
Chapter 6

Iterated Separating
Conjunction

An Introduction
to Separation Logic
c©2009 John C. Reynolds
February 15, 2009

In this chapter, we introduce an iterative version of the separating con-
junction that is useful in describing arrays, as well as certain properties of
list structures.

6.1 A New Form of Assertion

We extend the language of assertions with an binding operator
⊙

, which is
used to construct an assertion of the form⊙e′

v=e p,

where the occurrence of v in the subscript is a binder whose scope is p.
Roughly speaking, this assertion describes the separating conjunction

(p/v → e) ∗ (p/v → e + 1) ∗ · · · ∗ (p/v → e′).

More precisely, for a state s, h, let m = [[e]]exps and n = [[e′]]exps be the
lower and upper bounds, and I = { i | m ≤ i ≤ n } be the set of indices.
Then s, h |= ⊙e′

v=e p iff there is a function H ∈ I → Heaps that partitions h
into an indexed set of heaps,

h =
⋃
{Hi | i ∈ I } and ∀i, j ∈ I. i 6= j implies Hi ⊥ Hj,

such that, for all indices i ∈ I, [s | v: i], Hi |= p.

185

186 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

This new form satisfies the following axiom schemata, in which, for read-
ability, we have written p(e) for p/i → e:

m > n ⇒ (⊙n
i=m p(i) ⇔ emp) (6.1)

m = n ⇒ (⊙n
i=m p(i) ⇔ p(m)) (6.2)

k ≤ m ≤ n + 1 ⇒ (⊙n
i=k p(i) ⇔ (⊙m−1

i=k p(i) ∗ ⊙n
i=m p(i))) (6.3)⊙n

i=m p(i) ⇔ ⊙n−k
i=m−k p(i + k) (6.4)

m ≤ n ⇒ ((⊙n
i=m p(i)) ∗ q ⇔ ⊙n

i=m(p(i) ∗ q)) (6.5)

when q is pure and i /∈ FV(q)

m ≤ n ⇒ ((⊙n
i=m p(i)) ∧ q ⇔ ⊙n

i=m(p(i) ∧ q)) (6.6)

when q is pure and i /∈ FV(q)

m ≤ j ≤ n ⇒ ((⊙n
i=m p(i)) ⇒ (p(j) ∗ true)). (6.7)

6.2 Arrays

The most obvious use of the iterated separating conjunction is to describe
arrays that occur in the heap. To allocate such arrays, as discussed in Section
1.8, we introduce the command

〈comm〉 ::= · · · | 〈var〉 := allocate 〈exp〉

The effect of v :=allocate e is to allocate a block of size e, and to assign the
address of the first element to v. The initialization of the array elements is
not specified. For example:

Store : x: 3, y: 4
Heap : empty

x := allocate y ⇓
Store : x: 37, y: 4
Heap : 37:−, 38:−, 39:−, 40:−.

The inference rules for this new command are similar to those for the
ordinary allocation of records:

6.2. ARRAYS 187

• The local nonoverwriting form (ALLOCNOL)

{emp} v := allocate e {⊙v+e−1
i=v i 7→ −},

where v /∈ FV(e).

• The global nonoverwriting form (ALLOCNOG)

{r} v := allocate e {(⊙v+e−1
i=v i 7→ −) ∗ r},

where v /∈ FV(e, r).

• The local form (ALLOCL)

{v = v′ ∧ emp} v := allocate e {⊙v+e′−1
i=v i 7→ −},

where v′ is distinct from v, and e′ denotes e/v → v′.

• The global form (ALLOCG)

{r} v := allocate e {∃v′. (
⊙v+e′−1

i=v i 7→ −) ∗ r′},

where v′ is distinct from v, v′ /∈ FV(e, r), e′ denotes e/v → v′, and r′

denotes r/v → v′.

• The backward-reasoning form (ALLOCBR)

{∀v′′. (
⊙v′′+e−1

i=v′′ i 7→ −) −∗ p′′} v := allocate e {p},

where v′′ is distinct from v, v′′ /∈ FV(e, p), and p′′ denotes p/v → v′′.

188 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Usually, (one-dimensional) arrays are used to represent sequences. We
define

array α (a, b)
def
= #α = b− a + 1 ∧⊙b

i=a i 7→ αi−a+1.

When array α (a, b) holds, we say that a to b (more precisely, the heap from
a to b) represents the sequence α.

Notice that, since the length of a sequence is never negative, the assertion
array α (a, b) implies that a ≤ b + 1. In fact, it would be consistent to define
a to b to represent the empty sequence when a > b+1 (as well as a = b+1),
but we will not use such “irregular” representations in these notes. (An
integrated approach to regular and irregular represetations is discussed in
Reference [92, Chapter 2].)

This new form of assertion satisfies the following axioms:

array α (a, b) ⇒ #α = b− a + 1

array α (a, b) ⇒ i ↪→ αi−a+1 when a ≤ i ≤ b

array ε (a, b) ⇔ b = a− 1 ∧ emp

array x (a, b) ⇔ b = a ∧ a 7→ x

array x·α (a, b) ⇔ a 7→ x ∗ array α (a + 1, b)

array α·x (a, b) ⇔ array α (a, b− 1) ∗ b 7→ x

array α (a, c) ∗ array β (c + 1, b)

⇔ array α·β (a, b) ∧ c = a + #α− 1

⇔ array α·β (a, b) ∧ c = b−#β.

6.3 Partition

As an example, we present a program that, given an array representing a
sequence, and a pivot value r, rearranges the sequence so that it splits into
two contiguous parts, containing values smaller or equal to r and values larger
than r, respectively. (This is a variant of the well-known program “Partition”
by C. A. R. Hoare [99].)

6.3. PARTITION 189

{array α(a, b)}

newvar d, x, y in (c := a− 1 ; d := b + 1 ;

{∃α1, α2, α3. (array α1 (a, c) ∗ array α2 (c + 1, d− 1) ∗ array α3 (d, b))

∧ α1·α2·α3 ∼ α ∧ {α1} ≤∗ r ∧ {α3} >∗ r}

while d > c + 1 do (x := [c + 1];

if x ≤ r then

{∃α1, α2, α3. (array α1 (a, c) ∗ c + 1 7→ x ∗ array α2 (c + 2, d− 1)

∗ array α3 (d, b)) ∧ α1·x·α2·α3 ∼ α ∧ {α1·x} ≤∗ r ∧ {α3} >∗ r}
c := c + 1

else (y := [d− 1];

if y > r then

{∃α1, α2, α3. (array α1 (a, c) ∗ array α2 (c + 1, d− 2) ∗ d− 1 7→ y

∗ array α3 (d, b)) ∧ α1·α2·y·α3 ∼ α ∧ {α1} ≤∗ r ∧ {y·α3} >∗ r}
d := d− 1

else

{∃α1, α2, α3. (array α1 (a, c) ∗ c + 1 7→ x

∗ array α2 (c + 2, d− 2) ∗ d− 1 7→ y ∗ array α3 (d, b))

∧ α1·x·α2·y·α3 ∼ α ∧ {α1} ≤∗ r ∧ {α3} >∗ r ∧ x > r ∧ y ≤ r}

([c + 1] := y ; [d− 1] := x ; c := c + 1 ; d := d− 1))))
{∃α1, α2. (array α1(a, c) ∗ array α2(c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ r ∧ r <∗ {α2}}.

For the most part, the reasoning here is straightforward. It should be noticed,
however, that the assertion following the second else requires c + 1 < d− 1,
which depends upon the while-test plus the validity of the implication

c + 1 ↪→ x ∧ d− 1 ↪→ y ∧ x > r ∧ y ≤ r⇒ c + 1 6= d− 1

(which holds since the ordering relations imply that x and y must be distinct,
which in turn implies that c + 1 and d− 1 must be distinct).

190 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

It is also straightforward to encapsulate the above program as a nonre-
cursive procedure. If we define

partition(c; a, b, r) =

newvar d, x, y in (c := a− 1 ; d := b + 1 ;

while d > c + 1 do

(x := [c + 1] ; if x ≤ r then c := c + 1 else

(y := [d− 1] ; if y > r then d := d− 1 else

([c + 1] := y ; [d− 1] := x ; c := c + 1 ; d := d− 1)))),

then partition satisfies

Hpartition
def
= {array α(a, b)}

partition(c; a, b, r){α}
{∃α1, α2. (array α1(a, c) ∗ array α2(c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ r ∧ r <∗ {α2}}.

6.4 From Partition to Quicksort

We can use the procedure partition to define a version of the recursive sorting
procedure called quicksort (which is again a variant of a well-known algorithm
by Hoare [100]).

Since quicksort is recursive, we must state the specification of the proce-
dure before we prove the correctness of its body, in order to reason about the
recursive calls within the body. Fortunately, the specification is an obvious
formalization of the requirements for sorting: We assume the specification

Hquicksort
def
= {array α (a, b)}

quicksort(; a, b){α}
{∃β. array β (a, b) ∧ β ∼ α ∧ ord β}.

(6.8)

(Notice that quicksort does not modify any variables.)
The basic idea behind quicksort is straightforward: One chooses a pivot

value, partitions the array to be sorted into segments that are smaller or
equal to the pivot and larger or equal to the pivot. Then one uses recursive
calls to sort the two segments.

6.4. FROM PARTITION TO QUICKSORT 191

In our version, there is a complication because it is possible that one of the
segments produced by the procedure partition will be empty while the other
is the entire array to be sorted, in which case a naive version of quicksort
will never terminate. (Consider, for example, the case where all elements of
the array have the same value.) To circumvent this problem, we sort the
end elements of the array separately, use their mean as the pivot value, and
apply partition only to the interior of the array, so that the division of the
entire array always has at least one element in each segment.

Then the following is an annotated specification of the body of quicksort:

Hpartition, Hquicksort `
{array α (a, b)}
if a < b then newvar c in

({∃x1, α0, x2. (a 7→ x1 ∗ array α0(a + 1, b− 1) ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α}
newvar x1, x2, r in

(x1 := [a] ; x2 := [b] ;

if x1 > x2 then ([a] := x2 ; [b] := x1) else skip ;

r := (x1 + x2)÷ 2 ;

{∃x1, α0, x2. (a 7→ x1 ∗ array α0(a + 1, b− 1) ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α ∧ x1 ≤ r ≤ x2}
{array α0(a + 1, b− 1)}
partition(c; a + 1, b− 1, r){α0}
{∃α1, α2. (array α1(a + 1, c)

∗ array α2(c + 1, b− 1))

∧ α1·α2 ∼ α0

∧ {α1} ≤∗ r ∧ r <∗ {α2}}

∗

(a 7→ x1 ∗ b 7→ x2)

∧ x1·α0·x2 ∼ α

∧ x1 ≤ r ≤ x2

∃x1, α0, x2

{∃x1, α1, α2, x2.

(a 7→ x1 ∗ array α1(a + 1, c) ∗ array α2(c + 1, b− 1) ∗ b 7→ x2)

∧ x1·α1·α2·x2 ∼ α ∧ x1 ≤ r ≤ x2 ∧ {α1} ≤∗ r ∧ r <∗ {α2}}) ;

{∃α1, α2. (array α1 (a, c) ∗ array α2 (c + 1, b)) ∧ α1·α2 ∼ α ∧ {α1} ≤∗ {α2}}
...

192 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

...

{∃α1, α2. (array α1 (a, c) ∗ array α2 (c + 1, b))

∧ α1·α2 ∼ α ∧ {α1} ≤∗ {α2}}
{array α1 (a, c)}
quicksort(; a, c){α1}
{∃β. array β (a, c)

∧ β ∼ α1 ∧ ord β}

∗

array α2(c + 1, b)

∧ α1·α2 ∼ α

∧ {α1} ≤∗ {α2}

∃α1,∃α2

{∃β1, α2. (array β1 (a, c) ∗ array α2 (c + 1, b))

∧ β1·α2 ∼ α ∧ {β1} ≤∗ {α2} ∧ ord β1}
{array α2 (c + 1, b)}
quicksort(; c + 1, b){α2}
{∃β. array β (c + 1, b)

∧ β ∼ α2 ∧ ord β}

∗

array β1(a, c)

∧ β1·α2 ∼ α

∧ {β1} ≤∗ {α2}
∧ ord β1

∃β1,∃α2

{∃β1, β2. (array β1 (a, c) ∗ array β2 (c + 1, b))

∧ β1·β2 ∼ α ∧ {β1} ≤∗ {β2} ∧ ord β1 ∧ ord β2})
else skip

{∃β. array β (a, b) ∧ β ∼ α ∧ ord β}.

The pre- and postconditions of the above specification match those of the
assumed specification 6.8. Moreover, the only free variables of the specified
command are a and b, neither of which is modified. Thus we may satisfy 6.8

6.5. ANOTHER CYCLIC BUFFER 193

by using the command as the body of the procedure declaration:

quicksort(a, b) =

if a < b then newvar c in

(newvar x1, x2, r in

(x1 := [a] ; x2 := [b] ;

if x1 > x2 then ([a] := x2 ; [b] := x1) else skip ;

r := (x1 + x2)÷ 2 ; partition(a + 1, b− 1, r; c)) ;

quicksort(a, c) ; quicksort(c + 1, b))
else skip.

6.5 Another Cyclic Buffer

When an array is used as a cyclic buffer, it represents a sequence in a more
complex way than is described by the predicate array: The array location
holding a sequence element is determined by modular arithmetic.

To illustrate, we assume that an n-element array has been allocated at
location l, and we write x⊕ y for the integer such that

x⊕ y = x + y modulo n and l ≤ j < l + n.

We will also use the following variables:

m : number of active elements
i : pointer to first active element
j : pointer to first inactive element.

Let R abbreviate the assertion

R
def
= 0 ≤ m ≤ n ∧ l ≤ i < l + n ∧ l ≤ j < l + n ∧ j = i⊕m.

It is easy to show (using ordinary Hoare logic) that

{R ∧m < n} m := m + 1 ; if j = l + n− 1 then j := l else j := j + 1 {R}

and

{R ∧m > 0} m := m− 1 ; if i = l + n− 1 then i := l else i := i + 1 {R}.

194 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Then the following invariant describes the situation where the cyclic buffer
contains the sequence α:

((
⊙m−1

k=0 i⊕ k 7→ αk+1) ∗ (
⊙n−m−1

k=0 j⊕ k 7→ −)) ∧m = #α ∧R,

and the following is an annotated specification of a command that inserts
the value x at the end of the sequence α. (The indications on the right refer
to axiom schema in Section 6.1.)

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ (

⊙n−m−1
k=0 j⊕ k 7→ −))

∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ (

⊙0
k=0 j⊕ k 7→ −) ∗ (6.3)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ j⊕ 0 7→ − ∗ (6.2)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

[j] := x ;

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ j⊕ 0 7→ x ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ αk+1) ∗ i⊕m 7→ x ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ i⊕m 7→ (α·x)m+1 ∗

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙m
k=m i⊕ k 7→ (α·x)k+1) ∗ (6.2)

(
⊙n−m−1

k=1 j⊕ k 7→ −)) ∧m = #α ∧R ∧m < n}

{((⊙m
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−1
k=1 j⊕ k 7→ −)) (6.3)

∧m + 1 = #(α·x) ∧R ∧m < n}

{((⊙m
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−2
k=0 j⊕ k⊕ 1 7→ −)) (6.4)

∧m + 1 = #(α·x) ∧R ∧m < n}

m := m + 1 ; if j = l + n− 1 then j := l else j := j + 1

{((⊙m−1
k=0 i⊕ k 7→ (α·x)k+1) ∗ (

⊙n−m−1
k=0 j⊕ k 7→ −))

∧m = #(α·x) ∧R}.

6.6. CONNECTING TWO VIEWS OF SIMPLE LISTS 195

6.6 Connecting Two Views of Simple Lists

Somewhat surprisingly, the iterated separating conjunction can be used prof-
itably to describe lists as well as arrays. A simple example is the connection
between ordinary simple lists and Bornat lists:

◦
α1

σ1

?
-i

◦
α2

σ2

?

nil

αn

σn

?

* * · · · *

From the definitions

list ε i
def
= emp ∧ i = nil

list (a·α) i
def
= ∃j. i 7→ a, j ∗ list α j

and
listN ε i

def
= emp ∧ i = nil

listN (b·σ) i
def
= b = i ∧ ∃j. i + 1 7→ j ∗ listN σ j,

one can show that list can be described in terms of listN and the separating
conjunction by

list α i ⇔ ∃σ. #σ = #α ∧ (listN σ i ∗ ⊙#α
k=1 σk 7→ αk).

The proof is by structural induction on α.

6.7 Specifying a Procedure for Subset Lists

A more spectacular example of the use of separated iterative conjunction with
lists is provided by an early LISP program that, given a list representing a
finite set, computes a list of lists representing all subsets of the input. (More
generally, the program maps a list representing a finite multiset into a list of
lists representing all sub-multisets; sets are the special case where the lists
contain no duplicate elements.)

This algorithm was historically important since it created sublists that
shared storage extensively, to an extent that reduced the use of storage to a
lower order of complexity compared with unshared sublists.

196 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Indeed, the resulting sharing structure is more complex than anything
produced by the other algorithms in these notes. Thus, it is significant that
the program can be verified in separation logic, and even more so that, with
the use of the iterated separating conjunction, one can prove enough about
the result to determine its size precisely.

We use the following variables to denote various kinds of sequences:

α : sequences of integers

β, γ : nonempty sequences of addresses

σ : nonempty sequences of sequences of integers.

Our goal is to write a procedure subsets satisfying

Hsubsets
def
=

{list α i}
subsets(j; i){α}

{∃σ, β. ss(α, σ) ∧ (list α i ∗ list β j ∗ (Q(σ, β) ∧R(β)))}.

(6.9)

Here ss(α, σ) asserts that σ is a sequence of the sequences that represent the
subsets of (the set represented by) α. The inductive definition also specifies
the order of elements in σ and its elements:

ss(ε, σ)
def
= σ = [ε]

ss(a·α, σ)
def
= ∃σ′. ss(α, σ′) ∧ σ = (extaσ

′)·σ′,

where exta is a function that prefixes a to every element of its argument:

#extaσ
def
= #σ

∀#σ
i=1 (extaσ)i

def
= a·σi.

(Here ∀#σ
i=1 p abbreviates ∀i. (1 ≤ i ≤ #σ)⇒ p.)

The formula Q(σ, β) asserts that the elements of β are lists representing
the elements of σ:

Q(σ, β)
def
= #β = #σ ∧ ∀#β

i=1 (list σi βi ∗ true).

The formula R(β) uses the iterated separating conjunction to assert that the
final element of β is the empty list, and that every previous element is a list

6.7. SPECIFYING A PROCEDURE FOR SUBSET LISTS 197

consisting of a single record followed by a list occurring later in β:

R(β)
def
= (β#β = nil ∧ emp) ∗⊙#β−1

i=1 (∃a, k. i < k ≤ #β ∧ βi 7→ a, βk).

At this stage, we can determine the storage used by subsets. By induction
on the definition of ss, using #extaσ = #σ, one can show that ss(α, σ) implies
#σ = 2#α. Then the definition of Q shows directly that #β = #σ.

Next, by induction on the definition of list, it is clear that list α describes a
heap containing #α two-cells, and similarly list β describes a heap containing
#β two-cells. Also, from the definition of R(β) and the iterated separating
conjunction, R(β) describes a heap containing #β − 1 two-cells.

Now consider the postcondition of the specification (6.9) of subsets:

{∃σ, β. ss(α, σ) ∧ (list α i ∗ list β j ∗ (Q(σ, β) ∧R(β)))}.

This assertion describes a heap containing three disjoint parts: a list con-
taining #α two-cells (the input list), a list containing 2#α two-cells, and a
list containing 2#α − 1 two-cells.

To verify the specification of subsets, we will also need to define the for-
mula

W (β, γ, a)
def
= #γ = #β ∧⊙#γ

i=1 γi 7→ a, βi,

which asserts that γ is a sequence of addresses such that γi is a list consisting
of a followed by the ith element of β.

It is immediately evident that:

Q([ε], [nil]) ⇔ true

R([nil]) ⇔ emp.

Less trivial are the following:

Proposition 19

W (β, γ, a) ∗ g 7→ a, b ⇔ W (b·β, g·γ, a).

198 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Proof

W (β, γ, a) ∗ g 7→ a, b

⇔ #γ = #β ∧ (g 7→ a, b ∗ ⊙#γ
i=1 γi 7→ a, βi)

⇔ #g·γ = #b·β ∧

((⊙1
i=1(g·γ)i 7→ a, (b·β)i) ∗ (

⊙#g·γ−1
i=1 (g·γ)i+1 7→ a, (b·β)i+1))

⇔ #g·γ = #b·β ∧⊙#g·γ
i=1 (g·γ)i 7→ a, (b·β)i

⇔ W (b·β, g·γ, a).

end of proof

Proposition 20

Q(σ, β) ∗ W (β, γ, a) ⇒ Q((extaσ)·σ, γ·β).

Proof Let

p(i)
def
= list σi βi

q(i)
def
= γi 7→ a, βi

n
def
= #σ.

6.7. SPECIFYING A PROCEDURE FOR SUBSET LISTS 199

Then

Q(σ, β) ∗ W (β, γ, a)

⇒ (#β = n ∧ ∀#β
i=1p(i) ∗ true) ∗ (#γ = #β ∧⊙#γ

i=1 q(i))

⇒ #β = n ∧#γ = n ∧ ((∀n
i=1p(i) ∗ true) ∗ ⊙n

i=1 q(i))

⇒ #β = n ∧#γ = n ∧ ((∀i. 1 ≤ i ≤ n⇒ p(i) ∗ true) ∗ ⊙n
i=1 q(i)) (a)

⇒ #β = n ∧#γ = n ∧ (∀i. ((1 ≤ i ≤ n⇒ p(i) ∗ true) ∗ ⊙n
j=1 q(j))) (b)

⇒ #β = n ∧#γ = n ∧ (∀i. (1 ≤ i ≤ n⇒ (p(i) ∗ true ∗ ⊙n
j=1 q(j)))) (c)

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true ∗ ⊙n

j=1 q(j))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧ ∀n

i=1(p(i) ∗ true ∗ ⊙n
j=1 q(j))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧ ∀n

i=1(p(i) ∗ true ∗ q(i))

⇒ #β = n ∧#γ = n ∧ ∀n
i=1(p(i) ∗ true) ∧

∀n
i=1(list σi βi ∗ true ∗ γi 7→ a, βi)

⇒ #γ = n ∧#β = n ∧ ∀n
i=1(list σi βi ∗ true) ∧

∀n
i=1(list (extaσ)i γi ∗ true)

⇒ #γ·β = #(extaσ)·σ ∧ ∀#γ·β
i=1 (list ((extaσ)·σ)i (γ·β)i ∗ true)

⇒ Q((extaσ)·σ, γ·β).

Here (a) implies (b) by the semidistributive law for ∗ and ∀, while (b) implies
(c) since, as the reader may verify, ((p ⇒ q) ∗ r) ⇒ (p ⇒ (q ∗ r)) is valid
when p is pure. end of proof

Proposition 21

R(β) ∗ W (β, γ, a) ⇒ R(γ·β).

200 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Proof

R(β) ∗ W (β, γ, a)

⇒ (β#β = nil ∧ emp) ∗⊙#γ
i=1 γi 7→ a, βi ∗⊙#β−1
i=1 (∃a, k. i < k ≤ #β ∧ βi 7→ a, βk)

⇒ ((γ·β)#γ·β = nil ∧ emp) ∗⊙#γ
i=1(∃a, k. i ≤ #γ < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k) ∗⊙#γ·β−1
i=#γ+1(∃a, k. i < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k)

⇒ ((γ·β)#γ·β = nil ∧ emp) ∗⊙#γ·β−1
i=1 (∃a, k. i < k ≤ #γ·β ∧ (γ·β)i 7→ a, (γ·β)k)

⇒ R(γ·β).

end of proof

From the last two propositions, we have

(Q(σ, β) ∧R(β)) ∗ W (β, γ, a)

⇒ (Q(σ, β) ∗ W (β, γ, a)) ∧ (R(β) ∗ W (β, γ, a))

⇒ Q((extaσ)·σ, γ·β) ∧R(γ·β).

Using these results, we can construct and verify a recursive procedure
satisfying (6.9). The first step is to construct a subsidiary recursive procedure
extapp that, given a list representing a sequence β of lists, creates a list
representing the sequence of those lists that are obtained by prefixing the
integer a to each element of β:

Hextapp
def
= {list β i}

extapp(k; a, i, j){β}
{∃γ. list β i ∗ lseg γ (k, j) ∗ W (β, γ, a)}.

6.7. SPECIFYING A PROCEDURE FOR SUBSET LISTS 201

The following annotated specification describes the body of extapp:

{list β i} extapp(k; a, i, j){β} {∃γ. list β i ∗ lseg γ (k, j) ∗ W (β, γ, a)} `
{list β i}
if i = nil then k := j else

{∃b, i′, β′. β = b·β′ ∧ (i 7→ b, i′ ∗ list β′ i′)}
newvar b, i′, g in

(b := [i] ; i′ := [i + 1] ;

{∃β′. β = b·β′ ∧ (i 7→ b, i′ ∗ list β′ i′)}
{list β′ i′}
extapp(k; a, i′, j){β′}
{∃γ. list β′ i′ ∗ lseg γ (k, j) ∗ W (β′, γ, a)}
{∃γ′. list β′ i′ ∗ lseg γ′ (k, j) ∗ W (β′, γ′, a)}

∗

 β = b·β′

∧
i 7→ b, i′

∃β′

{∃β′, γ′. β = b·β′ ∧
(list (b·β′) i ∗ lseg γ′ (k, j) ∗ W (β′, γ′, a))}

g := cons(a, b);

{∃β′, γ′. β = b·β′ ∧
(list (b·β′) i ∗ lseg γ′ (k, j) ∗ W (b·β′, g·γ′, a))}

k := cons(g, k)

{∃β′, γ′. β = b·β′ ∧

(list (b·β′) i ∗ lseg g·γ′ (k, j) ∗ W (b·β′, g·γ′, a))})
{∃γ. list β i ∗ lseg γ (k, j) ∗ W (β, γ, a)}.

202 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Finally, we may define and verify the main procedure subsets satisfying
(6.9):

Hsubsets, Hextapp `
{list α i}
if i = nil then j := cons(nil,nil) else

{∃a, i′, α′. α = a·α′ ∧ (i 7→ a, i′ ∗ list α′ i′)}

newvar a, i′, j′ in (a := [i] ; i′ := [i + 1] ;

{∃α′. α = a·α′ ∧ (i 7→ a, i′ ∗ list α′ i′)}
{list α′ i′}
subsets(j′; i′){α′}
{∃σ, β. ss(α′, σ) ∧

(list α′ i′ ∗ list β j′ ∗ (Q(σ, β) ∧R(β)))}
{∃σ′, β′. ss(α′, σ′) ∧

(list α′ i′ ∗ list β′ j′ ∗ (Q(σ′, β′) ∧R(β′)))}

∗

 α = a·α′

∧
i 7→ a, i′

∃α′

{∃α′, σ′, β′. (α = a·α′ ∧ ss(α′, σ′) ∧ (list (a·α′) i ∗ (Q(σ′, β′) ∧R(β′)))) ∗ list β′ j′}
{list β′ j′}
extapp(j; a, j′, j′){β′}
{∃γ. list β′ j′ ∗ lseg γ (j, j′) ∗ W (β′, γ, a)}

 ∗

α = a·α′ ∧ ss(α′, σ′) ∧
(list (a·α′) i ∗
(Q(σ′, β′) ∧R(β′)))

∃α′, σ′, β′

{∃α′, σ′, β′. (α = a·α′ ∧ ss(α′, σ′) ∧ (list (a·α′) i ∗ (Q(σ′, β′) ∧R(β′)))) ∗
(∃γ. list β′ j′ ∗ lseg γ (j, j′) ∗ W (β′, γ, a))}

{∃α′, σ′, β′, γ. α = a·α′ ∧ ss(a·α′, (extaσ
′)·σ′) ∧

(list (a·α′) i ∗ list (γ·β′) j ∗ (Q((extaσ
′)·σ′, γ·β′) ∧R(γ·β′)))})

{∃σ, β. ss(α, σ) ∧ (list α i ∗ list β j ∗ (Q(σ, β) ∧R(β)))}.

6.7. SPECIFYING A PROCEDURE FOR SUBSET LISTS 203

Exercise 1

Derive the axiom scheme

m ≤ j ≤ n ⇒ ((⊙n
i=m p(i)) ⇒ (p(j) ∗ true))

from the other axiom schemata for iterating separating conjunction given in
Section 6.1.

Exercise 2

The following is an alternative global rule for allocation that uses a ghost
variable (v′):

• The ghost-variable global form (ALLOCGG)

{v = v′ ∧ r} v := allocate e {(⊙v+e′−1
i=v i 7→ −) ∗ r′},

where v′ is distinct from v, e′ denotes e/v → v′, and r′ denotes r/v → v′.

Derive (ALLOCGG) from (ALLOCG) and (ALLOCL) from (ALLOCGG).

Exercise 3

Write an iterative version (in which recursion or, for that matter, procedures
are not used) of the program for subset lists in Section 6.7. Since it is
natural for efficent iterative programs to reverse lists, your program will not
give exactly the same results as the one in Section 6.7.

Specifically, you will need to replace the predicates ss and W by

ss′(ε, σ)
def
= σ = [ε]

ss′(a·α, σ)
def
= ∃σ′. (ss′(α, σ′) ∧ σ = (extaσ

′)†·σ′)

and

W ′(β, γ, a)
def
= #γ = #β ∧⊙#γ

i=1 γi 7→ a, (β†)i.

204 CHAPTER 6. ITERATED SEPARATING CONJUNCTION

Then your program should contain a nest of two while commands. It
should satisfy

{list α i}
“Set j to list of lists of subsets of i”

{∃σ, β. ss′(α†, σ) ∧ (list β j ∗ (Q(σ, β) ∧R(β)))}.

The invariant of the outer while should be

∃α′, α′′, σ, β. α′†·α′′ = α ∧ ss′(α′, σ) ∧

(list α′′ i ∗ list β j ∗ (Q(σ, β) ∧R(β))),

and the invariant of the inner while should be

∃α′, α′′, σ, β′, β′′, γ. α′†·a·α′′ = α ∧ ss′(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ lseg β′ (j, m) ∗ list β′′ m ∗

(Q(σ, β′·β′′) ∧R(β′·β′′)) ∗ W ′(β′, γ, a)).

At the completion of the inner while, the assertion

∃α′, α′′, σ, β′, γ. α′†·a·α′′ = α ∧ ss′(α′, σ) ∧

(list α′′ i ∗ lseg γ (l, j) ∗ list β′ j ∗

(Q(σ, β′) ∧R(β′)) ∗ W ′(β′, γ, a))

should hold.

