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The Claim 
• Och’s MERT is not exact 

•  I will provide a brief MERT review 

• This paper: exact search of MERT search 
space via linear programming 
• Concurrent optimization of all dimensions 

• How does this perform vs. Och’s MERT? 



MERT for MT: Primer1 
• Tune parameter weights to directly optimize 
evaluation metric 
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1. Courtesy of P.Koehn, “Statistical Machine Translation” 



Naïve MERT 
• Non-convex, unsmooth: Powell search 

•  Multiple starting points used 

•  Log-linear formulation: 
• Best translation:  

• How to explore parameter space?  
•  Grid: trade-off between speed & accuracy 
•  Finite approximation 
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Och’s Trick 
• Translation ranking only changes at intersections 
of translation lines! 
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•  Multiple sentences:  
–  aggregate intersections across sentences 
–  For each intersection point, compute error (re-rank and 

select 1-best) 
–  Return interval with best error score 

One sentence 
case 
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LP-MERT: one sentence case 
•  Och’s MERT: great, but optimizing one parameter at a time? 

•  Search over a larger subspace of parameter combos, not just line 
search 

•  Build convex hull of n-best list, iterate through extreme points 
•  CH construction algorithms exponential in dimension 

•  Resort to LP with interior point methods (poly in dimension) to 
find extreme points 



And more than 1 sentence? 
•  LP Formulation: return 0 if 

interior point 
• Naïve approach: 

enumerate all possible 
hypothesis combinations 
across all sentences 

• Smarter approach: 
merging convex hulls to 
maintain convexity 

• Extreme point 
determination: O(NS) # 
points vs. O(NS)	





Other Tricks and Speedups 
• Takes O(NS) points to determine if a point is 
extreme.  Need to do this for O(NS) possible 
combinations 

• Trick 1: lazy enumeration (ordering of combos) 
• However, not quite enough 

Sentence 1 Sentence 2 Sentence 3 Sentence 4 

Where are 
you ? 

Where is you ? 
Where are I ? 
Who are you ? 

Hello 
Good Day 

Hello 
Hi 

Pizza with coke 
Pizza with drink 

Pizza coke 
Pizza with coke 

That’s sick bro ! 
That brother ill 

That is ill 
brother 

Brother ill that 



Binary lazy enumeration 
• Use divide-and-conquer: 

Sentences 1-4 

Sentences 1-2 Sentences 3-4 



Final Algorithm 
Inputs: 

N*S feature 
vectors 

N*S BLEU scores 

Sort each N-best 
list 

Linear Program 
(extreme point, 

convex hull) 

Output: 
Final Weights 

Sub-
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Sub-
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is point 
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no 
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Try next “best” 
combo in matrix 

Finding the 
extreme point 
(over all 
sentences) with 
lowest loss 



Approximations that we need 
• Cosine similarity check (with reference vector): 

• Beam search: prune with respect to current best parameter 
vector (when combining, check model score) 

cos(ŵ,w0) � t



Experimental Setup 
•  Tree-to-string model 
•  13 features in total 

•  Standard PM and LM features, re-ordering, function word insertion/
deletion, insertion/deletion counts, target length 

• N-best size = 100 
•  Same combined N-best lists 

• WMT 2010 English à German (1.6 million sentence pairs) 
•  2009 test: tuning 
•  2010 test: test 
•  One reference translation 



The D&C Speedup 



Dependence on dimension 



Cosine Similarity Approximation 
cos(ŵ,w0) � 0.84



Comparison with 1D-MERT 
Assuming LP-
MERT finds the 
“global optimum”, 
‘for S=4, [Powell] 
makes search 
errors in 90% of 
the cases, 
despite using 20 
random starting 
points’ 

As S 
increases, the 
gap between 
1D-MERT 
and LP-MERT 
increases 

As S 
increases, the 
gap between 
1D-MERT 
and LP-MERT 
decreases 

With beam (size 1000) 

Exact search 



Summary 
• End-to-end evaluation (with beam approx. for LP-MERT) 

•  Tuning: 0.24 BLEU difference 
•  Test: 0.17 BLEU difference 

• Exact multi-dimensional MERT 
•  LP at the core 
•  Divide-and-conquer, lazy enumeration 

• Polynomial in dimension, N-best list size 
• Exponential in number of sentences 
• Approximations used to limit running time 
• Bold approach to tackle difficult problem 



Questions & concerns that I had… 
• End-to-end results do not look significant 
• Additional language pairs/datasets would be nice 
• As S increases, does the over-performance 
diminish? 

• What can we do to make this algorithm poly(S)? 
• LP-MERT + hypergraph MERT à towards MERT 
2.0? 

•  Is direct cost optimization the way forward? 

Thank you! 


