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ABSTRACT

An increasingly important trend in the engineering of com-
plex systems is the design of component integration stan-
dards. Such standards define rules of interaction and shared
communication infrastructure that permit composition of
systems out of independently-developed parts. A problem
with these standards is that it is often difficult to under-
stand exactly what they require and provide, and to analyze
them in order to understand their deeper properties. In this
paper we use our experience in modeling the High Level Ar-
chitecture (HLA) for Distributed Simulation to show how
one can capture the structured protocol inherent in an in-
tegration standard as a formal architectural model that can
be analyzed to detect anomalies, race conditions, and dead-

locks.
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1 Introduction

Component integration standards are becoming increas-
ingly important for commercial software systems. The
purpose of a component integration standard is to define
rules of interaction and shared infrastructure for composing
independently-developed software components into larger
systems. Typically an integration standard prescribes re-
quirements that must be satisfied by component interfaces,
and it provides facilities that support communication and
coordination among those components.

An early example of a component integration standard is
Unix pipes, which requires components to have interfaces
that read and write byte streams, and provides buffering
and synchronization infrastructure to connect the compo-
nents together. More recent examples include a growing
number of domain-specific integration standards in areas as
diverse as programming environments, robotics control [20],
and signal processing [17]. Additionally some aspects of
general-purpose object-oriented systems, such as CORBA,
COM/DCOM/OLE/ActiveX, and JavaBeans function as

component integration standards.

Component integration standards greatly simplify the con-
struction of complex systems from existing parts. Since com-
ponents share assumptions about the nature of interaction
with their environment many of the general problems of com-
ponent mismatch do not arise [9]. Thus it is easier for imple-
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mentors to combine parts written by multiple vendors and
to add new parts to existing systems. Moreover, the use
of a standard’s supporting infrastructure can substantially
reduce the amount of custom code that must be written to
support communication between those parts.

In practice, integration standards are typically specified us-
ing a combination of informal and semi-formal documen-
tation. On the informal side are guidelines and high-level
descriptions of usage patterns, tips, and examples. On the
semi-formal side one usually finds a description of an ap-
plication programmers’ interface (API) that explains what
kinds of services are provided by the infrastructure. APIs are
formal to the extent that they provide precise descriptions
of those services—usually as a set of signatures, possibly
annotated with informal pre- and post-conditions.

While such documentation is necessary, by itself it leaves
many important questions unanswered—for component de-
velopers, system integrators, standard infrastructure imple-
mentors, and proposers of new standards. For example,
while it may be clear what are the names and parameters
of services provided by the integration infrastructure, it may
not be clear what are the restrictions (if any) on the ordering
of invocations of those services. It may not be clear what
kinds of run-time state is maintained by the infrastructure to
facilitate component interaction. It may not be clear what
facilities must be provided by a component to be a compo-
nent, and which are optional. It may not be clear how con-
currently executing components might impact each other’s
run-time behavior, particularly when they access shared re-
sources. It may not be clear whether the standard itself
contains latent design problems that can lead to unexpected
runtime anomalies, such as race conditions and deadlocks.

In this paper we show how one can use formal modeling
to clarify these kinds of issues. The key idea is to treat
the integration standard as a structured protocol that can
be analyzed using existing formalisms and tools for model-
ing software architecture. By making explicit the protocol
inherent in the integration standard, we are able to make
precise the requirements on both the components and on
the supporting infrastructure itself. This in turn provides a
deeper understanding of the standard, and supports analysis
of its properties.

While the use of protocols to model a component integra-
tion standard might seem like a natural idea, there are a
number of technical hurdles that make it non-trivial to do
in practice. First, many component integration standards
are relatively complex, often involving dozens of routines in
their API. Structuring becomes a central issue for modeling.
Second, for a complex standard it is critical that the for-
mal model be traceable back to the original documentation.
This is because when errors are found, it must be possible
to relate the results back to the source. Third, is the issue
of variability in the standard. It is critical to distinguish



between aspects of the model that are fixed by the stan-
dard and those that are allowed to vary from one system to
another. In practice this can be difficult to do because a
particular API may make implementation choices that are
not intrinsically part of the integration standard. Fourth is
the problem of tractability. If the formal model is to be use-
ful to humans or to analysis tools it must be simple enough
that it can be understood (or mechanically processed), but
detailed enough that useful properties are revealed.

In the remainder of this paper we describe our experience of
solving these technical problems for a complex integration
standard for distributed simulation. The primary contribu-
tions of this paper are twofold. First, we show how formal
architectural models based on protocols can clarify the in-
tent of an integration standard, as well as expose critical
properties of it. Second, we describe the techniques that
can be used to create the initial model, and structure it to
support traceability, tractability, and automated analysis.

2 Related Research

This work is closely related to three distinct areas of prior
research. The first area is the growing field of architectural
description and analysis. Currently there are many archi-
tecture description languages (ADLs) and tools to support
their use (such as [12, 19, 15, 14]). While ADLs are far from
being in widespread use, there have been several examples
of their application to realistic case studies. This paper con-
tributes to this body of case studies, but pushes on a dif-
ferent dimension—namely, the application of architectural
modeling to component integration standards.

Among existing ADLs the one used here, Wright, is most
closely related to Rapide [12], as both use event patterns to
describe abstract behavior of architectures. Indeed, parts of
the HLA have been modeled by the developers of Rapide.
Wright differs from Rapide insofar as it supports definition
of connectors as explicit semantic entities and permits static
analysis using model checking tools. As we will see, this
capability is at the heart of our approach for modeling inte-
gration standards.

The second related area is research on the analysis of stan-
dards. An example close in spirit to our work is that of Sul-
livan and colleagues, who used Z to model and analyze the
Microsoft COM standard [21]. Also closely related is work
on formal definitions of architectural styles. In particular,
Moriconi and colleagues describe techniques for refining be-
tween styles [15]. In other work carried out by this paper’s
authors, we have considered how 7 and Wright can be used
to define styles [1, 2]. The work described in this paper dif-
fers from previous work in this area in that it represents a
much larger-scale application of architectural modeling than
has been reported in the literature, and introduces new tech-
niques to carry it out.

The third area is work on protocol specification and analy-
sis. There has been considerable research on ways to specify
protocols using a variety of formalisms, such as I/O Au-
tomata [13], SMV [6], SDL [11], and Petri Nets [16]. While
our research shares many of the same goals, there are no-
table differences. First, most protocol analysis assumes you
are starting with a complete description of the protocol. In
contrast, in our work the protocol is typically ¢mplicit in the
API of some integration standard documentation. Second,
while most protocols may involve large numbers of states,
the number of entry points into the protocol is typically
small. In contrast, the HLA (and other similar standards)

HLA High Level Architecture

IFSpec HLA Interface Specification
Federate an individual simulation
Federation a set of coordinated simulations
RTI Run-Time Infrastructure
Service A routine in the IFSpec

Figure 1: Glossary of HLA Terms

has over a 125 different entry points. This leads to techni-
cal issues not typically dealt with in the protocol literature,
such as ways to structure such a broad interface.

3 The “High Level Architecture” for Distributed
Simulation

The “High Level Architecture” (HLA) is a component in-
tegration standard for distributed simulation [22]. Tt was
developed by the Defense Modeling and Simulation Office
(DMSO) to support interoperability between simulations
purchased from different vendors.! This is a critical con-
cern for the US government, which spends billions on third
party simulations, coming from a wide variety of vendors.

Informally, the HLA prescribes a kind of “simulation bus”
into which simulations can be “plugged” to produce a joint
(distributed) simulation (as illustrated in Figure 2). In the
HLA design, members of a federation—the HLLA term for a
distributed simulation—coordinate their models of parts of
the world by sharing objects of interest and the attributes
that define them. Each member of the federation (termed
a federate) is responsible for calculating some part of the
larger simulation and broadcasts updates using the facilities
of a runtime infrastructure (termed the RTT). Routines that
support communication both from the federates, (e.g., to
indicate new data values), and to the federates, (e.g., to
request updates for a particular attribute), are defined in the
“Interface Specification” document—or [FSpec. Routines,
or “services”, in the IFSpec are specified by a name, the
initiator (either a Federate or the RTT), a set of parameters,
a possible return value, pre- and post-conditions, and a list
of the exceptions that may occur as a result of invoking the
service. (Figure 1 summarizes the HLA terms used in this
paper.)

An example of a typical RTI service is shown in Figure 3
(taken from [22]). This service is initiated by a federate (an
individual simulation) when it wants to pause the federation
(the entire distributed simulation). The effects of calling
the service are to cause the RTI to coordinate a distributed
handshaking algorithm in which it asks each of the simula-
tions to pause.

The HLA is a complex integration standard. The current
[FSpec includes over a 125 different services, and the full
document is over 400 pages of description. While the part
of the HLLA design that deals with attribute broadcast is rel-
atively straightforward, the overall standard is complicated
significantly by the need to deal with issues such as start-
ing, stopping, and pausing; allowing one federate to transfer
object attribute ownership to another; and distributed clock
management and time-ordered message sequencing.

To make the documentation for the integration standard
manageable, the [FSpec is divided into six chapters: federa-

I This paper refers to Version 1.2 of the standard, issued August
1997. A more recent version (1.3 of April 1998), fixing numerous
problems, was recently released. In addition the HLA is currently in
the process of being revised as an IEEE standard (provisional num-
ber P1516) by the Simulation Interoperability Standards Organization
(SI1S0).
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Figure 2: The HLA Integration Standard

2.5 Request Pause

Initiator: Federate-Initiated

Indicates to the RTI the request to stop the advance of the federation
execution. The federation execution members will be instructed by
the RTI to pause as soon after the inovcation of the Request Pause
service as possible. The label, supplied when the pause is requested,
will be supplied to the other federates via the Initiate Pause service.

Supplied Parameters
A label
Returned Parameters
None
Pre-conditions
The federation execution exists
The federate is joined to that federation execution
The federation execution is advancing (not paused)
Post-conditions
A federation pause is pending
Exceptions
Federation already paused
Federate not a federation execution member
RTI internal error

Related Services
Initiate Pause
Pause Achieved

Figure 3: The RequestPause Service

tion management, declaration management, object manage-
ment, ownership management, time management, and data
distribution management. Federation management services
are used by federates to initiate a federation execution, to
join or leave an execution in progress, to pause and resume,
and to save execution state. Declaration services are used
to communicate about what kinds of object attributes are
available and of interest, while object services communicate
actual object values. Ownership services are used in situ-
ations when one federate has been responsible for calculat-
ing the value of an object attribute, but for some reason
another federate should now take over that responsibility.
Time Management services are used to coordinate the logical
time advancements of federates and to ensure that messages
are delivered in time-stamp order. Data distribution man-
agement is used to filter attribute updates, reducing message
traffic and processing requirements, for each federate based
on defined criteria.

4 Problems with the IFSpec

The IFSpec i1s an indispensible document, since it provides a
definition of each required and provided service of the stan-
dard. However, there a number of problems with using 1F-
Spec as the only form of HLA documentation.

First, is the problem of determining what are the permissible
or required orderings of service invocations. While the pre-
conditions indicate (informally) in what situations a given
service can be called, it 1s often hard to determine what

kinds of behavior would lead to a precondition being satisfied
or not. For example, is it always legal for a federate to
pause the federation after joining? Moreover, it is difficult to
tell whether the preconditions are complete: if a component
satisfies all preconditions, will it ever trigger exceptions?

Second, since the [FSpec describes the HLA from the point
of view of an individual simulation, it is difficult for someone
building a federation out of existing simulations to tell what
kinds of coordination behavior will be provided by the RTT.
For example, exactly what kind of protocol does the RTI
use to pause a federation? Does an RTI attempt to find an
owner for orphaned object attributes?

Third, is the problem of understanding the deeper properties
of the standard, both with respect to its intended behavior,
and with respect to anomalies that can arise in using it.
For example, are there sequences of service invocations that
might lead to system deadlock? Are there latent race condi-
tions or other sequences of events that can lead to anomalous
behavior?

5 Approach and Challenges

In the remainder of the paper we show how a formal archi-
tectural specification can help resolve these kinds of issues.
The keystone of the approach is to view the HLA as an ar-
chitectural standard centered around a connector (i.e., the
RTI) that permits simulation components (i.e., the feder-
ates) to interact with each other. We then provide a formal
specification of that connector’s behavior, thereby making
explicit the protocol inherent in its informal description.

While the use of protocols might appear to be a natural idea,
there are a number of technical challenges in specifying an
integration standard as complex as the HLA.

e Structure: It is essential to structure the specification
so that it permits (a) separation of concerns; (b) incre-
mental specification and analysis; and (c) traceability.
Separation of concerns is needed to manage complexity.
Incremental specification is required to allow increasing
levels of fidelity, depending on the needs for documenta-
tion and analysis. Traceability is needed so that issues
identified in the process of formalization can be related
to the source of the problem in the standard’s API.

e Abstraction: Abstraction is required for two reasons.
First, it is necessary to simplify the model so that it
becomes tractable both for human readers and for anal-
ysis tools. Second, it is necessary to indicate what parts
of the standard are (intentionally) left unspecified.

e Analysis: Once you have a formal definition, it is not
immediately clear what kinds of analyses one would
want to perform, or how to frame those analyses using
existing tools.



Connector C-S-connector(n: Int)
Role Client; 5 = (request — result?x — Client) M §

Role Server = (request —result!x — Server) |:| §
Glue =

(|:| iil.ne
Client;.request — Server.request —
Server.result?x — Client; .result!x — Glue)

(s

Figure 4: Simple Client-Server Connector

In the next two sections we present the model and discuss
how it addresses these issues. Specifically, we use the Wright
architectural description language (ADL) as the modeling
language [4] to define the HLA. The key feature of Wright
that we exploit is the ability to formally define new archi-
tectural connectors as structured protocols.

6 Wright

Like most ADLs, Wright defines a system as a composition
of components and connectors: the components define the
primary centers of computation, while the connectors define
the interactions between components. Unlike some ADLs,
however, Wright permits the explicit definition of new con-
nector types, and provides formal, automatable criteria for
checking the consistency of those types [4].2

In Wright a connector type has a name, an optional set of
parameters, a set of role descriptions, and a glue description.
The name identifies the kind of connector. The parameters
provide instantiation values for the connector. FEach role
has a specification that defines the possible behaviors of a
participant in the interaction. The glue defines how the roles
will interact with each other.

To illustrate, consider a client-server connector that permits
multiple clients to interact with a server. Figure 4 shows
how this might be written in Wright. The connector has a
parameter that determines the number of clients that can
access the server. The roles of the connector define how the
clients and servers must behave at their interfaces. The glue
specifies how client-server communication is coordinated.

The distinction between roles and glue in Wright is impor-
tant because it allows us to separate two quite different con-
cerns of the connector specification. First is the description
of the interfaces to the connector: each role identifies what
an individual participant must do to interact over that kind
of connector. Second is the specification of how the connec-
tor coordinates those participants. As we will see in the case
of the HLA, this separation allows us to distinguish between
the interface that each simulation must conform to, and the
coordinating behavior of the run-time infrastructure.

Wright uses a variant of CSP [10] to define role and glue
behavior. Each such specification defines a pattern of events
(called a process) using operators for sequencing (“—” and
“”), choice (“r” and “[]”), and parallel composition (“||”).
Appendix A contains more details on the parts of CSP that

we use in this paper.

Wright extends CSP in three minor syntactic ways. First,

2Wright also supports the ability to define architectural styles,
check for consistency and completeness of architectural configurations,
and check for consistent specifications of components. For this pa-
per, however, we will restrict our presentation to just those parts of
Wright that concern the specification of the HLA. For further details,
the reader is referred to [3].

it distinguishes between initiating an event and observing
an event. An event that is initiated by a process is written
with an overbar. Second, it uses the symbol § to denote
the successfully-terminating process. (In CSP this is usually
written “SKIP”.) Third, Wright uses a quantification oper-
ator: (op) z : S e P(z). This operator constructs a new
process based on the process expression P(s), and the set
S, combining its parts by the operator (op). For example,
[i:{1,2,3} @ P,=Pi[] P[] Ps: i.e., a choice among one
of three processes, Pi, Pz, or Ps. Similarly, ; z : S e P(z),
is a process that consists of some unspecified sequencing of
the processes: ; z : S o P(z) =Tz : 5 e (P(z); (;y:

S\ {z} e P(y))).

Refering again to Figure 4, the process defining the Server
role of the C-S-connector

Server = (request — result'x — Server) [] §

indicates that the server repeatedly either observes a request
and then initiates the output of a result (represented by vari-
able z), or else terminates. Since we use the CSP operator
for “external” choice ([]), the decision about whether to ter-
minate or accept a request is determined by the environment
of the server.”

The connector also defines n client roles. Each of the n roles
has the same behavior:

Client = (request — result?x — Client) 1§

indicating that the client can repeatedly initiate a request
and retrieve a result, or it can choose to terminate. In this
case we use the internal choice operator (M) to indicate that,
unlike the server, it is the client’s choice whether to termi-
nate the interaction.

Finally, the glue part of C-S-connector coordinates the
clients and servers by forwarding requests and returning re-
sults. (In this case the glue has a particularly simple be-
havior: we’ll see later that this need not be the case.) The
glue guarantees that a complete request-reply transaction
between a given client and the server will complete before
accepting another request. The use of the quantification (us-
ing [] ) requires the glue to wait for some client to make a
request. If several do so simultaneously, the glue is free to
pick one. Note that in the description of the glue, we tag
each event with the name of the role with which it is associ-
ated. Also note that initiated events from roles are observed
events of the glue, and vice versa.

7 The HLA Model

Turning now to the HLA, the core of the Wright formal-
ization is the specification of the RTI connector.* At the
top-most level the RTI is defined as follows:

Connector RTI(nfeds : 1..)
Role Fed, ,f.q; = Federatelnterface
Glue = RTIBehavior

The RT1 is parameterized by the number of federates (nfeds)
in a joint simulation; there can be an arbitrary number of

3Wright uses a non-standard interpretation of external choice in
the case in which one of the branches is §: specifically, the choice
remains external, unlike, for example, the treatment in [18]. See [3]
for technical details.

4The full Wright specification is about 15 pages long [5]. For the
purposes of this paper we present only certain parts of the model
to highlight its key features. There are also a few other differences
arising from the fact that our final model includes fixes for several of
the problems identified in this paper.



them. The behavior of each federate is specified by the role
specification Federatelnterface. The interface describes the be-
havior to which a federate must conform in order to partic-
ipate in the federation.

The specification of the RTT’s behavior, on the other hand,
is defined by the glue process RTIBehavior. It describes the
manner in which the RTT coordinates communication among
the federates within an execution. We now examine each of
these parts in turn.

7.1 Specifying the Federate Interface

The behavior of Federatelnterface is divided into eight parts.

Federatelnterface =
FedMgmt || DeclMgmt || ObjMgmt || OwnMgmt || TimeMgmt
|| DataMgmt || FedJoined || ControlPause
where
FedMgmt = ...
DeclMgmt = ...

Within each part, services are represented as events. A
federate-initiated a service like “Join Federation Execution”
appears as joinFedExecution, while a RTI-initiated service like
“Initiate Pause” appears as initiatePause. The required and
permitted orderings of the events are specified by a process
that indicates what events can follow other events, and where
choices can be made by the federate or the RTI.

To determine the legal orderings and choice points we re-
lied primarily on the published [FSpec documentation. For
example, in Figure 3 the “Request Pause” service (initiated
by a federate) would correspond to the requestPause event.
There are three preconditions for this service. The first two
indicate that the createFedExecution and joinFedExecution must
preceed any occurance of that event. The relative ordering
of those later two events and their relation to other events
in the system must be inferred by looking at other parts of
the IFSpec documentation.

The third precondition in the example is more problematic.
What exactly does it mean for a federation to be “advanc-
ing”? Resolving this kind if issue is trickey because the pre-
condition refers to a state of the RTI and not the API. To
handle this kind of situation we had to infer the existence
of RTI state and build that into the RTIBehavior process.
However, sometimes the informal description was sufficiently
vague that we had to go back to the designers of the HLA
to ask them what they had in mind. For example, there
was no place in the IFSpec where “not paused” was defined,
and we had to clarify what the intention was—specifically,
what events should be allowed to occur in a “paused” state
and which are forbidden. (Note some events must be al-
lowed; otherwise there would be no way to “unpause” the
federate.)

Structurally, the first six parts of the specification corre-
spond to the six management groups of the IFSpec (cf.,
Section 3). The last two processes represent relationships
among events in different management groups. We struc-
ture the description as the parallel composition of subpro-
cesses for two reasons. First, it supports traceability: each
of the management processes corresponds to a distinct part
of the original [FSpec. When problems are discovered it is
relatively easy to trace them to the source. Second, the de-
composition permits us to separate concerns. This is fairly
obvious for the case of the six management groups, since
each covers a distinct aspect of the integration standard.

(We will consider these shortly.) Less obviously, however,
we can use separate processes to localize both the definition
of common constraints, as well as ways in which events in
one management group affect what is permissible in another.

Localization of common constraints is illustrated by the
FedJoined process:

FedJoined = joinFedExecution — (RUN pgpyents
A resignFedExecution — §)

The process constrains a federate from invoking any service
until it has first joined the federation. Formally, after ini-
tiating the joinFedExecution event, a federate can engage in
any of the events in the set FedFEvents. This set includes
all HLA events except for federation setup and takedown
events. However, once the event resignFedExecution is exe-
cuted, it interrupts the RUN process (indicated by the CSP
interrupt operator, A) and leads to successful termination of
the federate. By virtue of the way CSP synchronizes events
across parallel processes, placing this process in parallel with
other processes has the effect of forcing all other parts of the
specification to satisfy its constraint.

Because this constraint on invocation of services includes
services from all of the management groups, we simplify the
specification considerably by putting this constraint into a
single process. The alternative would be to include this con-
straint redundantly in each of separate management group
processes, significantly complicating those processes.

Localization of inter-group effects 1is illustrated by
ControlPause:

ControlPause = RUN pgyse Bvents
A\ pauseAchieved — resumeAchieved — ControlPause

In this process PauseFventsis the set of events that should
not be allowed to occur when a federation is paused. Ini-
tially the process permits any of these events to take place.
However, when a pauseAchieved event is initiated by a feder-
ate, none of those events are permitted until a resumeAchieved
event occurs. Since pauseAchieved occurs in response to a
pause request that can be initiated by some other federate,
and then mediated by the RTT (as we detail later), this links
the effects of one federate to other federate behaviors.

Returning to the six management group processes, each such
specification describes which services a federate may initiate
and under what circumstances. It also describes which ser-
vices may be invoked on that federate by the RTI, and under
what circumstances. To illustrate, Figure 5 details one of the
groups, Federation Management.

This extract illustrates how we represent federate behavior
and characterize what interactions are possible. Within this
specification a key part of the FedMgmt specification is to
describe pause and resume behavior of a federate. Refer-
ring to Figure 5, we see that after joining the execution, the
federate exhibits the behavior described by NormalFedMgmt.
That is, it can carry out normal events (like requesting to
save or restore state), it is permitted to request a pause, and
it should expect the possibility that a pause may be initiated.
Once a pause is initiated, it may choose between refusing to
pause (and exhibiting the behavior of NormalFedMgmt) and
agreeing to pause. If it decides to pause, it then notifies
the RTT of its success and exhibits the behavior described in
PausedFedMgmt. This is the inverse of NormalFedMgmt with
respect to pausing—in this state, it may carry out normal
events that are not affected by pausing (which is true of



FedMgmt = JoinFed n createFedExecution — JoinFed
JoinFed = joinFedExecution — NormalFedMgmt

NormalFedMgmt =
InitiateFedActivity DWaitForFed/—\ctivity n EndFedMgmt

InitiateFedActivity =
requestPause — NormalFedMgmt
M requestFedSave -+ NormalFedMgmt
M requestRestore - NormalFedMgmt
EndFedMgmt = resignFedExecution — (§ N
destroyFedExecution — §)

WaitForFedActivity =
initiatePause — (NormalFedMgmt n

pauseAchieved — PausedFedMgmt)

[]initiateFedSave — fedSaveBegun — fedSaveComplete —
NormalFedMgmt

[] initiateRestore — restoreComplete — NormalFedMgmt

PausedFedMgmt =
InitiatePausedFedActivity |:| WaitForPausedFedActivity n
EndFedMgmt
InitiatePausedFedActivity =

requestResume — PausedFedMgmt
M requestFedSave — PausedFedMgmt

M requestRestore - PausedFedMgmt
WaitForPausedFedActivity =

initiateResume — resumeAchieved — NormalFedMgmt

[]initiateFedSave — fedSaveBegun — fedSaveComplete —
PausedFedMgmt

[]initiateRestore — restoreComplete — PausedFedMgmt

Figure 5: Specification of FedMgmt

both saving and restoring state), it is permitted to request
aresume (but not another pause), and it should expect that
an initiateResume will occur. Once it does, the federation
returns to it normal behavior.

In the specification of Federatelnterface we use non-
determinism to abstract away the actual behavior of a spe-
cific federate. For example, InitiateFedActivity provides an in-
ternal choice among a set of alternatives. The actual choice
will depend on the computation of the federate filling the
role. Here we simply indicate that one of the possibilities
might occur.

7.2 Specifying RTI Behavior

While Federatelnterface models the behavior of a single feder-
ate, RTIBehavior describes how multiple federates interact via
the run-time infrastructure provided by the integration stan-
dard. A representative extract of the specification is shown
in Figure 6.

Like Federatelnterface, the description of RTIBehavior uses mul-
tiple processes to separate different aspects of the glue’s be-
havior. As before, these processes can be divided into those
encapsulating global constraints and those describing local
behaviors.

The global constraints are captured by the two processes
HandleMembership and JoinedFeds. These deal (respectively)
with how an execution is created and populated, and with
keeping track of which federates are currently members of
the federation. This information is needed at various times
by all of the mini-protocols. By separating out this concern,
we simplify each of the mini-protocols, since they need not
maintain this state on their own.

RTIBehavior = HandleMembership || JoinedFeds; ||
MiniProtocols
where
HandleMembership = . ..
JoinedFedsc =
(wholsJoined!S — JoinedFeds )
[0 {Jé: (1..nfeds) o Fed;.joinFedExecution —
JoinedFeds g (4})
[0 {J:: (1..nfeds) o Fed;.resignFedExecution —
JoinedFeds g\ (43)
(s

MiniProtocols =
FederationProtocols || DeclarationProtocols || ObjectProtocols ||
OwnershipProtocols || TimeProtocols || DataDistributionProtocols

FederationProtocols = PauseProtocol || ...
PauseProtocol = HandlePauseResume || PausedFeds
HandlePauseResume =
(|:|z' : (1..nfeds) ¢ Fed;.requestPause —
wholsJoined?S — wholsPaused?T —
(G 7:(8\ T) e Fedj.initiatePause — §) ;
HandlePauseResume)
|:| (|:| i : (L..nfeds) o Fed;.requestResume — wholsJoined?S —
wholsPaused?T — ResumeResponseg__7 7)

(s

ResumeResponse;,. g =

(; ¢:5 e Fed;.initiateResume — §) ; HandlePauseResume
ResumeResponse, ;. ¢ = HandlePauseResume
PausedFedsg = ...

ObjectProtocols = HandleRegistrations || HandleRemoves ||
HandleAttrOutOfScopes || ...

HandleRegistrations =
([ : (1..nfeds) o Fed;.registerObject — implicitAOANi —
HandleRegistrations)
1E

HandleRemoves =
(i : (1..nfeds) o Fed;.deleteObject — wholsJoined?S —

(; 7:(5\{1}) ¢ DecidelfRemoveNeeded;) ; HandleRemoves)

[0 (] : (1..nfeds) o Fed;.attrsOutOfScope —
DecidelfRemoveNeeded; ; HandleRemoves)

|:| (implicitOutOfScope?i — DecidelfRemoveNeeded; ;
HandleRemoves)

s

DecidelfRemoveNeeded; = § m Fed,;.removeObject — §

HandleAttrOutOfScopes =
(] : (1..nfeds) o Fed,;.subscribeObjClassAttr —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)
[ (Ji: (1..nfeds) o Fed;.unsubscribeObjClassAttr —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)
[ {J:: (1..nfeds) o Fed; subscribeObjClassAttrWithRegion —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)
[ {Ji: (1..nfeds) o Fed;.unsubscribeObjClassAttrWithRegion —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)
[ {Ji: (1..nfeds) o Fed;.publishObjClass —wholsJoined?S —
(G 7:(S\ {1}) ¢ DecideOutOfScope;) ;
HandleAttrOutOfScopes)
(] : (1..nfeds) o Fed;.unpublishObjClass —wholsJoined?S —
(; 7:(5\{1}) ¢ DecideOutOfScope;) ;
HandleAttrOutOfScopes)
[ {Jé: (1..nfeds) o Fed;.attrOwnAcqNotification —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)
|:| (implicitAOAN?i — DecidelmplOutOfScope; ;
HandleAttrOutOfScopes)
(s
DecideOutOfScope; = § m Fed;.attrsOutOfScope — §
DecidelmplOutOfScope; = § 1 implicitOutOfScope!i — §

Figure 6: Specification of RTIBehavior



In the case of JoinedFeds the current membership of the fed-
eration is modeled as a set, represented by the subscript (S)
of the process. The process communicates the value of this
state using the wholsJoined event. The rest of the definition
describes how JoinedFeds monitors the events affecting mem-
bership (joinFedExecution and resignFedExeuction) and modifies
its state accordingly.

The MiniProtocols process forms the core of the glue. This
process is itself a combination of subprocesses, each of which
is a mini-protocol defining how the RT1 behaves with respect
to one aspect of the overall interaction. The mini-protocols
are first grouped by management group, for traceability to
the IFSpec, and then by service or closely related cluster of
services.

We found that it was useful to have two kinds of mini-
protocols at the lowest level. The first kind is concerned
with specifying the effects of a particular kind of service
call. These mini-protocols describe how a request initiated
by one federate leads to communication via the RTI with
other federates, and how those federates must respond in
order for the original request to be fulfilled. For example,
the simple HandlePauseResume mini-protocol describes how
the RTI reacts to a requestPause event initiated by a feder-
ate. In this case it finds out which federates are members of
the execution, which federates are already paused, and in-
forms all member federates that are not paused to engage in
initiatePause. Other mini-protocols, like those handling trans-
fer of ownership, although more complex, are described in a
similar fashion.

The second kind of mini-protocol is one that collects all
the stimuli that can cause a single RTI-initiated service.
HandleAttrOutOfScopes is a good example. The RTI is sup-
posed to inform a federate whenever a particular attribute
is no longer relevant to that federate. The list of services
that could cause this to happen is rather long, and could
result in communication from any of the federates, not just
the one that will be notified that the attribute is “out-of-
scope.” Having the stimuli collected in one place makes it
much easier to see what causes a given RTI-initiated service.

A key aspect of the specification of the mini-protocols is
the use of non-determinism to achieve abstraction. For ex-
ample, the HandleAttrOutOfScopes mini-protocol collects the
stimuli that can cause the attrsOutOfScope event to be in-
voked by the RTI on a federate. To describe under what
conditions an invocation of publishObjClass (one of the stim-
uli) leads to attrsOutOfScope, a lot of information is needed.
The decision depends on state that accumulates during the
run of the execution (like attribute subscriptions of feder-
ates for object classes), as well as the parameters to the
triggering service invocation. Instead of representing the
precise relationship between two services (like publishObjClass
and attrsOutOfScope), we simply show that some relation-
ship exists. Looking more closely at HandleAttrOutOfScopes,
we notice that each stimulus is followed by a use of the
DecideOutOfScope description or the DecidelmplOutOfScope de-
scription. These descriptions specify that the RTI makes
some choice about whether or not the stimulus leads to an
object attribute going out-of-scope, but does not specify how
the choice is made.

8 Using the Model

Constructing a formal model for an integration standard as
complex as the HLA is a non-trivial task. Many of the or-
dering relationships embodied in the Wright protocol can be

directly inferred from the pre- and post-conditions of ser-
vices in the original 1FSpec. However, as we noted earlier,
for many situations, we had to experiment with a number of
alternatives, and in many cases get in touch with the design-
ers of the HLA to find out exactly what was the intended
behavior. Once it became clear what the behavior should
be, the model provided a vehicle for clearly providing a pre-
cise definition of it. Indeed, parts of our formal models will
be incorporated as supplementary documentation in future
releases of the IFSpec.

But the value of the specification goes beyond mere docu-
mentation. In the process of formalizing the HLA, we iden-
tified several dozen issues that pointed to deeper concerns
about the nature of the HLLA design—concerns that are cru-
cial to understanding how to use or implement it. Here are
two examples:

Exceptions: Each service description in the [FSpec lists a
set of exceptions. For example, joinFedExecution has the ex-
ception “federate already joined.” In our attempt to formal-
ize the HLA, we realized that the formalization (and presum-
ably any implementation) wasn’t possible unless we knew if
these exceptions resulted in actual message traffic or whether
they were simply anomalies that should be considered (but
without explicit notification). It turned out that the answer
was that in some cases exceptions are used to convey impor-
tant information, while in other cases they represent genuine
errors. For example, before a federate can join a federation,
the federation must exist. It has the option of creating the
federation itself, but there is no way for a federate to deter-
mine if this is unnecessary without first attempting to create
it, and getting an exception back if it has already been cre-
ated.

Retained state: To mediate the communication between
federates, the RTT must retain certain state. But it is not
clear what state, and for how long. For example, when a
federate saves its state, it provides a save label. State can be
restored through a “restore” service call (using an existing
label). But state can only be restored when all federates
have a save for the save label being restored. However, in
the [FSpec there is no indication of how long this save label
can be successfully used: after what point can a federate
discard a previous save?

In addition to raising critical issues for clarification, the for-
mal model also helps expose unintended behavior of the stan-
dard. We discovered about a dozen such anomalies using a
combination of careful review and the facilities of a com-
mercial model checker for CSP, called FDR [8]. To make
use of the model checker we used two primary techniques.
The first was to look for potential deadlocks in parts of the
specification.” When the tool detects “deadlock” it provides
a trace showing where the process goes awry. Such deadlocks
typically indicated the presence of a situation in which dif-
ferent parts of the specification had inconsistent views about
the behavior expected of other parts. The other technique
was to see if the model was consistent with some desirable
behavior. To check for this situation we used to tool to check
if a refinement relationship exists between the model and a
process that exhibits just that behavior.

The problems that we detected fell into three classes:

5In principle one could run the entire model through FDR and find
all deadlocks within. In practice, the HLA model is much too large for
the checker: so we had to break it into small pieces, and incrementally
recombine these in various combinations.
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(4) resignFedExecution
(5) initiatePause !!

RTI internal events

Figure 7: Race condition with resigning federates

Race conditions: Figure 7 shows a trace depicting a race
condition we found when analyzing the HLLA specification
using FDR. The second event, wholsJoined.{1,2}, depicts the
RTI determining the current federation membership. [t is
does this to inform all federates to initiate a pause (as seen
in the HandlePause mini-protocol of Figure 6). However, there
is a race condition inherent in this situation. If a federate
resigns after the RTI determined membership, the RTI can
erroneously attempt to communicate with a federate that is
no longer a member of the execution. Had the resignation
occurred before the RTI determined federate membership,
there would be no problem as the RTI would not attempt to
initiate a pause on the resigned federate.

Deadlocks: The next two examples point out different ways
in which a federation execution designed to the HLLA stan-
dard can become deadlocked. Both cases deal with the pause
and resume protocols and circumstances under which a fed-
eration cannot resume normal execution.

In the first case, we look more closely at the implications
of allowing a federate to refuse to pause. Referring back to
the WaitForFedActivity description from the FedMgmt process
in Federatelnterface, we see that after receiving an initiatePause
event a federate is allowed to choose either to pause its exe-
cution and notify the RTT or to refuse to pause.

Looking next at the HandleResume mini-protocol in the glue
specification, we can see the problem with this. The boolean
condition to ResumeResponse formalizes a pre-condition to the
requestResume service, which states “The federation execu-
tion is paused.” In order for the federation execution to be
paused, each federate that is a member of the federation
must be paused. If one federate refuses to pause, the entire
federation is not paused and hence normal execution may
not be resumed within the execution. Therefore, the ability
of a federate to refuse to pause leads directly to the possi-
bility that a federation execution may become deadlocked.

In the second case, we model a potential solution to the
first problem by requiring a federate to pause if so directed.
However, after adjusting the Wright specification to match
this solution, analysis still indicates that the execution may
deadlock, but for a different reason. Looking back at the
definition of PausedFedMgmt within the FedMgmt process, we
notice that a paused federate is allowed to choose whether
or not to request a resume. But for this situation FDR gen-
erates a trace leading to a deadlock, in which every federate
chooses not to request a resume; the federation is deadlocked
with every federate “expecting” some other federate to re-
quest a resume.

Unlike the first case, however, this example of deadlock does
not point to a flaw in the HLA standard. In a number of
cases such as this, there may exist several reasonable ways
to resolve a problem by suitable choices within a particular

federation or RTI implementation. In these cases it would
be wrong for the HLLA standard to prescribe a particular so-
lution. For example, with respect to the problem of pausing,
the standard correctly does not include a requirement that a
paused federate must request a resume, as there are other le-
gitimate ways in which deadlock can be reasonably avoided.
Other policies for ending pauses include designating a par-
ticular federate as the one that always must request resumes,
or specifying that a time-out should be used to decide when
to request a resume.

The real solution is to provide supplementary documenta-
tion that highlights such trouble spots and, where possible,
indicates possible solutions from which the integrator could
select. Our formal model partially serves this role by both
identifying the problem areas, and by allowing us to experi-
ment with different policies for resolution.

Unexpected outcomes: The Wright model allowed us
to analyze whether certain combinations of behaviors could
lead to unintuitive outcomes. Typically, the specification
would show immediate behaviors (e.g., that an RTI could
reply to a given event in one of several ways), but the ques-
tion arose, what is the result of composing such behaviors?
Are there combinations of choices that lead to unintuitive
outcomes?

As an example, consider the following three behav-
iors: The first immediate behavior is apparent from the
HandleRegistrations mini-protocol. Registration is used by
a federate to inform the RTI of the existence of a new
object, with the result that the registering federate ac-
quires ownership of some (or all) of the object’s attributes.®
The second immediate behavior is apparent from the
HandleAttrOutOfScopes mini-protocol: acquiring ownership of
an attribute may cause the attribute to go out-of-scope.
The third behavior is apparent from the HandleRemoves mini-
protocol; when an attribute goes out-of-scope, the federate
may be informed that it should remove the object (i.e., that
object is no longer relevant to the federate and it should
delete its local copy).

When these three behaviors are composed, we can observe
that it is possible for the registration of an object to lead
directly to the RTI telling the registering federate to remove
that object. This, clearly, is not what was intended. How-
ever, there remains a question of whether or not the IFSpec
does actually allow this chain of activity. Since two of the
immediate behaviors were described in mini-protocols that
use non-determinism to abstract the real relationships, we
still must determine if the composed behavior is possible
(i.e., whether this particular sequence of choices is a valid
one). By looking back at the IFSpec, we see that this could
happen if the registering federate acquires ownership of all
the attributes of the object—the composition is possible and
there 1s a problem.

9 Discussion, Conclusion, and Future Work

This paper has described an approach to formalization and
analysis of integration standards using the HLA as an ex-
ample. The effectiveness of this approach is best indicated

6Normally, whenever a federate acquires ownership, the

attrOwnAcqgNotification event is used. In the case of object regis-
tration, however, acquiring ownership is part of the post-condition of
the registration service and no separate service is used to inform the
federate of the ownership change. We explicitly denote such service
side-effects that otherwise are noted in separate services by using such

events as implicitAOAN.




by noting that its identification of issues led directly to sig-
nificant improvements in the published specification of the
HLA. However, in considering the value of the approach it
is important to be clear about what is essential, what is
incidental, and what still remains to be done.

Among the essential elements we would point to four key
techniques. First is the treatment of a component inte-
gration standard as a formal architectural model, focus-
ing on the semantics of the connectors as the key issue
in need of clarification. Specifically, an architectural ap-
proach focuses on the need to model the connection ap-
paratus of the standard, and further helps structure the
definition—explicitly separating the interface to the connec-
tor (here Federatelnterface) from the mediating behavior (here
RTIBehavior).

Second is the modeling of that semantics as a protocol. By
explicitly representing orders of invocations and loci of non-
determinism and choice, a protocol clarifies many global con-
trol and sequencing issues, as well as opening the way for
exploration of consequent behavior.

Third is the use of abstraction to make the architectural
specification tractable (both intellectually and for model-
checking tools). In particular, to do this we abstracted away
the details of the data model and decisions of individual
federates. While this led to a lack of precision, it greatly
simplified the overall specification. (As with any abstraction,
however, the downside is that each discovered problem must
be carefully examined to determine if its introduction is a
consequence of abstracting too far from the actual system.)

Fourth, was a careful attention to structuring the architec-
tural specification. In particular, we divided the specifica-
tion into parts that directly corresponded to the “manage-
ment groups” in the IFSpec. By doing this we were able
to partition our effort into incremental steps (tackling one
management group at a time), and to provide traceability
to the original document.

Among the inessential aspects were the use of CSP and the
details of the simulation domain itself. CSP provides the
formal basis of Wright, but it is only one of many possible
notations that could have been used. As we note below,
we found other complementary formalisms to be effective
in identifying different kinds of problems. Moreover, other
protocol modeling notations would likely have revealed many
of the same problems. For example, the developers of Rapide
used their event-based architectural modeling language to
discover problems similar to those that we identified.

While distributed simulation is unique in some respects,
many of the issues that we identify in this paper would ap-
ply to virtually any complex integration standard. The HLA
is architecturally unusual in so far as it is centered around
a single connector (the RTT). Moreover, some of the com-
plexity of the HLA specification comes from the domain of
distributed simulation (such as the particular services for
time and object management).

On the other hand, we would argue that other aspects of
the HLLA are embodied by most other integration standards.
In particular, most standards must take care to explain
how a composition is created, how reconfiguration takes
place during run time, how synchronization is handled be-
tween multiple components, and what kinds of guarantees
are provided for inter-component communication. These as-
pects are equally pertinent to standards for avionics systems,

robotics control systems, and even general-purpose compo-
nent integration standards such as DCOM or CORBA. And
it is these kinds of properties of an integration standard that
make it most difficult to understand, implement, and reuse.

It is important to note, however, that formalizations such
as ours are just one of many tools and notations. Wright
is good at detecting certain kinds of anomalies—primarily
those associated with protocols of interaction. But there are
many other issues that are not addressed, such as real-time
behavior, state models, and compliance testing. This sug-
gests that future work on modeling architectural standards
can and should exploit other complementary approaches and
tools for architectural modeling and analysis.

Indeed, in our own work we we also formalized parts of the
specification using StateCharts (which appear in [23]) and
Z [7]. In particular, we used these formalisms to handle the
state-oriented aspects of the system. For example, a key
property that should be maintained by a federation is that
there is at most one owner for every simulated object in
the system. This property is relatively easy to specify (and
check) using a language like Z, but cumbersome using one

like CSP.

One important extension of the approach described in this
paper is the use of explicit formal models to guide imple-
mentors in producing conformant components and run-time
infrastructure. There are at least two key conformance issues
that a formal model can help resolve. The first is to provide
better guidance for implementors. The formal model helps
clarify what must be included and thereby establishes a base-
line for functionality in components and supporting run-time
infrastructure. For example, our HLA model clearly indi-
cates that the RTI will have to maintain various kinds of
state, including the current list of joined federates, pending
pauses, requests for object attribute ownership transfer, etc.
Such information is present only implicitly in an API, mak-
ing it difficult for infrastructure implementors to tell what
is essential and what is optional.

A second issue is conformance checking. Given a formal
model it should be possible to devise a set of conformance
tests that can be used by component and infrastructure im-
plementors. While the generation of tests from formal spec-
ifications 1s itself an active research area, the application of
those results to integration standards seems like a particu-
larly promising area for future work.

More generally, the use of formal models for documenting
and analyzing integration standards is clearly in its infancy.
We will need many more examples, and as noted, broader
coverage of other important properties before it becomes
clear what are the relative merits of using formal modeling
techniques such as those described in this paper. However,
we believe the success of the Wright formalization of the
HLA is cause for guarded optimism.
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A Summary of CSP used in this paper.
We use the following subset of CSP:

Processes and Events: A process describes an entity
that can engage in communication events. Events
may be primitive or they can have associated data (as
in e?x and elx, representing input and output of data,
respectively).

Prefixing: A process that engages in event e and then
becomes process P is denoted e—P.

Sequencing: (“sequential composition”) A process
that behaves like P until P terminates (§) and then be-
haves like Q, is denoted P ; @.

Interrupting: A process that behaves like P until the
occurrence of the first event in Q, 1s denoted P A Q.
Alternative: (“external choice”) A process that can
behave like P or Q, where the choice is made by the
environment, is denoted P [] @. (“Environment” refers
to the other processes that interact with the process.)
Decision: (“internal choice”) A process that can be-
have like P or Q, where the choice is made (non—
deterministically) by the process itself, is denoted
PQ.

Named Processes: Process names can be associated
with a (possibly recursive) process expression. Pro-
cesses may also be subscripted to represent internal
state.

Parallel Composition: Processes can be composed
using the || operator. Parallel processes may interact
by jointly (synchronously) engaging in events that lie
within the intersection of their alphabets. Conversely,
if an event e is in the alphabet of processes P; and Px,
then P; can only engage in the event if P> can also do
so. That is, the process P ||P2 is one whose behavior is
permitted by both P; and Pz,

In process expressions — associates to the right and binds
tighter than both [Jand M. So e—f— P[] g— Q is equivalent
to (e=(f—=P)) 1 (9= Q).



