"Learning Hierarchical Translation Structure with Linguistic Annotations"

Markos Mylonakis and Khalil Sima'an

ILLC, University of Amsterdam

Presented by Greg Hanneman

11-734: Advanced MT Seminar March 21, 2012

Setup

Hierarchical MT systems:

Constrained to linguistic syntax

GHKM

tree-to-string

tree transducers

VS.

Soft syntactic constraints

Hiero

SAMT

Marton and Resnik

Hierarchical Reordering SCFG

All rules have one of the following forms:

Monotonic translation

$$A \rightarrow [B C] :: [B C]$$

$$A^{L} \rightarrow [B C] :: [B C]$$

$$A^R \rightarrow [B C] :: [B C]$$

Reordered translation

$$A \rightarrow [B^L C^R] :: [C^R B^L]$$

$$A^{L} \rightarrow [B^{L} C^{R}] :: [C^{R} B^{L}]$$

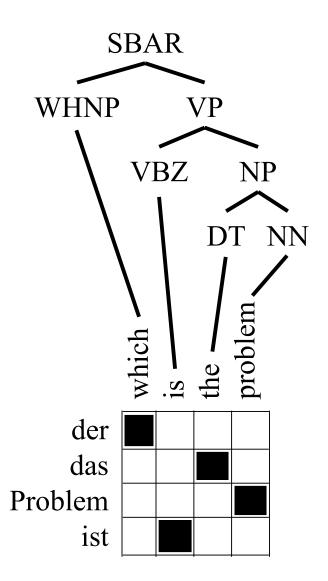
$$A^R \rightarrow [B^L C^R] :: [C^R B^L]$$

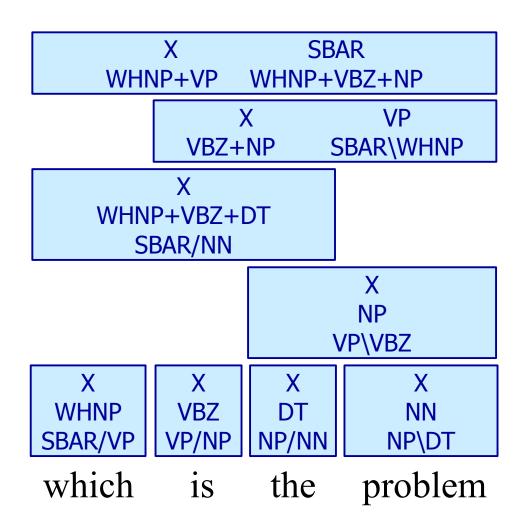
Phrase pair emission

$$A \rightarrow [A_P] :: [A_P]$$

$$A^{L} \rightarrow [A_{P}] :: [A_{P}]$$

$$A^R \rightarrow [A_P] :: [A_P]$$

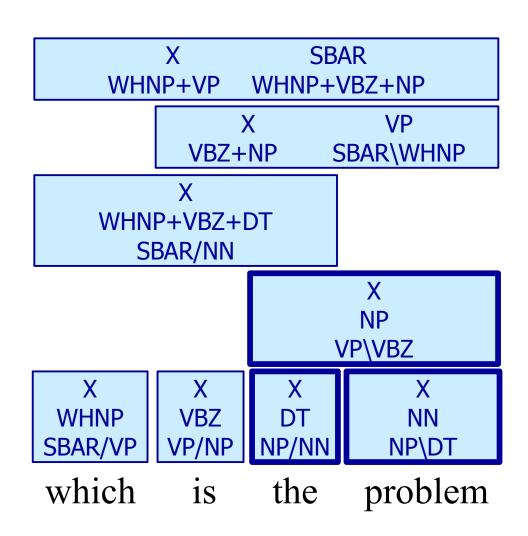

Phrase pair generation


$$A_P \rightarrow [x]::[y]$$

$$A_{P}^{L} \rightarrow [x]::[y]$$

$$A_P^R \rightarrow [x] :: [y]$$

- Word-align parallel corpus
- Parse source side (Charniak)
- Construct all possible labels for consistently aligned spans (SAMT-style)
- Extract (minimal?) rules

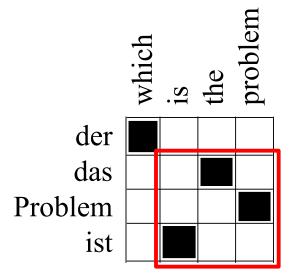

 $NP^R \rightarrow [DT NN]::[DT NN]$

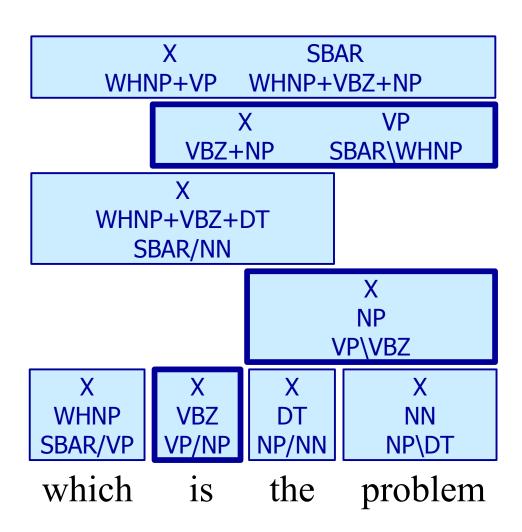
 $VP \setminus VBZ^R \rightarrow [X X] :: [X X]$

 $NP^R \rightarrow [NP_P^R] :: [NP_P^R]$

 $NP_P^R \rightarrow [the problem]:: [das Problem]$

$$VP \rightarrow [VBZ^{L} NP^{R}]::$$


$$[NP^{R} VBZ^{L}]$$

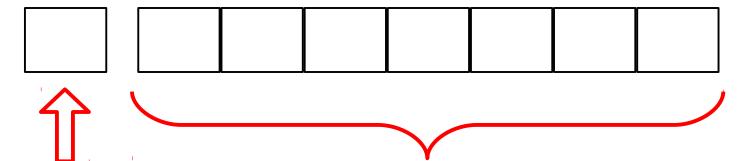

$$X \rightarrow [VBZ^{L} X^{R}]::[X^{R} VBZ^{L}]$$

$$VBZ+NP \rightarrow [VBZ+NP_{P}]::$$

$$[VBZ+NP_{P}]$$

. . .

Scoring Rules


- Phrase pair rules $A_P \rightarrow [x]::[y]$
 - $-P(x, y \mid A_P)$ estimated from label charts

- Standard P(x | y) and P(y | x)
- Standard $P_{lex}(x \mid y)$ and $P_{lex}(y \mid x)$
- Word penalty f(|y|)

Scoring Rules

- Hierarchical rules
 - Estimate P(RHS | LHS), but not using MLE

Cross-Validating EM

Maximize likelihood of this portion of the training data...

... using the model that comes from the rest of the data

Reordering count

So That's Zillions of Rules...

- Rules appearing in only one partition of training data get ignored
- Rules below a minimum expected count in CV-EM get removed
- Decoder restricted to label chart of an input sentence
- Decoder cells have separate bins for each nonterminal

Scoring Derivations

- Probability of a derivation =
 - Language model probability ×
 - Product of scores for each phrase pair ×
 - Product of scores for each hierarchical rule

Feature weights trained using MERT

Probability of a joint output =
 Sum over all derivations that produce it

No Viterbi approximation?

Experiments

- Trained on Europarl / news data
 - Very small: 200k or 400k sentence pairs!
 - En to French, German, Dutch, and Chinese
- WMT 2007 (news) test set
- Modified KN language model
 - Very small: 1 million sentences
 - Trigram

Compare with Joshua/Hiero baseline

Characteristic Results

400k training sentences, BLEU

	<u>Joshua</u>	<u>LTS</u>	
French	29.58	29.83	+0.25
German	18.86	19.49	+0.63
Dutch	22.25	22.92	+0.67
Chinese	23.24	25.16	+1.92

Discussion: Contributions

- Viable syntactic grammar that's some amalgam ITG, SAMT, or Hiero
- More explicit modeling of reordering behavior by category type / context
- Scoring that uses held-out data to go beyond "count and normalize"

Follow-up experiment: Non-X labels help

Discussion: "How You Say It"

Syntax-based MT has "inadequate constraints"?

Doesn't desire to soften indicate <u>restrictive</u> constraints?

 SCFGs have "weak independence assumptions"?

Doesn't passing ordering info weaken a strong assumption?

- Highest-probability rule will "always" win?
 - Conditional probabilities?
 - Reordering-based features?
 - Language model?