Decision Tree Learning

[read Chapter 3]
[recommended exercises 3.1, 3.4]

e Decision tree representation
e ID3 learning algorithm
e Entropy, Information gain

e Overfitting
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Decision Tree for PayDividend

Outlook
Strong Moderate Weak
Market Yes Earnings
Bear Bull Low High
No Yes No Yes
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Decision Trees

Decision tree representation:
e Flach internal node tests an attribute
e Flach branch corresponds to attribute value

e Each leaf node assigns a classification

How would we represent:
o \,V, XOR
e (ANB)V(CAN-DAE)
o M of N

27 lecture slides for textbook Machine Learning, (©Tom M. Mitchell, McGraw Hill, 1997



When to Consider Decision Trees

e Instances describable by attribute—value pairs
e Target function is discrete valued
e Disjunctive hypothesis may be required

e Possibly noisy training data

Examples:
e Credit risk analysis
e Stock screening

e Pending threshold events (dividents, stock split,
default)
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Top-Down Induction of Decision Trees

Main loop:
1. A < the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?

[ 29+, 35-] Al="? [ 29+, 35-] A2="7

t f f

[ 21+, 5-] [ 8+, 30-] [ 18+, 33-] [11+, 2-]
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Entropy
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e 5 is a sample of training examples
® p;, is the proportion of positive examples in .S
® p-, is the proportion of negative examples in S

e Entropy measures the impurity of S

Entropy(S) = —pa logs pe — p- logy pe
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Entropy

Entropy(S) = expected number of bits needed to
encode class (@ or &) of randomly drawn

member of S (under the optimal, shortest-length
code)

Why?

Information theory: optimal length code assigns
— log, p bits to message having probability p.

So, expected number of bits to encode & or & of
random member of S

P (—logy pe) + po(—logs pe)

Entropy(S) = —pa logs pe — p log, pe
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Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on A

Sy
Gain(S, A) = Entropy(S) — % uE?’Ltropy(&)
veValues(A) |S|
[ 29+, 35-] Al="? [ 29+, 35-] A2="7
t f f
[ 21+, 5-] [ 8+, 30-] [ 18+, 33-] [11+, 2-]
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Training Examples

Stock Outlook Price Market Earnings PayDividend

S1 Strong Down Bear High No
S2 Strong Down Bear Low No
S3 Moderate Down Bear High Yes
S4 Weak  Same Bear High Yes
S5 Weak Up Bull High Yes
S6 Weak Up Bull Low No
S7 Moderate Up Bull Low Yes
S8 Strong Same Bear High No
S9 Strong Up Bull High Yes
S10 Weak  Same Bull High Yes
S11  Strong Same Bull Low Yes
512 Moderate Same Bear Low Yes
513 Moderate Down Bull High Yes

S14 Weak Same Bear Low No
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Selecting the Next Attribute

Which attributeisthe best classifier ?

S [9+,5-] S [9+,5-]
E =0.940 E=0.940
Market Earnings
Bear Bull High Low
[3+,4-] [6+,1-] [6+,2-] [3+,3-]
E=0.985 E =0.592 E=0.811 E=1.00
Gain (S Market ) Gain (S, Earnings)

940 - (8/14).811 - (6/14)1.0
.048

940 - (7/14).985 - (7/14).592
151
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{S1, S2, ..., S14}

[9+,5-]
Outlook
Srong Moderate Weak
{S$1,52,58,59,511} {S3,57,512,S13} {S4,S5,56,510,S14}
[2+,3-] [4+,0-] [3+,2-]

/A

/

Which attribute should be tested here?

Sstrong = {S1,52,58,59,511}
Gain (Sgtrong, Market) = 970 - (3/5) 0.0 - (2/5) 0.0 = .970
Gain (Sgtrong: Price) = .970 - (2/5)0.0 — (2/5) 1.0 - (1/5) 0.0 = .570
Gain (Sgrong Earnings) = .970 - (2/5) 1.0 - (3/5) .918 = .019
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Hypothesis Space Search by ID3
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Hypothesis Space Search by ID3

e Hypothesis space is complete!
— Target function surely in there...
e Outputs a single hypothesis (which one?)
— Can’t play 20 questions...
e No back tracking
— Local minima...
e Statisically-based search choices
— Robust to noisy data...

e Inductive bias: approx “prefer shortest tree”
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Inductive Bias in ID3

Note H is the power set of instances X
— Unbiased?

Not really...

e Preference for short trees, and for those with
high information gain attributes near the root

e Bias is a preference for some hypotheses, rather
than a restriction of hypothesis space H

e Occam’s razor: prefer the shortest hypothesis
that fits the data
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Occam’s Razor

Why prefer short hypotheses?

Argument in favor:
e Fewer short hyps. than long hyps.

— a short hyp that fits data unlikely to be
coincidence

— a long hyp that fits data might be coincidence

Argument opposed:
e There are many ways to define small sets of hyps

e c.g., all trees with a prime number of nodes that
use attributes beginning with “Z”

e What’s so special about small sets based on size
of hypothesis??
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Overfitting in Decision Trees

Consider adding noisy training example #15:

Strong, Down, Bull, Low, PayDividend = No

What effect on earlier tree?

Outlook
Srong Moderate Weak
Market Yes Earnings
Bear Bull Low High
No Yes No Yes
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Overfitting

Consider error of hypothesis h over
e training data: errory.qi(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis h' € H such that

erroriain(h) < erroriqin(h')

and
errorp(h) > errorp(h’)
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Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data

e Measure performance over separate validation
data set

e MDL: minimize
size(tree) + size(misclassi fications(tree))
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Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate

subtree

e What if data is limited?
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Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)
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Converting A Tree to Rules

Outlook
Srong Moderate Weak
Market Yes Earnings
Bear Bull Low High
No Yes No Yes
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IF (Outlook = Strong) A (Market = Bear)
THEN PayDividend = No

IF (Outlook = Strong) A (Market = Bull)
THEN PayDividend = Yes
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Continuous Valued Attributes

Create a discrete attribute to test continuous
e Price = +23%
o (Price > +15%) =t, f

Price: -23% -12% +3% +15% +15% +22%
PayDividend: No No No Yes Yes  Yes
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Attributes with Many Values

Problem:
o If attribute has many values, Gain will select it

e Imagine using Date = Jun_3 1996 as attribute

One approach: use GainRatio instead
Gain(S, A)

GainRatio(S, A
ainRatio(S, A) = SplitIn formation(S, A)

SplitIn formation(S, A) = Z 10g2 Tar

where S; 1s subset of S for which A has value v;
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Attributes with Costs

Consider
e medical diagnosis, BloodT est has cost $150

e finance, some data cost money, other cost time

How to learn a consistent tree with low expected
cost?
One approach: replace gain by

e Tan and Schlimmer (1990)

Gain*(S, A)
Cost(A)

e Nunez (1988)
2Gain(S,A) 1

(Cost(A) + 1)

where w € [0, 1] determines importance of cost
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Unknown Attribute Values

What if some examples missing values of A7
Use training example anyway, sort through tree

e If node n tests A, assign most common value of
A among other examples sorted to node n

e assign most common value of A among other
examples with same target value

e assign probability p; to each possible value v; of
A

— assign fraction p; of example to each
descendant in tree

Classity new examples in same fashion
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