
From
n-gram-based

to
CRF-based

Translation Models
Lavergne - Crego - Allauzen - Yvon

LIMSI

I CAN HAS SIMPLER TRAINING?

© Pep Lopez

1-gram-based noisy channel MT

Bi-text
demanda

de nouveau
la femme

voilée

the
veiled
dame

said
again

Word alignments
& translation model
& reordering model

p(the|la)
p(veiled|voilée)

p(again|nouveau)
...

Monolingual
text Language model

EM

e⇤ = argmax

e
p(f |e)p(e)

p(nouveau|de)
p(nouveau|demanda de)

...

Decoder

MLE

phrased-based discriminative MT

Bi-text

demanda
de nouveau

la femme
voilée

the
veiled
dame

said
again

Monolingual
text Language model

EM

p(nouveau|de)
p(nouveau|demanda de)

...

Tuning bi-text

e⇤ = argmax

e
�TM log p(f |e) + �LM log p(e) +

X

i

�ifi(f, e)

�TM �LM (�i)i

Decoder
MERT

p(veiled|voilée)
p(veiled dame|femme voilé)

p(said again|demanda de nouveau)
...

p(the|la)
p(veiled|voilée)

p(again|nouveau)
...

Phrase translation model
+ reordering model

MLE

MLE

Reordering for n-gram models
204 J. M. Crego, J. B. Mariño

Fig. 2 Pattern extraction

Figure 2 shows an example of pattern extraction NC AQ CC AQ !→ 1 2 3 0, where the
first source word 0, which has been POS tagged NC, is mapped into the last position:
1 2 3 0. The pattern is obtained using word-to-word alignments and the source-side
POS tags of a given tuple. As can be seen, the word alignment is monotonized (dashed
box) when the pattern is applied over the tuple source words.

Each pattern is scored with a probability computed on the basis of relative
frequency (9).

p(t1, . . . , tn !→ i1, . . . , in) = N (t1, . . . , tn !→ i1, . . . , in)

N (t1, . . . , tn)
(9)

This score is used in this work only to filter the set of patterns to be used in decoding.

3.2 Input search graph extension

In decoding, the input sentence is handled as a word graph where a given hypothesis is
extended by means of covering (translating) some uncovered source word. However,
a monotonic search graph contains a single path, composed of arcs covering the input
words in the original word order. To allow for reordering, the graph is extended with
new arcs, covering the source words in the desired word order.

The motivation for extending the input graph is double: first, the aim to improve
the translation quality is met by the ability of reordering following the patterns as
explained previously. Second, the reordering decision is more informed since it is
taken during decoding using all the SMT models.

The extension procedure is outlined as follows: starting from the monotonic graph,
any sequence of the input POS tags fulfilling a source-side rewrite rule implies the
addition of a reordering path (composed of one or more arcs). The reordering path
encodes the reordering detailed in the target side of the rule, and is composed of as
many arcs as there are words present in the pattern.

Figure 3 shows an example of input search graph extension. Two patterns are found
in the example, used to extend the input graph through reordered hypotheses. The
first row shows the input sentence (left) and the monotonic search graph (right). In the
second row, the search graph is extended with a reordered hypothesis (dotted arcs) fol-
lowing the reordering pattern NC AQ !→ 1 0 (where the first two words are swapped).
Finally, the third row shows the extension of the search graph following the reordering
pattern NC AQ CC AQ !→ 1 2 3 0.

123

Improving statistical MT by coupling reordering and decoding 205

Fig. 3 Input search graph extension

Once the input search graph is built, it is traversed by the decoder aiming at finding
the best translation. Hence, the winner hypothesis is computed using the whole set of
system models (fully informed decision). The input sentence of the example in Fig. 3
is traversed in decoding, following three different word orders (Ex. 1).

(1) a. programa ambicioso y realista
b. ambicioso programa y realista
c. ambicioso y realista programa

3.3 Reordered n-gram translation model

The use of long tuples impoverishes the probability estimates of the translation model,
as longer tuples appear less often in training than the smaller ones (data sparseness
problem). Therefore, language pairs with significant differences in word order may
suffer from poor probability estimates.

Given our special translation model, the problem is specially relevant as translation
units (tuples) are learned from a unique segmentation of each training sentence pair,
obtaining a smaller number of tuples than phrases are obtained under the phrase-based
approach (Crego et al. 2005c).

In Kanthak et al. (2005) and Collins et al. (2005) a procedure prior to the phrase
extraction is suggested, aiming at monotonizing the source and target word order of
each sentence pair. Following this idea, we propose to estimate the n-gram translation
model using the “unfold” technique detailed in Crego et al. (2005b) in contrast to the
“regular” method detailed in Crego et al. (2004).

The unfolding technique makes use of the word alignments. It can be decomposed
into two main steps:

1. First an iterative procedure, where words in one side are grouped when linked to
the same word (or group) in the other side. The procedure loops grouping words
in both sides until no new groups are obtained.

2. In the second step the resulting groups (unfolded tuples) are output following the
word order of target-sentence words. Hence, the tuple sequence modifies the word
order of the source sentence.

123

Training from
word-aligned

POS-tagged bi-text

Input search graph

n-gram-based discriminative MT

Bi-text

demanda
de nouveau

la femme
voilée

the
veiled
dame

said
again

Monolingual
text Language model

EM

p(nouveau|de)
p(nouveau|demanda de)

...

Tuning bi-text

�TM �LM (�i)i

Reordered word graph + Monotone decoder
MERT

p(the|la)
p(veiled|voilée)

p(again|nouveau)
...

n-gram translation model

[la] [voilée] [femme] [demanda] [de nouveau]f̃ :

MLE

MLE

e⇤ = argmax

e
�TM log p(˜f, ẽ) + �LM log p(e) +

X

i

�ifi(f, e)

f ! f̃

CRF-based MT

Bi-text

demanda
de nouveau

la femme
voilée

the
veiled
dame

said
again

Monolingual
text Language model

EM

p(nouveau|de)
p(nouveau|demanda de)

... FST: - segment & reorder
 - monotone decoder

p(the|la)
p(veiled|voilée)

p(again|nouveau)
...

CRF translation model

[la] [voilée] [femme] [demanda] [de nouveau]f̃ :

MLE

side language model (LM), word and phrase penal-
ties, etc).

2.2 Translating with CRFs

A discriminative version of the n-gram approach
consists in modeling P (e|f) instead of P (e, f),
which can be efficiently performed with CRFs (Laf-
ferty et al., 2001; Sutton and McCallum, 2006). As-
suming matched sequences of observations (x =
xL

1) and labels (y = yL
1), CRFs express the con-

ditional probability of labels as:

P (yL
1 |xL

1) =
1

Z(xL
1 ; �)

exp(�T G(xL
1 , yL

1)),

where � is a parameter vector and G denotes a vec-
tor of feature functions testing various properties of
x and y. In the linear-chain CRF, each compo-
nent Gk(xI

1, y
I
1) of G is decomposed as a sum of

local features: Gk(xI
1, y

I
1) =

�
i gk(xI

1, yi�1, yi)2.
CRFs are trained by maximizing the (penalized) log-
likelihood of a corpus containing observations and
their labels.

In principle, the data used to train n-gram trans-
lation models provide all the necessary information
required to train a CRF3. It suffices to consider that
the alphabet of possible observations ranges over all
possible source side fragments, and that each tar-
get side of a tuple is a potential label. The model
thus defines the probability of a segmented target
�e = �eI

1 given the segmented and reordered source
sentence f̃ = �f I

1 . To complete the model, one just
needs to define a distribution over source segmen-
tations P (f̃ |f). Given the deterministic relationship
between e and �e expressed by the “unsegmentation”
function � which maps �e with e = �(�e), we then
have:

P (e|f) =
�

f̃ ,ee|�(ee)=e

P (�e, f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃ , f)P (f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃)P (f̃ |f)

2Assuming first order dependencies.
3This is a significant difference with (Blunsom et al., 2008),

as we do not need to introduce latent variables during training.

In practice, we will only consider a restricted
number of possible segmentation/reorderings of the
source, denoted L(f), and compute the best transla-
tion e� as �(�e�), where:

�e� = arg max
ee

P (�e|f)

� arg max
f̃�L(f),ee

P (�e, |f̃ , f)P (f̃ |f) (1)

Even with these simplifying assumptions, this
approach raises several challenging computational
problems. First, training a CRF is quadratic in the
number of labels, of which we will have plenty (typ-
ically hundreds of thousands). A second issue is de-
coding: as we need to consider at test time a combi-
natorial number of possible source reorderings and
segmentations, we can no longer dispense with the
computation of the normalizer Z(f̃ ; �) which is re-
quired to compute P (�e, f̃ |f) as P (f̃ |f)P (�e|f̃) and to
compare hypotheses associated with different values
of f̃ . We discuss our solutions to these problems in
the next section.

3 Implementation issues

3.1 Training

Basic training The main difficulties in training are
caused by the unusually large number of labels, each
of which corresponds to a (small) sequence of target
words. Hopefully, each observation (source side tu-
ple) occurs with a very small number of different
labels. A first simplification is thus to consider that
the set of possible “labels” �e for a source sequence
�f is limited to those that are seen in training: all
the other associations (�f, �e) are deemed impossible,
which amounts to setting the corresponding param-
eter value to ��.

A second speed-up is to enforce sparsity in the
model, through the use of a �1 regularization term
(Tibshirani, 1996): on the one hand, this greatly re-
duces the memory usage; furthermore, sparse mod-
els are also prone to various optimization of the
forward-backward computations (Lavergne et al.,
2010). As discussed in (Ng, 2004; Turian et al.,
2007), this feature selection strategy is well suited
to the task at hand, where the number of possible
features is extremely large. Optimization is per-

544

MLE

side language model (LM), word and phrase penal-
ties, etc).

2.2 Translating with CRFs

A discriminative version of the n-gram approach
consists in modeling P (e|f) instead of P (e, f),
which can be efficiently performed with CRFs (Laf-
ferty et al., 2001; Sutton and McCallum, 2006). As-
suming matched sequences of observations (x =
xL

1) and labels (y = yL
1), CRFs express the con-

ditional probability of labels as:

P (yL
1 |xL

1) =
1

Z(xL
1 ; �)

exp(�T G(xL
1 , yL

1)),

where � is a parameter vector and G denotes a vec-
tor of feature functions testing various properties of
x and y. In the linear-chain CRF, each compo-
nent Gk(xI

1, y
I
1) of G is decomposed as a sum of

local features: Gk(xI
1, y

I
1) =

�
i gk(xI

1, yi�1, yi)2.
CRFs are trained by maximizing the (penalized) log-
likelihood of a corpus containing observations and
their labels.

In principle, the data used to train n-gram trans-
lation models provide all the necessary information
required to train a CRF3. It suffices to consider that
the alphabet of possible observations ranges over all
possible source side fragments, and that each tar-
get side of a tuple is a potential label. The model
thus defines the probability of a segmented target
�e = �eI

1 given the segmented and reordered source
sentence f̃ = �f I

1 . To complete the model, one just
needs to define a distribution over source segmen-
tations P (f̃ |f). Given the deterministic relationship
between e and �e expressed by the “unsegmentation”
function � which maps �e with e = �(�e), we then
have:

P (e|f) =
�

f̃ ,ee|�(ee)=e

P (�e, f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃ , f)P (f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃)P (f̃ |f)

2Assuming first order dependencies.
3This is a significant difference with (Blunsom et al., 2008),

as we do not need to introduce latent variables during training.

In practice, we will only consider a restricted
number of possible segmentation/reorderings of the
source, denoted L(f), and compute the best transla-
tion e� as �(�e�), where:

�e� = arg max
ee

P (�e|f)

� arg max
f̃�L(f),ee

P (�e, |f̃ , f)P (f̃ |f) (1)

Even with these simplifying assumptions, this
approach raises several challenging computational
problems. First, training a CRF is quadratic in the
number of labels, of which we will have plenty (typ-
ically hundreds of thousands). A second issue is de-
coding: as we need to consider at test time a combi-
natorial number of possible source reorderings and
segmentations, we can no longer dispense with the
computation of the normalizer Z(f̃ ; �) which is re-
quired to compute P (�e, f̃ |f) as P (f̃ |f)P (�e|f̃) and to
compare hypotheses associated with different values
of f̃ . We discuss our solutions to these problems in
the next section.

3 Implementation issues

3.1 Training

Basic training The main difficulties in training are
caused by the unusually large number of labels, each
of which corresponds to a (small) sequence of target
words. Hopefully, each observation (source side tu-
ple) occurs with a very small number of different
labels. A first simplification is thus to consider that
the set of possible “labels” �e for a source sequence
�f is limited to those that are seen in training: all
the other associations (�f, �e) are deemed impossible,
which amounts to setting the corresponding param-
eter value to ��.

A second speed-up is to enforce sparsity in the
model, through the use of a �1 regularization term
(Tibshirani, 1996): on the one hand, this greatly re-
duces the memory usage; furthermore, sparse mod-
els are also prone to various optimization of the
forward-backward computations (Lavergne et al.,
2010). As discussed in (Ng, 2004; Turian et al.,
2007), this feature selection strategy is well suited
to the task at hand, where the number of possible
features is extremely large. Optimization is per-

544

reordering (POS)

segmentation

n-gram translation

n-gram generative story

f

e1~e e2 ene3

...

~ ~ ~ ~

e

f1
~ f2

~ f3
~

fn
~~f

f

f~

~e ...e1~ e2~ e3~ en~

e

ɸ

segmentation & reordering

un-segmentation
(deterministic)

CRF translation

side language model (LM), word and phrase penal-
ties, etc).

2.2 Translating with CRFs

A discriminative version of the n-gram approach
consists in modeling P (e|f) instead of P (e, f),
which can be efficiently performed with CRFs (Laf-
ferty et al., 2001; Sutton and McCallum, 2006). As-
suming matched sequences of observations (x =
xL

1) and labels (y = yL
1), CRFs express the con-

ditional probability of labels as:

P (yL
1 |xL

1) =
1

Z(xL
1 ; �)

exp(�T G(xL
1 , yL

1)),

where � is a parameter vector and G denotes a vec-
tor of feature functions testing various properties of
x and y. In the linear-chain CRF, each compo-
nent Gk(xI

1, y
I
1) of G is decomposed as a sum of

local features: Gk(xI
1, y

I
1) =

�
i gk(xI

1, yi�1, yi)2.
CRFs are trained by maximizing the (penalized) log-
likelihood of a corpus containing observations and
their labels.

In principle, the data used to train n-gram trans-
lation models provide all the necessary information
required to train a CRF3. It suffices to consider that
the alphabet of possible observations ranges over all
possible source side fragments, and that each tar-
get side of a tuple is a potential label. The model
thus defines the probability of a segmented target
�e = �eI

1 given the segmented and reordered source
sentence f̃ = �f I

1 . To complete the model, one just
needs to define a distribution over source segmen-
tations P (f̃ |f). Given the deterministic relationship
between e and �e expressed by the “unsegmentation”
function � which maps �e with e = �(�e), we then
have:

P (e|f) =
�

f̃ ,ee|�(ee)=e

P (�e, f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃ , f)P (f̃ |f)

=
�

f̃ ,ee|�(ee)=e

P (�e, |f̃)P (f̃ |f)

2Assuming first order dependencies.
3This is a significant difference with (Blunsom et al., 2008),

as we do not need to introduce latent variables during training.

In practice, we will only consider a restricted
number of possible segmentation/reorderings of the
source, denoted L(f), and compute the best transla-
tion e� as �(�e�), where:

�e� = arg max
ee

P (�e|f)

� arg max
f̃�L(f),ee

P (�e, |f̃ , f)P (f̃ |f) (1)

Even with these simplifying assumptions, this
approach raises several challenging computational
problems. First, training a CRF is quadratic in the
number of labels, of which we will have plenty (typ-
ically hundreds of thousands). A second issue is de-
coding: as we need to consider at test time a combi-
natorial number of possible source reorderings and
segmentations, we can no longer dispense with the
computation of the normalizer Z(f̃ ; �) which is re-
quired to compute P (�e, f̃ |f) as P (f̃ |f)P (�e|f̃) and to
compare hypotheses associated with different values
of f̃ . We discuss our solutions to these problems in
the next section.

3 Implementation issues

3.1 Training

Basic training The main difficulties in training are
caused by the unusually large number of labels, each
of which corresponds to a (small) sequence of target
words. Hopefully, each observation (source side tu-
ple) occurs with a very small number of different
labels. A first simplification is thus to consider that
the set of possible “labels” �e for a source sequence
�f is limited to those that are seen in training: all
the other associations (�f, �e) are deemed impossible,
which amounts to setting the corresponding param-
eter value to ��.

A second speed-up is to enforce sparsity in the
model, through the use of a �1 regularization term
(Tibshirani, 1996): on the one hand, this greatly re-
duces the memory usage; furthermore, sparse mod-
els are also prone to various optimization of the
forward-backward computations (Lavergne et al.,
2010). As discussed in (Ng, 2004; Turian et al.,
2007), this feature selection strategy is well suited
to the task at hand, where the number of possible
features is extremely large. Optimization is per-

544

Discriminative story

S

R

T◦F

CRF Features

fi
~

ei~

ei-1~ ei~

translation features [trs]

+context features [ctx]

+suffix/prefix features [ix]
+segmentation (length) features [seg]
+distortion (Δ+lex) features [ord]

target bigram features [trg]

ei~
+LM (non-local)

Negative results

Note that all these features are further condi-
tioned on the target label.

• reordering features [ord]. These features are
meant to model preferences for specific lo-
cal reordering patterns and take into account
neighbor source fragments in �e together with
the current label. Each source side segment
�fi is made of some source words that, prior
to source reordering, were located at indices
i1 . . . il, so that �fi = fi1 . . . fil . The high-
est (resp. lowest) index in this sequence is � �fi�
(resp. � �fi�). The leftmost (resp. rightmost) in-
dex is [�fi[(resp.] �fi]).

Using these notations, our model includes the
following patterns:

– distortion features, measuring the gaps be-
tween consecutive source fragments :
gol,t(f̃ ,�e, i)=I(�(�fi, �ei)= l � �ei = t),
where �(�fi, �ei) =�
� �fi� � � �fi�1� if (� �fi�1� � � �fi�)
� �fi� � � �fi�1� otherwise .

– lexicalized reordering, identifying mono-
tone, swap and discontinuous configura-
tions (Tillman, 2004). The monotonous
test is defined as: gom(f̃ ,�e, i) =
I(]ei�1] = [ei[); the swap and discon-
tinuous configurations are defined analo-
gously.

– ”gappiness” test : this feature is activated
whenever the source indices i1...il contain
one or several gaps.

4.3 Experiments and lessons learned

Training time The first lesson learned is that
training can be performed efficiently. Our baseline
system, which only contains trs and trg contains ap-
proximately 87 million features, out of which a lit-
tle bit more than 600K are selected. Adding up all
supplementary features raises the number of param-
eters to about 130M features, out of which 1.5M are
found useful. All these systems require between 3
and 5 hours to train9. These numbers are obtained
with a �1 penalty term � 1, which offers a good bal-
ance between accuracy and sparsity.

9All experiments run on a server with 64G of memory and
two Xeon processors with 4 cores at 2.27 Ghz.

Test conditions In order to better assess the
strengths and weaknesses of our approach, we com-
pare several test settings: the most favorable con-
siders only one possible segmentation/reordering f̃
for each f , obtained through forced alignment with
the reference; we then consider the more challeng-
ing case where the reordering is fixed, but several
segmentations are considered; then the regular de-
coding task, where both segmentation and reorder-
ing are unknown and where the entire space of all
segmentations and reordering is searched. For each
condition, we also vary (i) the set of features used
and (ii) the target language model used, if any.
Wherever applicable, we also report contrasts with
n-gram-based systems subject to the same input and
comparable resources, varying the order of the tuple
language model, as well as with Moses. Results are
in Table 2.

dev test # feat.
decoding with optimal segmentation/reordering

CRF (trs,trg) 23.8 25.1 660K
CRF +ctx 24.1 25.4 1.5M
CRF +ix,ord,seg 24.3 25.6 1.5M
decoding with optimal reordering

n-gram (2g,3g) 20.6 24.1 755K
n-gram (3g,3g) 21.5 25.2 755K
CRF trs,trg - 22.8 660K
CRF +ctx - 23.1 1.5M
CRF +ix,ord,seg - 23.5 1.5M
regular decoding

Moses (3g) 21.2 20.5
n-gram (2g,3g) 20.6 20.2 755K
n-gram (3g,3g) 21.5 21.2 755K
CRF (trs,trg) - 18.3 660K
CRF +ctx - 18.8 1.5M
CRF +ix,ord,seg - 19.1 1.5M
CRF +ix,ord,seg+3g - 19.1 1.5M

Table 2: Translation performance

Extending the feature set As expected, the use
of increasingly complex feature sets seems benefi-
cial in all experimented conditions. It is noteworthy
that throwing in reordering and contextual features
is helping, even when decoding one single segmen-
tation and reordering. This is because these features
do not help to select the best input reordering, but

548

Note that all these features are further condi-
tioned on the target label.

• reordering features [ord]. These features are
meant to model preferences for specific lo-
cal reordering patterns and take into account
neighbor source fragments in �e together with
the current label. Each source side segment
�fi is made of some source words that, prior
to source reordering, were located at indices
i1 . . . il, so that �fi = fi1 . . . fil . The high-
est (resp. lowest) index in this sequence is � �fi�
(resp. � �fi�). The leftmost (resp. rightmost) in-
dex is [�fi[(resp.] �fi]).

Using these notations, our model includes the
following patterns:

– distortion features, measuring the gaps be-
tween consecutive source fragments :
gol,t(f̃ ,�e, i)=I(�(�fi, �ei)= l � �ei = t),
where �(�fi, �ei) =�
� �fi� � � �fi�1� if (� �fi�1� � � �fi�)
� �fi� � � �fi�1� otherwise .

– lexicalized reordering, identifying mono-
tone, swap and discontinuous configura-
tions (Tillman, 2004). The monotonous
test is defined as: gom(f̃ ,�e, i) =
I(]ei�1] = [ei[); the swap and discon-
tinuous configurations are defined analo-
gously.

– ”gappiness” test : this feature is activated
whenever the source indices i1...il contain
one or several gaps.

4.3 Experiments and lessons learned

Training time The first lesson learned is that
training can be performed efficiently. Our baseline
system, which only contains trs and trg contains ap-
proximately 87 million features, out of which a lit-
tle bit more than 600K are selected. Adding up all
supplementary features raises the number of param-
eters to about 130M features, out of which 1.5M are
found useful. All these systems require between 3
and 5 hours to train9. These numbers are obtained
with a �1 penalty term � 1, which offers a good bal-
ance between accuracy and sparsity.

9All experiments run on a server with 64G of memory and
two Xeon processors with 4 cores at 2.27 Ghz.

Test conditions In order to better assess the
strengths and weaknesses of our approach, we com-
pare several test settings: the most favorable con-
siders only one possible segmentation/reordering f̃
for each f , obtained through forced alignment with
the reference; we then consider the more challeng-
ing case where the reordering is fixed, but several
segmentations are considered; then the regular de-
coding task, where both segmentation and reorder-
ing are unknown and where the entire space of all
segmentations and reordering is searched. For each
condition, we also vary (i) the set of features used
and (ii) the target language model used, if any.
Wherever applicable, we also report contrasts with
n-gram-based systems subject to the same input and
comparable resources, varying the order of the tuple
language model, as well as with Moses. Results are
in Table 2.

dev test # feat.
decoding with optimal segmentation/reordering

CRF (trs,trg) 23.8 25.1 660K
CRF +ctx 24.1 25.4 1.5M
CRF +ix,ord,seg 24.3 25.6 1.5M
decoding with optimal reordering

n-gram (2g,3g) 20.6 24.1 755K
n-gram (3g,3g) 21.5 25.2 755K
CRF trs,trg - 22.8 660K
CRF +ctx - 23.1 1.5M
CRF +ix,ord,seg - 23.5 1.5M
regular decoding

Moses (3g) 21.2 20.5
n-gram (2g,3g) 20.6 20.2 755K
n-gram (3g,3g) 21.5 21.2 755K
CRF (trs,trg) - 18.3 660K
CRF +ctx - 18.8 1.5M
CRF +ix,ord,seg - 19.1 1.5M
CRF +ix,ord,seg+3g - 19.1 1.5M

Table 2: Translation performance

Extending the feature set As expected, the use
of increasingly complex feature sets seems benefi-
cial in all experimented conditions. It is noteworthy
that throwing in reordering and contextual features
is helping, even when decoding one single segmen-
tation and reordering. This is because these features
do not help to select the best input reordering, but

548

+Language model does not help

Weaknesses:
- scoring of reordering & segmentation
- target LM

Oracle segmentation / reordering

Note that all these features are further condi-
tioned on the target label.

• reordering features [ord]. These features are
meant to model preferences for specific lo-
cal reordering patterns and take into account
neighbor source fragments in �e together with
the current label. Each source side segment
�fi is made of some source words that, prior
to source reordering, were located at indices
i1 . . . il, so that �fi = fi1 . . . fil . The high-
est (resp. lowest) index in this sequence is � �fi�
(resp. � �fi�). The leftmost (resp. rightmost) in-
dex is [�fi[(resp.] �fi]).

Using these notations, our model includes the
following patterns:

– distortion features, measuring the gaps be-
tween consecutive source fragments :
gol,t(f̃ ,�e, i)=I(�(�fi, �ei)= l � �ei = t),
where �(�fi, �ei) =�
� �fi� � � �fi�1� if (� �fi�1� � � �fi�)
� �fi� � � �fi�1� otherwise .

– lexicalized reordering, identifying mono-
tone, swap and discontinuous configura-
tions (Tillman, 2004). The monotonous
test is defined as: gom(f̃ ,�e, i) =
I(]ei�1] = [ei[); the swap and discon-
tinuous configurations are defined analo-
gously.

– ”gappiness” test : this feature is activated
whenever the source indices i1...il contain
one or several gaps.

4.3 Experiments and lessons learned

Training time The first lesson learned is that
training can be performed efficiently. Our baseline
system, which only contains trs and trg contains ap-
proximately 87 million features, out of which a lit-
tle bit more than 600K are selected. Adding up all
supplementary features raises the number of param-
eters to about 130M features, out of which 1.5M are
found useful. All these systems require between 3
and 5 hours to train9. These numbers are obtained
with a �1 penalty term � 1, which offers a good bal-
ance between accuracy and sparsity.

9All experiments run on a server with 64G of memory and
two Xeon processors with 4 cores at 2.27 Ghz.

Test conditions In order to better assess the
strengths and weaknesses of our approach, we com-
pare several test settings: the most favorable con-
siders only one possible segmentation/reordering f̃
for each f , obtained through forced alignment with
the reference; we then consider the more challeng-
ing case where the reordering is fixed, but several
segmentations are considered; then the regular de-
coding task, where both segmentation and reorder-
ing are unknown and where the entire space of all
segmentations and reordering is searched. For each
condition, we also vary (i) the set of features used
and (ii) the target language model used, if any.
Wherever applicable, we also report contrasts with
n-gram-based systems subject to the same input and
comparable resources, varying the order of the tuple
language model, as well as with Moses. Results are
in Table 2.

dev test # feat.
decoding with optimal segmentation/reordering

CRF (trs,trg) 23.8 25.1 660K
CRF +ctx 24.1 25.4 1.5M
CRF +ix,ord,seg 24.3 25.6 1.5M
decoding with optimal reordering

n-gram (2g,3g) 20.6 24.1 755K
n-gram (3g,3g) 21.5 25.2 755K
CRF trs,trg - 22.8 660K
CRF +ctx - 23.1 1.5M
CRF +ix,ord,seg - 23.5 1.5M
regular decoding

Moses (3g) 21.2 20.5
n-gram (2g,3g) 20.6 20.2 755K
n-gram (3g,3g) 21.5 21.2 755K
CRF (trs,trg) - 18.3 660K
CRF +ctx - 18.8 1.5M
CRF +ix,ord,seg - 19.1 1.5M
CRF +ix,ord,seg+3g - 19.1 1.5M

Table 2: Translation performance

Extending the feature set As expected, the use
of increasingly complex feature sets seems benefi-
cial in all experimented conditions. It is noteworthy
that throwing in reordering and contextual features
is helping, even when decoding one single segmen-
tation and reordering. This is because these features
do not help to select the best input reordering, but

548

