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ABSTRACT 
One of the challenges for software architects is ensuring that an 
implemented system faithfully represents its architecture. We 
describe and demonstrate a tool, called DiscoTect, that addresses 
this challenge by dynamically monitoring a running system and 
deriving the software architecture as that system runs. The 
derivation process is based on mappings that relate low level 
system-level events to higher-level architectural events. The 
resulting architecture is then fed into existing architectural design 
tools so that comparisons can be conducted with the design time 
architecture and architectural analyses can be re-run to ensure that 
they are still valid. In addition to the demonstration, we briefly 
describe the mapping language and formal definition of the 
language in terms of Colored Petri Nets. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Data Abstraction 

General Terms 
Measurement, Documentation, Design, Economics, Verification. 

Keywords 
Architecture discovery, reverse engineering, architecture design 
tools and analyses. 

1. INTRODUCTION 
One of the challenges for software architects is ensuring that an 
implemented system faithfully represents its architecture. The 
software architecture of a system defines its high-level 
organization as a collection of interacting components, 
connectors, and constraints on interaction. Without assurance that 
the implementation matches the architecture, the value of the 
architectural design is significantly reduced, since architectural 
analyses may have little relationship  to the deployed system.  
One way to address this challenge is to provide tools and 
techniques that formally relate the software architecture to an 
implementation. Researchers have proposed various strategies for 
doing this, including embedding architecture concepts in the 
source code [1] and conducting static analysis of the code to elicit 
architectural views [10] [16]. However, both approaches are 
problematic for representing abstract component and connector 
(C&C) architectural views because C&C views are fundamentally 
about the runtime layout of a system, which may not be 
observable in the static artifact. 

We have been investigating an approach that circumvents these 
difficulties by monitoring the system as it runs and relating these 
runtime observations to a C&C view of the system [20]. In 
addition to accurately reflecting the runtime architecture of a 
system, the approach has the benefits that: 
- architectural analyses conducted during design can be 

conducted on the derived runtime architecture to determine 
whether the system is behaving in the manner intended by its 
design; 

- observations about the run-time architecture can be used by 
dynamic adaptation tools so that a system may reflect on 
itself and repair observed problems or mismatches. 

In this demonstration, we present a tool, called DiscoTect 
(Discovering Architectures), which  
1. allows mappings to be specified to relate runtime system 

observations to architectural events that construct C&C 
architectural views; 

2. runs alongside a system, interpreting these mappings to 
incrementally, and in real time, construct the current 
implementation architecture; and 

3. hooks into existing architectural design tools to present, 
analyze, and compare the runtime architecture of the system. 

2. DISCOTECT OVERVIEW 
The DiscoTect architecture is presented in Figure 1. Probes are 
inserted in the running system to report system-level events such 
as method calls, object creation, value changes, etc. These 
runtime events are consumed by the DiscoTect engine, which 
interprets the events according to the specified mapping to 
produce architectural events. Architectural events include 
component and connector creation, and setting architectural 
property values. These architectural events are then fed into 
existing architectural tools to produce the runtime architecture. 
While this paper focuses on DiscoTect (the area in the dotted box 
in Figure 1), in the demonstration we will also show how to probe 
the system and how to view and analyze the architecture.  

2.1 TECHNICAL CHALLENGES 
Writing mappings between system level and architectural events 
is challenging for the following reasons: 
1. Mappings between low-level system observations and 

architectural events are not usually one-to-one. Many low-
level events may be completely irrelevant. More importantly, 
a given abstract event, such as creating a new architectural 
connector, might involve many runtime events, such as 



object creation and lookup, library calls to run time 
infrastructure, initialization of data structures, etc. 
Conversely, a single implementation event might represent a 
series of architectural events. For example, executing a 
procedure call between two objects might signal the creation 
of a new connector, and its attachment to the run time ports 
of the respective architectural components. This implies the 
need for a technique that can keep track of intermediate 
information about mappings to an architectural model  

2. Architecturally relevant actions are typically interleaved in 
an implementation. For example, at a given moment, a 
system might be midway through creating several 
components and their connectors. This implies that any 
attempt to recognize architectural events must be able to 
cope with concurrent intermediate states.  

3. There is no single gold standard for indicating what 
implementation patterns represent which architectural events. 
Different implementations may choose different techniques 
for creating the same abstract architectural element. Consider 
the number of ways that one might implement pipes, for 
example. Indeed, one might even find multiple 
implementation approaches in the same system. Moreover, 
for the purposes of architectural discovery, there is no single 
architectural style that can be used for all systems. For 
example, the use of sockets might be used to represent many 
different types of connector. This means we need a flexible 
way to associate different implementation styles with 
architectural styles. 

To address these challenges, we have developed a language, 
called DiscoSTEP (Discovering Structure Through Event 

Processing), that is used in DiscoTect to specify the mappings. 
The execution semantics of DiscoSTEP are specified in terms of 
Colored Petri Nets. 
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Figure 1. The DiscoTect Architecture 
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2.2 DISCOSTEP PROGRAMMING 
A DiscoSTEP specification has three main ingredients: 

1. Events. The types of events produced and consumed by 
DiscoSTEP are specified in XML Schema definitions. This 
allows DiscoSTEP to be flexible in the types of events that it 
receives from a system, and the types of events it passes to 
the architecture builder. For example, DiscoSTEP could 
output style-specific events such as the creation of 
architectural client components in an architectural style. 
Events are partitioned into those events that are inputs to 
DiscoSTEP and those that are output by DiscoSTEP. The 
DiscoSTEP compiler can then conduct some simple type 
checking to ensure correct type usage. 

2. Rules. Rules specify how to map a series of system events 
into architectural events. A rule itself consists of four parts: 

a. Input events. Events consumed by the rule. 

b. Output events. Events produced by the rule. 
c. Trigger. A condition that determines whether 

inputs match a pattern that will cause the rule to 
fire. 

d. Actions. A set of actions that produce the output 
events. 

rule CreateServer { 
 input { init $e; } 
 output { string $server_id;  
        create_component $create_server; } 
 trigger {?  
  contains($e/@type, “ServerSocket”)  
 ?} 
 action = {?  
  let $server_id := $e/@instance_id; 
     let $create_server :=  
   <create_component name=”{$server_id}” 
       type=”ServerT” />;  
 } 
} 

<init  
 type= ”java.net.ServerSocket” 
 instance_id=”0x0f67d9” 
/> 

<string value=”0x0f67d9”/> 
<create_component  
 name=”0x0f67d9” type=”ServerT”/> 

Figure 2. Example Rule with Example Events Consumed 
and Produced. 



Because events are formatted in XML, the triggers and 
actions are specified using XML Query syntax [19] because 
it provides a convenient mechanism for manipulating and 
creating XML elements. 

3. Compositions. To complete a DiscoSTEP specification, 
compositions of rules are defined that allow complex 
sequences of rules to be constructed. Compositions are 
defined by connecting the outputs from one rule into the 
inputs of another. Output events that are not passed to 
another rule are emitted by DiscoTect to construct the 
architecture. 

The center of Figure 2 presents a simple DiscoSTEP rule (called 
CreateServer) for creating a Server component when it notices 
an init event that constructs an implementation object of type 
java.net.ServerSocket. The rule takes one input (an example 
XML element corresponding to the input is presented at the top of 
the figure) and two output events (presented at the bottom). The 
types of input and output events, and the names given to them in 
the rule, are defined in the input and output section of the rule. 
The trigger is an XML Query FLOWR expression that checks to 
see if the value of type attribute of the init event contains the 
string “ServerSocket”. If it does, then the actions of the rule are 
fired. The actions are specified in XML Query syntax, and create 
XML elements for each of the output variables. 
Informally, all init type XML events will be queued into the rule, 
but only those matching the trigger will cause the actions to be 
executed. Rules may specify multiple inputs, in which case each 
event is queued with the rule, and when sets of these events match 
a trigger, that set is passed to the action to produce output events. 
In this way, some order can be given interleaving of 
architecturally relevant events. 

2.3 DISCOTECT FORMAL MODEL 
In [20] we presented a preliminary description of the formal 
model of DiscoTect mappings in terms of state machines. 
Recently, however, we have redefined the semantics of 
DiscoSTEP mappings in Colored Petri Nets (CPN) [8]. A full 
treatment of the formal semantics is obviously not possible in the 
space of this paper – we refer to the reader to [21] for the full 
definition. Here, we merely give a flavor of the formal model. 
Each rule is modeled as a CPN transition, with the trigger 
corresponding to a CPN guard and the actions corresponding to  
CPN arc expressions. Each event type for a rule is modeled as a 
CPN place, where the color of the place is dictated by the type of 
the event. The determination of whether an event is an input or 
output event, and their use in a composition, is used to construct 

the node function of the CPN that maps places to transitions, and 
transitions to places. Figure 3 gives an example of the CPN that is 
formed from the rule in Figure 2. A composition is used to 
compose transitions and places into a complete CPN. DiscoTect 
events are modeled as tokens. For each input event that is 
received by DiscoTect, a token of the color is produced for every 
input place able to receive that color. 
We believe that using Colored Petri Nets is a more natural way of 
representing the mapping than what we described in [20]. We 
also use the runtime semantics of CPNs to guide the 
implementation of the DiscoTect Engine. 

3. IMPLEMENTATION 
DiscoTect itself is implemented in Java. Once a DiscoSTEP 
program is compiled, the data structures created to represent the 
program are serialized and then read in by the DiscoTect Engine 
for processing. The DiscoTect engine then waits for messages 
from the probes in a system. To deliver these messages, we use 
the Java Messaging System (JMS) from Sun. 
We use various existing probing technologies to extract 
monitoring events. In this demonstration, we will illustrate the use 
of AspectJ [7], to handle low-level monitoring of object creation, 
method invocation, etc. We provide a library that allows aspects 
to produce system events formatted as XML that are placed on a 
JMS event bus to be consumed by DiscoTect. 
AcmeStudio [14] is an architecture development environment that 
is primarily used for constructing architectures at design time. It is 
implemented as a plugin to the Eclipse environment, a framework 
for developing integrated development environments. DiscoTect 
produces architectural events formatted as XML that are 
forwarded by the AcmeStudio Remote Control plugin, 
communicating over Java RMI, to incrementally construct the 
architecture. The analysis capabilities of AcmeStudio can then be 
used to check the architecture with respect to its style, or conduct 
analyses such as performance or schedulability. 

4. RELATED WORK 
Our work is mostly related to other approaches for dynamic 
analysis of a system. A number of techniques and tools have been 
developed to extract information from a running system. These 
include instrumenting the source code to produce trace 
information and manipulating runtime artifacts to get the 
information (e.g., [3] and [18]). There are many technologies 
available for monitoring systems, and we build on those. 
However, they do not by themselves solve the hard problem 
mapping from code to more abstract models. In previous work, 
we developed an infrastructure doing certain kinds of abstraction 
[6]; however, this approach was limited to observing properties of 
a system and reflecting them in an architectural model in a 
preconstructed architectural model. In this work we show how to 
create that model in the first place. 

init 

string 

create_component 

$e 
$server_id 

$create_server 

[contains(…)] 

Figure 3. The Colored Petri Net Corresponding to 
the Rule in Figure 2.  

Dias et al. [4] use an XML-based language to describe runtime 
events and use patterns to map these events into  high-level 
events. Analyzing these events to determine architectural 
structure is not addressed. In addition, a simple static mapping 
from low-level system events to high-level events has limited 
expressiveness. For example, it cannot handle the case where the 
event analyzer initially has interest in one set of events but 
changes its interest after the interesting events have occurred. 
Also it doesn’t provide a way of specifying event correlations or 



mapping a series of correlated low-level events to a single high-
level event – a crucial capability needed when discovering the 
architecture of a system. Kaiser [6] uses a collection of temporal 
state machines to perform pattern matching against runtime 
events,. Our approach is similar, but makes architectural style 
explicit in the approach. 
A number of researchers have investigated the problem of 
presenting dynamic information to an observer. For example, 
Reiss [13], Walker [16] [17], and Zeller [22] present information 
about variables, threads, activations, object interactions, etc. Ernst 
[5] shows how to dynamically detect program invariants by 
examining values computed during a program execution, and by 
looking for patterns and relationships among them. This is 
somewhat different from detecting architectural structure.  
Madhav [12] describes a system that allows Ada 95 programs to 
be monitored dynamically to check conformance to a Rapide [11] 
architectural specification. His approach requires the source code 
to be annotated so that it can be transformed to produce events to 
construct the architecture. In contrast, our approach does not 
require access to the source code, and does not rely on 
architectural construction operations to be embedded in the code. 
A large body of research has investigated specification of the 
dynamic behavior of software architectures. Of the many 
approaches, some use explicit state machines (e.g., [2,25]). These 
approaches, however, do not link architecture to an executing 
system. 

5. CONCLUSION 
In this paper, we have given a brief description of DiscoTect, and 
how it is used to derive software architectures from runtime 
observations. The demonstration itself will show the toolset 
briefly described here, as presented in Appendix A. We have used 
DiscoTect to derive the architecture of various systems, including 
EJB systems, a mobile simulation system, and are in the progress 
of applying it to an automotive infotainment system. Some of case 
studies are reported in more detail in [20] [21]. In all cases, we 
have discovered discrepancies between the designed architecture 
and the implemented architecture. 
One of the drawbacks of using DiscoTect is that it obviously 
relies on how much of the system is visited during a particular 
run. This is similar to the issue of test coverage. For this reason, 
we see DiscoTect as a complement to existing static analysis 
techniques. We believe that DiscoTect will be of most use in  
systems where the run time context is important in ascertaining 
the architectural implications of an event (such as in distributed 
systems or systems that use callbacks). We are actively exploring 
this as future work. 
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APPENDIX A – TOOL AVAILABILITY 
DiscoTect will be available for downloading, from 
www.cs.cmu.edu/~able/discotect. AcmeStudio is currently 
available from www.acmestudio.org.  

APPENDIX B – DEMONSTRATION 
In the demonstration, we will walk participants through the full 
process of instrumenting a system, writing and compiling a 
DiscoSTEP program that defines the mapping between system 
level events and architectural events, running DiscoTect alongside 
a running system to dynamically create the architecture in 
AcmeStudio, and then using AcmeStudio to check the 
architecture. The following figures outline this demonstration. 

 

Figure 6. We will run an application and show how the 
architecture is constructed incrementally. This figure shows 
the completed EJB architecture of Duke’s Bank, a standard 
EJB example from Sun. The architecture displayed by 
AcmeStudio. 

 

Figure 4. Defining Aspects to Instrument an EJB Application. 
We provide methods to emit XML events to a JMS bus. The 
instrumentor needs to determine which methods or 
constructors need to be probed. 

 

Figure 7. AcmeStudio analysis tools can discover problems in 
an architecture. In this figure, the EJB architectural style 
dictates that a Session bean cannot access a Database directly. 
In the example derived architecture, an AccountController 
session bean is accessing the database directly. AcmeStudio 
flags this error (the error is highlighted at the bottom of the 
figure), and AcmeStudio allows the user to highlight the parts 
of the architecture caused this error (in the figure, correct 
parts are dimmed).

Figure 5. Once the program has been instrumented, we write 
a DiscoSTEP program to do the mapping. We will 
demonstrate the support we have for this, which includes 
compiling the program with feedback from DiscoTect.  
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