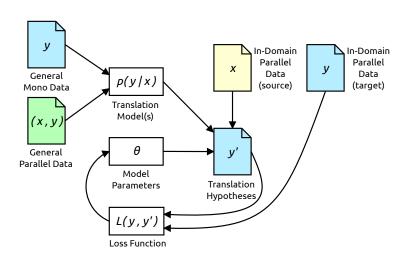
Minimum Imputed Risk: Unsupervised Discriminative Training for Machine Translation Zhifei Li, Jason Eisner, Ziyuan Wang, Sanjeev Khudanpur, and Brian Roark

Presentation not affiliated with actual authors

January 25, 2012

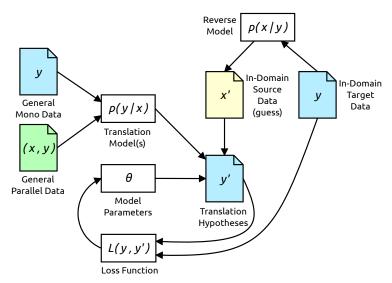
Typical MT System Training



Roadblock: No Parallel In-Domain Data



Solution: Fill in the Missing Data



When is this Possible?

Requirements:

- 1. Enough general parallel data to build two MT systems: $p_{\theta}(y|x)$ and $p_{\phi}(x|y)$
- 2. A small amount of parallel in-domain data to tune the few parameters ϕ
- 3. A large amount of in-domain target side monolingual data

For example: want to build syntactic MT system, only have enough parallel data to train very simple system.

Supervised Discriminative Training

Translating source sentences x to target hypotheses y':

$$\delta_{\theta}(x) = y'$$

Supervised Discriminative Training

Translating source sentences x to target hypotheses y':

$$\delta_{\theta}(x) = y'$$

Select loss function L (usually BLEU) to score against correct translations *y*:

Supervised Discriminative Training

Translating source sentences x to target hypotheses y':

$$\delta_{\theta}(x) = y'$$

Select loss function L (usually BLEU) to score against correct translations *y*:

Goal: find θ with low Bayes Risk. For MT tuning, use empirical risk:

$$heta^* = \arg\min_{ heta} rac{1}{N} \sum_{i=1}^{N} \mathsf{L}(\delta_{ heta}(x_i), y_i)$$

Unsupervised Discriminative Training

We have y_i but not x_i , so loss function becomes "round trip" cost:

$$L(\delta_{\theta}(x_i), y_i)$$
 becomes $\sum_{x} p_{\phi}(x|y_i) L(\delta_{\theta}(x), y_i)$

Unsupervised Discriminative Training

We have y_i but not x_i , so loss function becomes "round trip" cost:

$$L(\delta_{\theta}(x_i), y_i)$$
 becomes $\sum_{x} p_{\phi}(x|y_i) L(\delta_{\theta}(x), y_i)$

Plug into objective function to minimize imputed empirical risk:

$$heta^* = \arg\min_{ heta} rac{1}{N} \sum_{i=1}^N \sum_{ ext{x}}
ho_{\phi}(ext{x}| ext{y}_i) \, \mathsf{L}(\delta_{ heta}(ext{x}), ext{y}_i)$$

How do we sum over all possible translations x?

Reverse Prediction Model

Model $p_{\phi}(x|y)$ translates from target to source

• Advantage: can use in-domain monolingual source data x

Reverse Prediction Model

Model $p_{\phi}(x|y)$ translates from target to source

• Advantage: can use in-domain monolingual source data x

 δ_{θ} and p_{ϕ} are not symmetric:

- δ_{θ} is a *function* that produces the single best translation
- p_{ϕ} is a probability distribution over possible values of missing input sentence

Reverse Prediction Model

Model $p_{\phi}(x|y)$ translates from target to source

• Advantage: can use in-domain monolingual source data x

 δ_{θ} and p_{ϕ} are not symmetric:

- δ_{θ} is a *function* that produces the single best translation
- p_{ϕ} is a *probability distribution* over possible values of missing input sentence

Ideal: Train ϕ to match underlying conditional distribution, having low cross-entropy H(X|Y). Approximate with:

$$-\frac{1}{M} \sum_{i=1}^{N} \log p_{\phi}(x_{j}|y_{j}) + \frac{1}{2\sigma^{2}} ||\phi||_{2}^{2}$$

Forward Translation

Simple (deterministic) decoding: $\delta_{\theta}(x) = \arg \max_{y} p_{\theta}(y|x)$

- Equivalent to MERT on imputed data when L is negated BLEU
- Objective function not differentiable, line search does not scale

Forward Translation

Simple (deterministic) decoding: $\delta_{\theta}(x) = \arg \max_{y} p_{\theta}(y|x)$

- Equivalent to MERT on imputed data when L is negated BLEU
- Objective function not differentiable, line search does not scale

Randomized decoding: system outputs y with probability $p_{\theta}(y|x)$

Minimum imputed empirical risk:

$$heta^* = \arg\min_{ heta} rac{1}{N} \sum_{i=1}^N \sum_{x,y} p_\phi(x|y_i) p_ heta(y|x) \, \mathsf{L}(y,y_i)$$

Now differentiable, can optimize with gradient-based methods

Exhaustive?

• Computationally infeasible

Exhaustive?

• Computationally infeasible

k-best?

• Extract top k highest scoring translations, rescale probability to 1

Exhaustive?

• Computationally infeasible

k-best?

• Extract top k highest scoring translations, rescale probability to 1

Sampling?

• Take k independent samples with weight $\frac{1}{k}$ from $p_{\phi}(x|y_i)$ for each y_i

Exhaustive?

• Computationally infeasible

k-best?

Extract top k highest scoring translations, rescale probability to 1

Sampling?

• Take k independent samples with weight $\frac{1}{k}$ from $p_{\phi}(x|y_i)$ for each y_i

Lattice?

• Theoretical contribution: efficient exact computation under certain conditions using dynamic programming

Rule-level?

- For Hiero systems, require complete isomorphism of SCFG trees for forward and reverse translations
- Forward translations decompose according to existing parse tree of x_i
- Exploits structure sharing to score entire hypergraph (round-trip translate at the rule level)

Rule-level?

- For Hiero systems, require complete isomorphism of SCFG trees for forward and reverse translations
- Forward translations decompose according to existing parse tree of x_i
- Exploits structure sharing to score entire hypergraph (round-trip translate at the rule level)

Actually used:

• 1-best approximation

Experiments

Chinese-English Joshua (Hiero) system with large number of target-rule bigram features

IWSLT Task:

- 40K sentence pairs train, 503 dev, 506 test
- 16 references per sentence
- 551 features, 5-gram LM on parallel data only

NIST Task:

- 1M sentence pairs train, 919 dev, 1788 for unsupervised, 1082/1099 test
- 4 references per sentence
- 1033 features, 5-gram LM on 130M words from Gigaword

Semi-Supervised Results

IWSLT			
Training	Test BLEU		
Sup (200 zh-en)	47.6		
+Unsup (101 en)	49.0		
+Unsup (202 en)	48.9		
+Unsup (303 en)	49.7		

Small data scenario (40K sent)

NIST				
Training	MT05	MT06		
Sup (919 zh-en)	32.4	30.6		
+Unsup (1788 en)	33.0	31.1		

Medium data scenario (1M sent)

Unsupervised Results (All IWSLT)

	Chinese BLEU		English	BLEU
Data size	WLM	NLM	WLM	NLM
101	11.8	3.0	48.5	46.7
202	11.7	3.2	48.9	47.6
303	13.4	3.5	48.8	47.9

Varying strength of reverse prediction system

<i>k</i> -best size	Test BLEU
1	48.5
2	48.4
3	48.9
4	48.5
5	48.4

Varying k-best size with 101 sentence dev set

Minimum Imputed Risk and EM

EM:

E step, expected log-likelihood of complete data:

$$\sum_{x} p_{\theta t}(x|y_i) \log p_{\theta}(x,y_i)$$

M step, maximize:

$$\theta_{t+1} = \arg\max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\theta t}(x|y_i) \log p_{\theta}(x, y_i)$$

Minimum Imputed Risk and EM

Minimum Imputed Risk:

Change $p_{\theta t}(x|y_i)$ to $p_{\phi}(x|y_i)$ and admit negative log-likelihood as objective function:

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x|y_i) L(\delta_{\theta}(x), y_i)$$

Advantages over EM:

- Discriminative, incorporates loss function in training
- Training joint models is expensive, MIR works with conditional models

Discussion

Advantages:

- Use large monolingual data on both source and target side
- Idea could be used to enrich existing MT systems

Discussion

Advantages:

- Use large monolingual data on both source and target side
- Idea could be used to enrich existing MT systems

Issues:

- IWSLT: 200 dev sentences < 551 features
- Significant improvement expected from adding (degraded) dev sentences

Discussion

Advantages:

- Use large monolingual data on both source and target side
- Idea could be used to enrich existing MT systems

Issues:

- IWSLT: 200 dev sentences < 551 features
- Significant improvement expected from adding (degraded) dev sentences

Additional Experiments?:

- Semi-supervised vs fully supervised? How close is the result?
- Generate additional dev sentences for existing data sets? Improve via paraphrasing effect?

Minimum Imputed Risk: Unsupervised Discriminative Training for Machine Translation Zhifei Li, Jason Eisner, Ziyuan Wang, Sanjeev Khudanpur, and Brian Roark

Presentation not affiliated with actual authors

January 25, 2012