
OPTIMAL SEARCH FOR MINIMUM
ERROR RATE TRAINING
Authors: Michel Galley & Chris Quirk
(Microsoft Research)
Presenter: Avneesh Saluja

The Claim
• Och’s MERT is not exact

•  I will provide a brief MERT review

• This paper: exact search of MERT search
space via linear programming
• Concurrent optimization of all dimensions

• How does this perform vs. Och’s MERT?

MERT for MT: Primer1
• Tune parameter weights to directly optimize
evaluation metric

ŵ = argmin

w

(
SX

s=1

E(rs, ê(fs;w))

)

= argmin

w

(
SX

s=1

NX

n=1

E(rs, es,n)�(es,n, ê(fs;w))

)
s.t.

ê(fs;w) = arg max

n2{1,...,N}
{wTh}s,n

N-best list of
translations

Decoder Initial
Parameters

New
parameters

Final
parameters

Optimize
parameters

decode
apply

if changed

if converged

1. Courtesy of P.Koehn, “Statistical Machine Translation”

Naïve MERT
• Non-convex, unsmooth: Powell search

•  Multiple starting points used

•  Log-linear formulation:
• Best translation:

• How to explore parameter space?
•  Grid: trade-off between speed & accuracy
•  Finite approximation

p(x) = exp

(
NX

i=1

�ihi(x)

)

x

⇤
(�

1

, . . . ,�

n

) = argmax

x

exp

(
NX

i=1

�

i

h

i

(x)

)
)

x

⇤
(�

c

) =

translation linez }| {
argmax

x

exp{�
c

h

c

(x) + u(x)} where u(x) =

X

i 6=c

�

i

h

i

(x)

Och’s Trick
• Translation ranking only changes at intersections
of translation lines!

p(x)

�c

1
2

3

•  Multiple sentences:
–  aggregate intersections across sentences
–  For each intersection point, compute error (re-rank and

select 1-best)
–  Return interval with best error score

One sentence
case

�1
�2

LP-MERT: one sentence case
•  Och’s MERT: great, but optimizing one parameter at a time?

•  Search over a larger subspace of parameter combos, not just line
search

•  Build convex hull of n-best list, iterate through extreme points
•  CH construction algorithms exponential in dimension

•  Resort to LP with interior point methods (poly in dimension) to
find extreme points

And more than 1 sentence?
•  LP Formulation: return 0 if

interior point
• Naïve approach:

enumerate all possible
hypothesis combinations
across all sentences

• Smarter approach:
merging convex hulls to
maintain convexity

• Extreme point
determination: O(NS) #
points vs. O(NS)	

Other Tricks and Speedups
• Takes O(NS) points to determine if a point is
extreme. Need to do this for O(NS) possible
combinations

• Trick 1: lazy enumeration (ordering of combos)
• However, not quite enough

Sentence 1 Sentence 2 Sentence 3 Sentence 4

Where are
you ?

Where is you ?
Where are I ?
Who are you ?

Hello
Good Day

Hello
Hi

Pizza with coke
Pizza with drink

Pizza coke
Pizza with coke

That’s sick bro !
That brother ill

That is ill
brother

Brother ill that

Binary lazy enumeration
• Use divide-and-conquer:

Sentences 1-4

Sentences 1-2 Sentences 3-4

Final Algorithm
Inputs:

N*S feature
vectors

N*S BLEU scores

Sort each N-best
list

Linear Program
(extreme point,

convex hull)

Output:
Final Weights

Sub-
tree 1

Sub-
tree 2

Hypothesis
Combination

Matrix (Frontier)

Combiner:
is point

extreme?

yes

no

Move up to next level of tree

Try next “best”
combo in matrix

Finding the
extreme point
(over all
sentences) with
lowest loss

Approximations that we need
• Cosine similarity check (with reference vector):

• Beam search: prune with respect to current best parameter
vector (when combining, check model score)

cos(ŵ,w0) � t

Experimental Setup
•  Tree-to-string model
•  13 features in total

•  Standard PM and LM features, re-ordering, function word insertion/
deletion, insertion/deletion counts, target length

• N-best size = 100
•  Same combined N-best lists

• WMT 2010 English à German (1.6 million sentence pairs)
•  2009 test: tuning
•  2010 test: test
•  One reference translation

The D&C Speedup

Dependence on dimension

Cosine Similarity Approximation
cos(ŵ,w0) � 0.84

Comparison with 1D-MERT
Assuming LP-
MERT finds the
“global optimum”,
‘for S=4, [Powell]
makes search
errors in 90% of
the cases,
despite using 20
random starting
points’

As S
increases, the
gap between
1D-MERT
and LP-MERT
increases

As S
increases, the
gap between
1D-MERT
and LP-MERT
decreases

With beam (size 1000)

Exact search

Summary
• End-to-end evaluation (with beam approx. for LP-MERT)

•  Tuning: 0.24 BLEU difference
•  Test: 0.17 BLEU difference

• Exact multi-dimensional MERT
•  LP at the core
•  Divide-and-conquer, lazy enumeration

• Polynomial in dimension, N-best list size
• Exponential in number of sentences
• Approximations used to limit running time
• Bold approach to tackle difficult problem

Questions & concerns that I had…
• End-to-end results do not look significant
• Additional language pairs/datasets would be nice
• As S increases, does the over-performance
diminish?

• What can we do to make this algorithm poly(S)?
• LP-MERT + hypergraph MERT à towards MERT
2.0?

•  Is direct cost optimization the way forward?

Thank you!

