
Patterns of Self-
Management

Dave Wile
Teknowledge Corp.

Dwile@teknowledge.com

Talk Summary
• What does self-management mean to you?

– Support for system adaptation to vary the extent
to which it satisfies its designers’ desires based
on the dynamic environment

– Support for system adaptation to vary the extent
to which it satisfies its users’ desires based on
the dynamic environment

• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that youare

pursuing in this work?

Talk Summary
• What does self-management mean to you?

• What aspects of the self-management problem are
you addressing?
– Externalized view of self-management activities
– Specification of add-ons needed to

• Instrument
• Monitor
• Decide
• Effect

– Cataloging well-known idioms for these activities as
patterns

• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that youare

pursuing in this work?

Talk Summary
• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?

• What aspects are you NOT dealing with
[here]?
– Refinement or implementation of concepts
– Appropriateness of concepts in different

situations
– Variations of patterns
– Specific domains where more appropriate

idioms would occur
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that you are

pursuing in this work?

Talk Summary
• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?

• What domains, properties, or applications are you
targeting?
– Coarse-grained systems

• Not tightly-coupled systems
• Not highly dynamic / rapidly evolving systems

– Not closed-off, inaccessible systems (e.g. single
monolithic applications)

(I just have not thought about idioms there)
• What are the top two/three new technical ideas/approaches that you are

pursuing in this work?

Talk Summary
• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?

• What are the top two/three new technical
ideas/approaches that you are pursuing in
this work?
– Externalized infrastructure
– Self-Management architectural style
– Self- Management patterns expressed in the

style

Externalized Infrastructure
A

rc
hi

te
ct

ur
al

 M
od

el
s

Interpretation

Gauges

Gauge Bus
Interpretation

Gauges

Gauge Bus

Collection

Probes

Probe Bus
Collection

Probes

Probe Bus

Adaptation &
Configuration

Effectors

Adaptation &
Configuration

Effectors

Controllers

Decision &
Display

Controllers

Decision &
Display

Running
System

(Source: DASADA II proposal)

Problems

• C2-like: Best for implementation of very dynamic
harnesses, where new gauges are created and
swapped in and out

• Incapable of expressing direct communication
– Obfuscates component relationships
– Obfuscates connection types

• Cannot express implicit coupling relationships
• Difficult to reason about

ALTERNATIVE: Specific architectural style

• Sensors’ information collected by
• Gauges , and

– Accumulating information from other gauges
– Which are InterpretedBy

• Interpreters, which are either
– User Displays
– Or Controllers

• Which Configure Gauges, Sensors or Effectors
• Or Decide which Effectors to enable

• Abstractions are used to model information, written
and read by all non-system elements, i.e. all but sensors
and effectors

• Some sensors’ and effectors’ activities are coupled

Self-Awareness Architectural Style

Patterns

• Examples
– Resource allocation
– Corruption resiliency
– User authorization
– Model Comparator

• Abstraction
– Progress

• Composition
– Authorization (revisited)

Resource Allocation
• probes watch resource consumption (allocation / deallocation)
• gauges determine average usage, looking for threshold violations.

– These gauges may need to refer to some model for resource consumption;
– for example, the thresholds may depend on the type of job being run.

• some decision logic determines how to reallocate resources,
– either by adding new resources to one process or
– removing resources already allocated to others.

Σ/nResource
allocation > max(rtype) reallocator

Add
resource

Resource models

Remove
resource

< max(rtype)

Corruption Resiliency
• probes into the system that capture all safe modifications to a resource.
• (Presumably, there are also paths in the system that allow unsafe

modifications)
• gauge caches the safe modifications redundantly, but almost certainly more

slowly
• corruption detector

– e.g. during the access by computing a hash code on the real store and comparing it
with a cache’s code

– the proper answers can be returned (access is redirected to the cache)

Access of
Resource

Safe
cache

Corruption
detector restore

redirect

Cache
valueModification

To Resource

User Authorization
• of the managed system to allow questionable activities to proceed or not.
• gauge (“trying”) determines that a particular action is being attempted
• threat model is consulted and a decision is made on whether the action should

be prevented or allowed to proceed
• if the decision cannot be made automatically, the user is informed via a

display.
• user indicates the decision (by keyboard, mouse click, or timeout, perhaps) and

effects the appropriate system response.

action trying Show user

Yes No

prevent

authorize

Threat model

User decides

Model Comparator
• construct two somewhat independent models of a system

– environmental events which drive the system collected by probes
– E.g., an event such as “request print”

• a simulation, proceeds to determine a model response, building up the Simulated Model.
– E.g., a finite state machine model may change from “allow requests” to “request pending.”

• system responses (from a set of probes) produce the “Actual Model”
– E.g., the response probe might report that the system changed states to “printing.”

• comparator gauge determines whether a difference exists and the appropriate action is
decided upon

– E.g., the test would be whether “printing” and “request pending” are equivalent states.

Environmental
events

Rection
events

reconfigure

System stimulus

System response

Model stimulus

Simulated model

Actual model

comparator

Towards Abstraction
• measurement event first announces the size of a set of items to be processed.
• each time an item has been processed, a “Tick” event is reported by the

instrumented system
• a counter is increased.
• final gauge divides the counter value by the size of the set after each tick, thus

dynamically indicating the percentage of the job that has been accomplished. .

Estimate#

Tick +1 /#

#

PerCentage

Composing Patterns
• User Intervention is more general in that the user is “deciding,” not saying

“Yes or No.” (A way of bundling a group of connectors and components is
needed.)

• To compose User Authorization from Authorization and User Intervention
requires impedance matching the “decision” events to become a “yes and no.”

• One must be specific about where patterns can be introduced.
• Compound authorization requires generalizing Authorization.

action trying

Yes No

prevent

authorize

Authorization
Show user

Decide or Pass On User decides
Stimulus

decision

User Intervention

Issues

• Formalizing
• Openness / closedness of patterns
• Semantics
• Goal: codify knowledge in the self-

management area
– Categorize talks here
– Any new ones seen?

	Patterns of Self-Management
	Talk Summary
	Talk Summary
	Talk Summary
	Talk Summary
	Talk Summary
	Externalized Infrastructure
	Problems
	Patterns
	Resource Allocation
	Corruption Resiliency
	User Authorization
	Model Comparator
	Towards Abstraction
	Composing Patterns
	Issues

