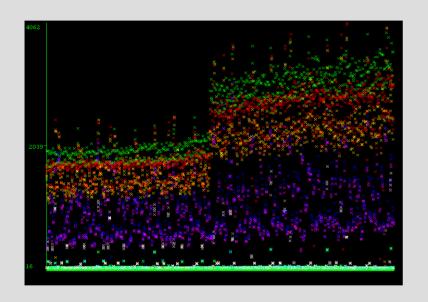


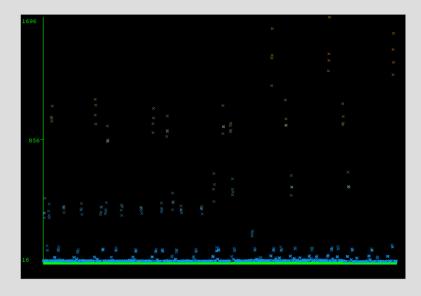
Using Model Trees to Characterize Computer Resource Usage

Steve Heisig
T. J. Watson Research Center
Steve Moyle
Oxford Comlab

What are we (not) addressing?

- Monitoring Using existing data sources
- Interpretation Human and Programmatic Models
 - Adaptive thresholding for resource consumption
 - Processor, memory, IO bandwidth, paper, plastic
- Resolution What to change
- Adaptation How to change it




What are the domains, properties, applications being targeted?

- Systems and workloads with good resource consumption instrumentation
 - Models are improved by ability and willingness of domain experts to provide additional business process information
 - This could potentially be automated if this information becomes available.

Processor Characterization

04072003 LOAN INTEREST (MONTHLY) (CALCULATION)
04072003 MONTHLY CHARGED COMMISSION (EXTRACTION)
04072003 MONTHLY NOT PRE-NOTIFIED DEBIT INTEREST (APPLICATION)
04072003 MONTHLY PRE-NOTIFIED DEBIT INTEREST (EXTRACTION)

07072003 LOAN INTEREST (MONTHLY) (APPLICATION) 07072003 MONTHLY CHARGED COMMISSION (APPLICATION) 07072003 MONTHLY PRE-NOTIFIED DEBIT INTEREST (APPLICATION)

11072003 MONTHLY CHARGED COMMISSION (CALCULATION) 11072003 MONTHLY PRE-NOTIFIED DEBIT INTEREST (CALCULATION)

Decision tree:

```
Month \leq 0.5:
 Day <= 12.5:
   HY <= -7.45:
      HY <= -9.15:
        Day <= 1.5 : LM1
        Day > 1.5:
          EuroCalc=Y <= 0.5 : LM2
          EuroCalc=Y > 0.5 : LM3
      HY > -9.15:
        EuroCalc=Y \le 0.5:
          Day <= 7.5:
             Day <= 3.5 : LM4
             Day > 3.5 : LM5
          Day > 7.5 : LM6
        EuroCalc=Y > 0.5 : LM7
    HY > -7.45:
      Day <= 9.5:
        Day <= 4.5:
        | Day <= 3.5 : LM8
        | Day > 3.5 : LM9
        Day > 4.5 : LM10
      Day > 9.5:
        Day <= 10.5 : LM11
      | Day > 10.5 : LM12
  Day > 12.5:
    Day <= 27.5 : LM13
    Day > 27.5:
      Day <= 29.5 : LM14
      Day > 29.5:
        Day <= 30.5 : LM15
        Day > 30.5 : LM16
Day > 19.5:
    HX <= 2.45:
      Day <= 27.5:
        Day <= 21.5 :
```

Linear Regression Leaf Nodes

Linear Regression Model 1 CPUSECS = 530.3333

Linear Regression Model 2 CPUSECS = 59.0417 * Day -333.5

Linear Regression Model 3 CPUSECS =

Linear Regression Model 4 CPUSECS = 21.5

Linear Regression Model 5 CPUSECS = 99.75

Linear Regression Model 6 CPUSECS = 374.6667

Linear Regression Model 7 CPUSECS = -4.4495 * Day + 69.8258

New ideas/approaches

- Model Trees are useful for distilling large amounts of performance/diagnostic data to compact, computationally efficient, human understandable rules.
- Model Trees allow human domain experts to augment raw performance data sources. The resulting models can be more useful than those built using unannotated data.
- Insights can be used for automation, human intervention, or OS optimization.