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-
The Claim

- Och’s MERT is not exact
- | will provide a brief MERT review

- This paper: exact search of MERT search
space via linear programming
- Concurrent optimization of all dimensions

- How does this perform vs. Och’s MERT?



MERT for MT: Primer’

Tune parameter weights to directly optimize
evaluation metric

Initial
Parameters

N-best list of New
translations parameters

If changed

Optimize Final
parameters LEWEICCM parameters

(S
W = argmin<ZE(I‘s,é(fs;W))}

L s=1

apply

\%%

(S N
= argmin<ZZE(rs,es,n)é(es,n,é(fs;w))} s.t.

L s=1n=1

~ T
é(f;w) = arg max {w h},,
ne{l,....Nj 1. Courtesy of P.Koehn, “Statistical Machine Translation”



-
Naive MERT

- Non-convex, unsmooth: Powell search
- Multiple starting points used N
- Log-linear formulation: p(z) = exp{ Aihi(fli)}
- Best translation: =
N
x*(A1,...,An) = argmaxexp {Z )\th(:p)} =

1=1

translation line

¥ (Ae) = arg max exp{Ache(T) + u(a:)}\ where u(z) = Z Aih;(x)
1#£cC

- How to explore parameter space?
- Grid: trade-off between speed & accuracy
- Finite approximation
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-
Och’s Trick

- Translation ranking only changes at intersections
of translation lines!

1 T‘ p(x) One sentence
case
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* Multiple sentences:
— aggregate intersections across sentences
— For each intersection point, compute error (re-rank and
select 1-best)
— Return interval with best error score



-
LP-MERT: one sentence case

- Och’s MERT: great, but optimizing one parameter at a time?

- Search over a larger subspace of parameter combos, not just line
search

- Build convex hull of n-best list, iterate through extreme points
- CH construction algorithms exponential in dimension

- Resort to LP with interior point methods (poly in dimension) to
find extreme points
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And more than 1 sentence?

- LP Formulation: return O if

interior point _hy, ’ *

- Naive approach: ,\:—:‘" * 0 Mz NG
enumerate all possible N % VAR N
hypothesis combinations ‘ ’ c %/
across all sentences N "‘"~~f:..,,/

- Smarter approach: (@) (b)
merging convex hullsto ST ’___,__1'_13_:';,.;,\\
maintain convexity O N U VAL PRI

- Extreme point \ ' ", " ) N "- ‘ . ’
determination: O(NS) # NLa S N, B A
points vs. O(NY) N e N~



Other Tricks and Speedups

Takes O(NS) points to determine if a point is
extreme. Need to do this for O(N?) possible
combinations

Trick 1: lazy enumeration (ordering of combos)
However, not quite enough

Where are = —— Hello Pizza with coke === That’s sick bro !

you ? Good Day Pizza with drink «==== That brother ill
Where is you ? Hello Pizza coke That is ill
Where are | ? Hi Pizza with coke brother

Who are you ? Brother ill that



0
Binary lazy enumeration

- Use divide-and-conquer:

Sentences 1-4

{h31' haa} {h32' hdl}

{hy, h} | 4268~ 1265
{h,,,h,,} | |126.1

Sentences 1-2 Sentences 3-4
h,, h,, h, h, hy  hy, hzsv
hy, |69+ 692 [69.2] 69.9 hy, |[56.8] 59+ 57.9
hy, |[69.3]69.4 70.0 hy, |[s7.3]57.6
h13 h33

£L]1,2] L3,4]
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Final Algorithm

Inputs:

N*S feature Move up to next level of tree
vectors

N*S BLEU scores

Hypothesis Combiner:
Combination is point
Matrix (Frontier) extreme?

Finding the
extreme point
(over all
sentences) with
lowest loss

Sub-

Try next “best”
combo in matrix

Output:

Final Weights




Approximations that we need

- Cosine similarity check (with reference vector):
cos(W,wq) >t

- Beam search: prune with respect to current best parameter
vector (when combining, check model score)




-
Experimental Setup

- Tree-to-string model

- 13 features in total

- Standard PM and LM features, re-ordering, function word insertion/
deletion, insertion/deletion counts, target length

- N-best size = 100
- Same combined N-best lists

- WMT 2010 English - German (1.6 million sentence pairs)

- 2009 test: tuning
- 2010 test: test
- One reference translation



-
The D&C Speedup

length | tested comb. total comb. order
8 639,960 1.33 x 10"  O(N?®)
R 134,454  2.31 x 101Y  O(2N*)
2 49,969 430,336 O(4N?)
| 1,059 2,624  O(8N)

Table 1: Number of tested combinations for the experi-
ments of Fig. 5. LP-MERT with .S = 8 checks only 600K
full combinations on average, much less than the total
number of combinations (which is more than 10%").



-
Dependence on dimension
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Figure 6: Effect of the number of features (runtime on
1 CPU of a modern computer). Each curve represents a
different number of tuning sentences.
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Cosine Similarity Approximation
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Figure 7: Effect of a constraint on w (runtime on 1 CPU).



-
Comparison with 1D-MERT

Assuming LP- 7 T T
MERT finds the 6 (~[——ss}___EXactsearch | _f As S
“global optimum”, 5 1 = R e Y & increases, the
‘for S=4, [Powell] < 4 1= gap between
makes search 53 -~ 1D-MERT
errors in 90% of § 2 - gnd LP-MERT
the cases, U3 IR S — e increases
despite using 20 0 I 1T —
random starting 1 ——— T
pOin tS, 0 100 200 300 400 500 600 700 800 900 1000

As S

With beam (size 1000) 32 64 128 256 512 1024

increases, the
ID-MERT | 22.93 20.70 18.57 16.07 15.00 15.44

gap between

our work |[25.25 2228 19.86 17.05 15.56 15.67 1D-MERT
+2.32 +1.59 +1.29 +0.98 +0.56 +0.23 and LP-MERT
decreases

Table 2: BLEUn4r1[%] scores for English-German on
WMTO9 for tuning sets ranging from 32 to 1024 sentences.
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Summary

- End-to-end evaluation (with beam approx. for LP-MERT)
- Tuning: 0.24 BLEU difference
- Test: 0.17 BLEU difference

- Exact multi-dimensional MERT
- LP at the core
- Divide-and-conquer, lazy enumeration

- Polynomial in dimension, N-best list size
- Exponential in number of sentences

- Approximations used to limit running time
- Bold approach to tackle difficult problem



Questions & concerns that | had...

- End-to-end results do not look significant

- Additional language pairs/datasets would be nice

- As S increases, does the over-performance
diminish?

- What can we do to make this algorithm poly(S)?

- LP-MERT + hypergraph MERT - towards MERT
2.0?

- Is direct cost optimization the way forward?

Thank youl!



