Instance Based Learning Instance-Based Learning

[Read Ch. §]

Key idea: just store all training examples (z;, f(x;))
o k-Nearest Neighbor

Nearest neighbor:

e Locally weighted regression e Given query instance x,, first locate nearest

e Radial basis functions training example x,, then estimate

fag) < f(an)
e Case-based reasoning

k-Nearest neighbor:
e Lazy and eager learning

e Given z,, take vote among its k nearest nbrs (if
discrete-valued target function)

e take mean of f values of k nearest nbrs (if
real-valued)

lay) o 20
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When To Consider Nearest Neighbor Voronoi Diagram

e Instances map to points in R”
e Less than 20 attributes per instance ’

e Lots of training data -

Advantages: B

e Training is very fast

e Learn complex target functions

e Don’t lose information
Disadvantages:

e Slow at query time

e Easily fooled by irrelevant attributes
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Behavior in the Limit

Counsider p(z) defines probability that instance x
will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:

e As number of training examples — oo,
approaches Gibbs Algorithm

Gibbs: with probability p(x) predict 1, else 0

k-Nearest neighbor:

e As number of training examples — oo and k gets
large, approaches Bayes optimal

Bayes optimal: if p(x) > .5 then predict 1, else 0

Note Gibbs has at most twice the expected error of
Bayes optimal
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Curse of Dimensionality

Imagine instances described by 20 attributes, but
only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily
mislead when high-dimensional X

One approach:

e Stretch jth axis by weight z;, where z1,..., 2,
chosen to minimize prediction error

e Use cross-validation to automatically choose
weights z1,..., 2,

e Note setting z; to zero eliminates this dimension
altogether

see [Moore and Lee, 1994]
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Distance-Weighted rNN

Might want weight nearer neighbors more heavily...

k
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where
. 1
Wi = 75
d(xqv z;)?

and d(xg, x;) is distance between z, and z;

Note now it makes sense to use all training
examples instead of just k

— Shepard’s method
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Locally Weighted Regression

Note kNN forms local approximation to f for each
query point z,

Why not form an explicit approximation f (z) for
region surrounding z,

e Fit linear function to k nearest neighbors

e Fit quadratic, ...

e Produces “piecewise approximation” to f
Several choices of error to minimize:

e Squared error over k nearest neighbors

Ex(zg) = (f(z) - F(x))?

2 z€ k nearest nbrs of xq

o Distance-weighted squared error over all nbrs

By(e)) =5 ¥ (f(2) = f(@)? K(d(ir, )
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Radial Basis Function Networks

e Global approximation to target function, in
terms of linear combination of local
approximations

e Used, e.g., for image classification
e A different kind of neural network

e Closely related to distance-weighted regression,
but “eager” instead of “lazy”
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Training Radial Basis Function Net-
works

Q1: What z, to use for each kernel function
Ku(d(l'ua :E))

e Scatter uniformly throughout instance space

e Or use training instances (reflects instance
distribution)

Q2: How to train weights (assume here Gaussian
Ku)

e First choose variance (and perhaps mean) for
each K,

—e.g., use EM
e Then hold K, fixed, and train linear output layer

— efficient methods to fit linear function
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Radial Basis Function Networks

O O oes
3,9 8,09 a,(d

where a;(z) are the attributes describing instance
x, and

k
f(.’E) = wo + 2_:1 wu}(u(d(xu, fL'))
One common choice for K,(d(z,,z)) is

[ Loy, T
K, (d(z,, 7)) = ¢ 2"
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Case-Based Reasoning

Can apply instance-based learning even when
X 75 o

— need different “distance” metric

Case-Based Reasoning is instance-based learning
applied to instances with symbolic logic
descriptions

((user-complaint error53-on-shutdown)
(cpu-model PowerPC)
(operating-system Windows)
(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape VirusScan)

(disk 1gig)
(likely-cause 777))
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Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

e each training example: ( qualitative function,
mechanical structure)

e new query: desired function,

e target value: mechanical structure for this
function

Distance metric: match qualitative function
descriptions
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Case-Based Reasoning in CADET

e Instances represented by rich structural
descriptions

e Multiple cases retrieved (and combined) to form
solution to new problem

e Tight coupling between case retrieval and
problem solving

Bottom line:

o Simple matching of cases useful for tasks such as
answering help-desk queries

e Area of ongoing research
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Case-Based Reasoning in CADET

A stored case:  T—junction pipe

Structure: Function:
T T =temperature
Q = waterflow Ql g
v G
Q2 +
=
Q3 -5 T +
} >
T3
%5 T, 7
A problem specification: Water faucet
Structure: Function:
+
? TR
! 5 O
T &
c Tm
Th +
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Lazy and Eager Learning

Lazy: wait for query before generalizing

e k-NEAREST NEIGHBOR, Case based reasoning

Eager: generalize before seeing query

e Radial basis function networks, ID3,
Backpropagation, NaiveBayes, ...

Does it matter?
e Eager learner must create global approximation

e Lazy learner can create many local
approximations

o if they use same H, lazy can represent more
complex fns (e.g., consider H = linear functions)
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