Grand Challenge:

Dependability Benchmarking & Prediction

(IFIP WG 10.4 Benchmark SIG)
http://www.dependability.org

Chair: Phil Koopman, Carnegie Mellon University
Vice Chair: Henrique Madeira, University of Coimbra

First Meeting: November 1st, 1999
Problem Scope

- **Implementation Technology**
 - Hardware, software, control algorithms, user interface, mechanical safety backups

- **Operational life cycle**
 - Specification, design, deployment, maintenance, operation, disposal

- **Product deployment scale**
 - Capital equipment, business infrastructure, consumer products, disposable goods

- **What are the stakes?**
 - Would you bet your **life** on a computer running off-the-shelf software?

 You will...
Grand Challenge Goal

◆ Be able to *predict* the dependability of a critical system before first product shipment
 • Including all real-world issues
 • Both comparative and absolute metrics if possible

◆ Major Issues:
 • Can we subset the problem space for tractability … and still be useful?
 – Real Time Mission Critical Systems offer an attractive starting point
 • Can we capture all the critical tradeoffs in any single “benchmark number”?
 – Too many numbers is confusing; too few might be overly simplistic
 – And all the other usual problems with benchmarking
What Makes Dependability Challenging?

- **Dependability prediction for electronic hardware exists**
 - A result of World War 2 adoption of electronics

- **Existing approaches**
 - Brute force redundancy is OK for hardware, but expensive
 - Many approaches assume a perfect design/specification/etc.
 - Software fault tolerance is still an evolving field

- **We still aren’t very good at accounting for:**
 - Software
 - People
 - QoS and “soft” dependability issues
 - Security (“malicious” faults)
 - Systems with imperfect maintenance/support/…
 - Systems with constrained budgets
Possible Elements of a Benchmark

Create a benchmarking scenario:

• Specifications of expected system behavior in different fault situations
• An operating scenario with a workload
• A faultload, used to inject:
 – System faults, exceptional situations, component overloads, operator mistakes, maintenance errors, component failures, etc.
• Procedures and rules for benchmarking activities
• Instrumentation to record the above
• Measures based on instrumentation
Possible Alternate Approaches

- Based on discussions in first meeting
 - Important to get numbers; but they must mean something useful
 - Benchmarking might be too aggressive for a first attempt

- “Consumer Reports” Approach
 - Measure whatever we can measure
 e.g. using fault injection; historical trends
 - Weave a pattern about the system based on this information

- Piggyback on an existing benchmark
 - TPC/C + dependability?

- Use a process-based approach
 - SEI CMM plus dependability best practice?
IFIP WG 10.4 Benchmarking SIG Goals

- **Exchange of ideas**
 - Promote cross-pollination; reduce wasted effort

- **Document state of the art**
 - Set of research white papers on what seems to work; what doesn’t *(e.g., “Grey Series” dependability book from DCCA series)*
 - What can we borrow from others; what is unique to dependability?
 - Encourage/publicize existing tools & techniques

- **Create issues list**
 - What issues must a dependability benchmark address?
 - What about multidimensional composites (performance, security, *etc.*)
 - What are the constraints that must be faced to attain success?

- **Propose path to dependability benchmarks**
 - Or at least published position papers on the alternatives

- **Next meeting in San Jose, early April 2000**
 - Contact: koopman@cmu.edu