x ↪→ −,−,−, true

noDangling(x)
def
= (x = nil) ∨ allocated(x)

noDanglingR
def
= ∀x, l, r. (x ↪→ l, r,−,−)⇒

noDangling(l) ∧ noDangling(r).

Then the invariant of the program is

noDanglingR ∧ noDangling(t) ∧ noDangling(p) ∧
(listMarkedNodesR(stack, p) ∗

(restoredlistR(stack, t) −∗ spansR(STree, root))) ∧
(markedR ∗ (unmarkedR ∧ (∀x. allocated(x)⇒

(reach(t, x) ∨ reachRightChildInList(stack, x))))).
—

Proving Schorr-Waite (continued)

noDanglingR ∧ noDangling(t) ∧ noDangling(p) ∧
(listMarkedNodesR(stack, p) ∗

(restoredListR(stack, t) −∗ spansR(STree, root))) ∧
(markedR ∗ (unmarkedR ∧ (∀x. allocated(x)⇒

(reach(t, x) ∨ reachRightChildInList(stack, x))))).

restoredListR(stack, t): listMarkedNodesR(stack, p):

root
�
�
��
A
A
AU
�
�
��
C
C
CW

t
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

root

�
�
��

A
A
AK

�
�
��

p

t
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

—

39

Shared-Variable Concurrency
(O’Hearn and Brookes)

Without Critical Regions

Hoare (1972):

{p1} c1 {q1} {p2} c2 {q2}
{p1 ∧ p2} c1 ‖ c2 {q1 ∧ q2},

when the free variables of p1, c1, and q1 are not modified by c2,
and vice-versa.

O’Hearn (2002):

{p1} c1 {q1} {p2} c2 {q2}
{p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2}

(with the same side condition as above).

—

40

With Critical Regions: A Simple Buffer
{emp}

{emp ∗ emp}
{emp} {emp}
x := cons(. . . , . . .) ; get(y) ;

{x 7→ −,−} ‖ {y 7→ −,−}
put(x) ; “Use y” ;

{emp} {y 7→ −,−}
dispose y ;

{emp}
{emp ∗ emp}
{emp}

Behind the scenes:

put(x) = with buf when ¬ full do (c := x ; full := true)

get(y) = with buf when full do (y := c ; full := false)

—

41

The Resource Invariant

R
def
= (full ∧ c 7→ −,−) ∨ (¬ full ∧ emp).

put(x) =

{x 7→ −,−}
with buf when ¬ full do(
{(R ∗ x 7→ −,−) ∧ ¬ full}
{emp ∗ x 7→ −,−}
{x 7→ −,−}
c := x ; full := true

{full ∧ c 7→ −,−}
{R}
{R ∗ emp})
{emp}

get(y) =

{emp}
with buf when full do(
{(R ∗ emp) ∧ full}
{c 7→ −,− ∗ emp}
{c 7→ −,−}
y := c ; full := false

{¬ full ∧ y 7→ −,−}
{(¬ full ∧ emp) ∗ y 7→ −,−}
{R ∗ y 7→ −,−})
{y 7→ −,−}

—

42

The Overall Program

{R ∗ emp}
resource buf in

{emp}
{emp ∗ emp}

... ‖ ...
{emp ∗ emp}
{emp}

{R ∗ emp}
—

43

Fractional Permissions (Bornat, following Boyland)
We write e z7→ e′, where z is a real number such that 0 < z ≤ 1,
to assert e points to e′ with permission z.

• e 17→ e′ is the same as e 7→ e′, so that a permission of one
allows all operations.

• Only lookup is allowed when z < 1.

Then

e
z7→ e′ ∗ e z′7→ e′ iff e z+z′7→ e′

and

{emp}v := cons(e1, . . . , en){e 17→ e1, . . . , en}

{e 17→ −}dispose(e){emp}

{e 17→ −}[e] := e′{e 17→ e′}
{e z7→ e′}v := [e]{e z7→ e′ ∧ v = e′}

(with appropriate restrictions on variable occurrences).

—

44

