Learning 3D Appearance Models from Video

Abstract

In the last few years, there has been a great in-
terest in face modeling for analysis (e.g. facial
expression recognition) and synthesis (e.g. wvir-
tual avatars). In this paper we introduce a semi-
automatic method for 38D facial appearance model-
ing from video sequences, and four main novelties
are proposed:

o We introduce a 8D generative facial appearance
model which takes into account the structure
and appearance.

e Learning the appearance model in a semi-
unsupervised manner from video sequences.

e In the learning stage, we use a flow based con-
strained stochastic sampling technique to im-
prove specificity in the parameter estimation
DPTOCESSs.

e In the appearance learning step, we automati-
cally select the most representative images from
the sequence. This avoids biasing the linear
model, speeds up the process and makes it more
computationally tractable.

Preliminary experiments of learning 38D facial ap-
pearance models from video are reported.

1 Introduction

In the last few years there has been a great interest
in modeling faces for analysis (e.g. facial expression
recognition) and synthesis (e.g talking heads). Among
all approaches to model 3D faces from video, two of
the most popular and commonly used are based on Ap-
pearance Models (AM) [12, 10, 2, 19, 5] or Rigid/Non-
rigid Structure from motion (SFM) [9, 6, 18, 23]. De-
spite being extensively studied, both approaches suf-
fer from several drawbacks. All SFM approaches have
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Figure 1: Generative 3D facial appearance model with
structure and appearance.

an implicit data conservation assumption in their for-
mulation, since the correspondence problem is usually
solved with classical trackers or optical flow techniques.
In the face domain, this aspect will is dramatic as the
face undergoes deep changes in appearance due to vari-
ations in expression (e.g. blinking, appearance of the
tongue, etc), biasing seriously the estimation. On the
other hand, AM techniques can overcome the problem
of appearance changes by explicitly introduce linear
variation of intensity /shape. However, AM approaches
do not decouple correctly the 3D structure from the
rigid/non-rigid motion due to changes in expression
(all modeled with shape basis). Moreover, in order



to learn the appearance model, a labeled training set
is usually necessary (which involves a tedious and er-
ror prone hand labeling process). In figure 1 we show
some pictures illustrating the main idea of the paper.

2 Previous Work

A lot of work has been done in the area of modeling
3D faces in the past few years. It is beyond the scope
of this paper to review all of them, notwithstanding we
will cite the most relevant ones.

Several papers have been published recovering the
3D head motion, assuming a simple 3D model and flow
equations. Basu et. al [3] use an ellipsoidal model to
track the head using regularized flow. De carlo and
Metaxas [13] use a generic 3D model and adjust it
making use of the flow equations. Xiao et al. [21] use
a cylindrical head model to recover the full 3D motion
under perspective projection. Without assuming a spe-
cific 3D model, several authors have reported interest-
ing work in the area of structure from motion (SFM).
Torresani et al. [20] recover the rigid and non-rigid
motion from video streams tracking individual feature
points. Under orthographic projection, they are able
to factorize the feature points matrix into rigid and
non-rigid motion. Chowdhury and Chellappa [9] con-
struct a 3D model by inferring depth from flow. In
a similar approach but from correspondences and per-
forming bundle adjustment, Zhang et al. [23] construct
3D models from a video sequence with the face rotation
from profile to profile. Pighin et al. [18] model and ani-
mate 3D Face Models doing SFM in multi-view images
and solving the correspondence by hand. Brand [6]
reports a SFM technique in a new algebraic approach
which allows accommodation for uncertainty and it is
less prone to propagate errors.

Since Active Shape Model/Active Apperance mod-
els [10] and Morphable models [15] appeared, there has
been quite a few amount of face related work in the ap-
pearance/face domain. Vetter and Blanz [5] have in-
troduced morphable models learned from a Cyberscan
which takes into account shape and texture. Romd-
hani and Vetter [19] have recently improved the fitting
process. However, in previous work the model should
be learned by a time consuming and error prone man-
ual process. Several efficient algorithms exist to fit
MM/AAM in real time [1]. Cascia et al. [8] show a
method which is able to track 3D heads under change-
able illumination conditions by registering w.r.t the
eigenspace. De la Torre and Black [11] proposed an
energy function based algorithm to learn the appear-
ance model in an unsupervised manner. In a similar
but independent work, Baker et al. [2] have proposed
a method to learn the AAM in a unsupervised fashion.

Figure 2: The original and the deformed 3D mesh.

The method we present in this paper unifies previ-
ous AM and SFM algorithms by learning the appear-
ance model in an unsupervised fashion and having a
3D model with decoupled rigid/non-rigid parameters.

3 Generative model for 3D faces

In this section we describe a possible generative 3D
facial appearance model which takes into account the
structure, appearance and 3D motion.

3.1 From generic 3D structure to
person-specific models

We have downloaded a generic 3d head model from
( http://grail.cs.washington.edu/projects/realface/ )
and subsampled it. In order to give a first estima-
tion of the shape of the face, we simply select some
points by hand in two orthogonal views. The mesh
is deformed with a radial basis function plus an affine
transformation, such that minimizes:

E(C,A) =||P2s — CD — AP34l||F
subject to c’1=0 C'Py; =0

where Poy = LTzt I e the 2D im-
Yyr Y2 - Yn
X, Xo -+ X,
age points, Psg= | Y7 Yo --- Y, | arethe 3D
1 1 - 1

points of the mesh. A € R?*3 contains an affine trans-

formation plus translation, D is a matrix such that
_(Xi=X5) P (Yi-Y)?

each element d;; = exp is the eu-
clidian distance [18]. Once we have re-escaled the X,Y
axis, we do a similar approach to re-scale the Z axis.
In figure 2.a, it is possible to see the original 3D mesh
and in figure 2.b we can see the person-specific model

once deformed.

3.2 Modeling appearance changes

Once the structure of the face is obtained, we construct
the appearance model by mapping the 3D model into
cylindrical coordinates. In figure 3.a we see how to
project the mesh into cylindrical coordinates, y = Y
and x = arctag(aX/Z) where « is a variable which
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Figure 3: a)Projection into cylindrical coordinates.
b)Unwarped Mesh.

Figure 4: Texture mapped from one image to the un-
warped cylinder.

adjust the cylindrical projection. In figure 3.b we can
see the unwarped mask.

Once we have unwarped the mesh, we map the tex-
ture from the image to the unwarped mesh, assuming
perspective projection. Similar to previous work [11],
in the unwarped texture image, we define four regions,
corresponding to the eyes, mouth, laterals and the rest
of the face. Each of the regions will contain a subspace
of different dimensionality (fig. 4). Once the unwarped
texture is obtained, it is mapped from the unwarped
cylindrical parameter space to the 3D model, by means
of the triangular patches (fig. 5).

4 Flow based initialization

We use flow based techniques to give an initial and fast
estimation of the rotational and translational compo-
nents of the rigid motion of the head between frames.
However, flow techniques are based on the brightness
constancy assumption and are well known for being
noisy and ambiguous when recovering 3D information.
To overcome these difficulties, we make use of robust
statistics techniques [4] and approximate the average
depth head with a simple parameterized 3D model.
Several 3D models can be used cylindrical[21], ellip-
soidal [3] or anthropomorphic models [13]. Within a

Figure 5: Two views of the texture map in 3D.

coarse-to-fine iterative strategy, we minimize®:

E([J,) = Z p(dpt(f(xpv N)) - dp(tfl)(f(x;m O))? U) (1)
PER

where  p(z,0) #2027 n = (6,t) =
(02,0y,0.,t5,ty,t.) are the parameters for the
rotational and translation components and R is
the region of support. f(x,u) is the geometric

transformation:
[y Dt
0y Uz +t.
foe ) =1 RO Y Zytr, 2)
YR(0:,04,0-)(X Y Z)+t. Yo

where R(0;,0,,0) is a rotation matrix and X YV Z are
the 3D coordinates?.

Minimizing expression (1) becomes a non-linear esti-
mation problem due to the robust function and the be-
havior of the motion parameters. To make the problem
linear we use the Iteratively Reweighted Least Squares
IRLS) algorithm [16] to aproximate the optimization
problem by one of weighted least squares to, at the
end, linearize the estimation of the motion parameters
[4]. Given an initial estimation of the motion param-
eters pu°, a Gauss-Newton method can be applied by

IThroughout this paper, we will use the following notation:
bold capital letters denote a matrix D, bold lower-case letters a
column vector d. d; represents the j-th column of the matrix D.
d;; denotes the scalar in the row i and column j of the matrix
D and the scalar i-th element of a column vector d;. All non-
bold letters will represent scalar variables. ||d||%, = dTWd
is a weighted norm of a vector d. diag is an operator which
transforms a vector to a diagonal matrix. D1 o Dy denotes the
Hadamard (point wise) product between two matrices/vectors
of equal dimensions.

2We assume that the instrinsic parameters of
the camera (fz, fy,Zo0,Yo) are known. For more
details  about camera calibration check  (hitp
/ Jwww.vision.caltech.edu/bouguetj /calib_doc/).



Figure 6: Some frames tracking the face under pose
and facial expression changes.

incrementally updating the parameters solving the fol-
lowing approximate minimization problem:

E(p) = ||d:(f(x, 1°) + J:Ap—di-1(£(x,0))|lw, (3)

where J; = %(L‘

is the Jacobian matrix. In appendix
A, we provide the updating equations.

In figure 6 we can observe some images of the track-
ing process. Observe that the tracker can become a
little bit biased due to the changes in pose/expression.

5 Dimensionality reduction

Dimensionality reduction is a common technique to
filter and make algorithms more computationally
tractable, specially when processing high dimensional
data. When processing large videos (e.g. several min-
utes) the amount of redundant facial expression/poses
becomes an issue for several reasons. Firstly, we do
not necessarily have an uniform sampling of all the
possible facial expressions/poses. This will bias the
appearance learning algorithm towards reconstructing
better the expressions with more samples. Secondly
and more importantly, the amount of data would make
the stochastic algorithm very computationally expen-
sive. To avoid this phenomena, once the images are
registered, we find the most representative prototypes
by clustering, using the recent advances in multi-way
normalized cuts [22] 3.

In figure 7 we show 56 prototypes extracted from a
sequences of 800 frames. Figure 8 shows some of the

3The code can be
http://www.cs.berkeley.edu/ stellayu/

download from

Figure 8: Samples of several clusters.

samples of the same cluster. We can observe that in-
dividual prototypes capture changes expression/pose.

6 Stochastic Smooting for Appearance
Learning

The optical flow provides us with an estimation of the
rigid motion parameters, which can be biased due to
changes in facial expression, the fact that the 3D model
is not accurate enought and linealization error. In or-
der to improve the estimation, compute some non-rigid
motion parameters and build the appearance model,
we use a smoothing particle filtering algorithm [14].
We will model an image sequence as a dynamical
system and we will treat the estimation problem as
one of multivariate time series analysis. In a more
general sense, any dynamical system can be charac-



terized in terms of some hidden variables, the state
S¢, which summarizes the system’s past behavior. The
more general description of a dynamical system can
be given in terms of the General State Space Model
(GSSM), which can be described by the following cou-
pled of stochastic equations:

st =g(si—1,u) + By (4)
d; = h(st) + ¢, (5)

where d; is the vectorized observed image frame
at time t. The hidden state, s;, will recover
(0z,0y,0,,t5,ty,t,, k), where k are the non-rigid pa-
rameters (see section). u; is the input to the dynami-
cal system and ; and ¢, are samples from some noise
distribution. h is the measurement function and g
describes the dynamics of the system. In the more
general case they are non-linear and the noise is non-
gaussian. If g and h are linear functions, and 3, ¢, are
samples from independent gaussian noise, the previous
equations form the well known Kalman filter 7, 14].

6.1 Measurement Equation

Eq.(5) is the measurement equation, and expresses the
fact that an image sequence at time t, d;, is generated
by a general non-linear function % of s;. The likelihood
of a particular sample of s; is related to the image by:

M* = NR(R(0:,0y,0.) * M + [t, t, t.]7, )
|ld; — Rec(dy(Proj(M*)))||

p(de|p, k) ~ exp — (6)

o
where we define several operators; M =
X, - X,
Y. - Y, is the centered 3D mesh.
Zy o Zn

NR(M* k) is an operator which takes the 3D
mesh and deforms the non-rigid parameters k. &
is a vector of 3 parameters which modify the posi-
tions of eyebrows, mouth corners and the mandible
aperture. Proj is the perpective projection operator
[foaX/Z — zo , fyY/Z — yo| of the visible triangles in
the 3D mesh. Given the projected visible triangles,
Rec takes the image triangles, projects it into cylin-
drical coordinates and reconstruct the subspace as
Zle (w! o Blcl). Where:

wl . Binary mask of the [ layer at time ¢, which repre-
sents its spatial domain. 7} =[x, 7}, ... 7},], where
each wl, € {0,1} and }_,«l, =1 Vp,t.. It is defined

by hand.

c! : Coefficients which linear combination of the basis
B! will reconstruct the graylevel of the layer .

B! : Appearance basis of the { layer.

Observe that equation (6) represents a pseudo-
likelihood (not necesarily normalized). A better mea-
sure would be achieved by probabilistic PCA [17], but
due to the fact that we have much less samples than
pixels, this measure can become unstable.

6.2 State Equation

Equation (4) describes the dynamical behavior of the
hidden states of the dynamical system (the image se-
quence). In the more general case g(s¢, u) is a non-
linear transformation (e.g. a mixture of gaussians, a
multi layer perceptron network, etc ) and §; is non-
gaussian noise.

The optical flow has given a first estimation of the
3D rigid parameters, although it is well known, we have
the results of the translation up to a scale factor due to
the ambiguity between translation and depth. Despite
the fact that the estimation of the flow can be a little
bit biased, we use it to guide the search while sampling
the posterior distribution of the state parameters. We
combine both estimations with their covariances in a
optimal Bayesian way:

p(silsi—1,f) = N(S; 1 (S Asp oy + 571 % £),50) (7)
Et—l _ E;l + E;l

where ¥4 is the uncertainty comming from the dynam-
ical system, f; is flow estimation for the rigid parame-
ters, X is the uncertainty of the optical flow computed.
To compute an estimation of ¥, we run several iter-
ations of Gauss-Newton with IRLS method, and, once
it has converged, we recompute the Jacobian J; with
the final parameter values f; and a binary weighting
matrix W, is constructed. Then, an estimation of the
uncertainty is given by ¥y = trace(Wy)(JF W J;) L.
A stands for a simple linear dynamical model, which
is assumed to have a constant velocity model. Once
the parameters are known, we sample from multidi-
mensional gaussian 8 to generate new samples.

6.3 Deterministic gradient learning

Once we have a first reasonable assessment of the
rigid/non-rigid parameters over a set of k frames,
we unwarp the texture and compute an estimation
of the subspace for each region of the face. For
each unwarped frame, we have an image p, € RFt*!
and a weighting matrix w; € RF>1. We minimize
E(B!,C',... B,CY =|Wo(P-X\, n'B'C)||r,
where W = [wy -+ wi] € R**F is a matrix such
that w;; = 1 is the pixel which is visible and w;; = 0
if not. B! € R is the set of k basis and C' =
[} --- cl] € R¥*™ are the set of coeficients for the

n
l layer. We recursively update the basis to preserve



85% of the energy. Using a two step method which al-
ternates between minimizing C in closed with B fixed
and then fix C and optimize w.r.t B. We do this for
each of the layers. See [11] for more details.

7 Experiments

Figure 9 shows some pictures with the tracking results,
after aligning the head w.r.t. the learned subspace.

showing the projected 3D mesh into the images after
the smoothing and appearance learning algorithm are
performed. The original sequence has approximately
800 frames from which, after tracking with flow (sec-
tion 4) and clustering, 130 frames are selected. Once
this reduced set of frames is selected, the stochastic
algorithm is run so as to improve the Rigid Motion
parameters as well as the Non-Rigid ones. From each
of the 130 frames, we have taken subsets of 15 frames
and run the smoothing for Condensation for register-
ing w.r.t the subspace that we have learned previously.
Good results have been gotten by using 700 particles
and, tipically, 3 runs going backward and forward. The
algorithm has been implemented in a non-optimized
matlab code and takes roughly 7 hours for processing
the original image sequence of 800 frames. This takes
into account the Optical Flow, Condensation, Smooth-
ing for Condensation and the learning of the Appear-
ance Model.

8 Conclusions and Future Work

In this paper we have introduced a new generative
model for 3D faces which takes into account structure,
appearance and 3D motion. The model is learned in a
semi-supervised manner with a mixture of determinis-
tic and stochastic techniques. However, the method
gets sometimes stuck in local minima and more re-
search needs to be done to alleviate this situation.
Also, more effort needs to be done in order to speed
up the learning process.

We are extending this work by updating the struc-
ture of the model. Also, we are working on recognizing
Facial Action Units (FACs) with this algorithm. We
will learn models of action units and use them to im-
prove the recognition performance in video sequences
where the head is moving arbitrarily.
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Appendix A

In order to compute an estimation of the 3D motion
parameters, we need to compute the Jacobian J; in
equation 3. It is a common assumption to approximate
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Figure 9: Tracking the rigid motion of the face.

the 3D rotation for its differential value, i.e.:

1 -6, 0,
R(0,,0,,0.)~ | 6. 1 -0,
—0, 6, 1

VT, (£, p0)) 1D

Gy
Jt — e
of(x,,p°
VT, (s, 1)) 2O
where Vi (f(x;, 1?)) =

[8du(fgxi,u?>> Bdit(f(xiﬁui’))]T

is the spatial gra-

9y
dient of the image d; warped with ! at the position
40
X;. f’ﬂ%}fh) € R2%6 is the derivative of the paramet-
t

ric motion w.r.t. the motion parameters evaluated at
the pixel x; and motion parameters p.

Yhy Xhs+Xh;y Y 1 hq
of _ h% h2 hs hs 0

8 - Zhs+Yho XgQ _ X O 1 ho
£y hZ hZ hs



Figure 10: Some poses of the 3D learned mesh

where h1 = Z(1—-0,y+0,) + 1z, ho = Z(—0,x+y—
0z)+ty, hs = Z(—0,x+0,y+1)+t,, 2 = X/Z and y =
Y/Z. Also, the first row of ‘Zf has to be multiplied by
—f2 and the second one has to be multiplied by — f,.

Once the linealization is computed, solving for eq. 3
only consist in solvind a linear system of equations:

(T WeI) Ay = IFWi(di(£(x,0)) = d—ny (F(x, 1¢)))

where the matrix W; contains the weighting factors
of the IRLS. Given a residual value e; and a o value,
the weights are defined as W; = dzag(w(el)), where
we consider the point by point division between two

vectors and ¢ (x) = 2Ge) = [O2ELa) | ORgec) )T
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