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mean (average)
●  mean value of all measurements =

((each value observed) *
(number of times it is observed)) / 
(total number of observations)

●  <N> = (Σk
k=0 to m  n(k) * k) / (Σk

k=0 to m  n(k))

●  k is the count observed in one measurement
●  n(k) is the number of times k is observed
●  m is the largest count in all the observations



16722 mws@cmu.edu We:20090204 measurements & distributions 114+2



16722 mws@cmu.edu We:20090204 measurements & distributions 114+3

width – standard deviation
• the most common measure of a distribution’s width 

is its “standard deviation”: the RMS value (σ) of the 
deviation of each of the measurements from the 
mean of all the measurements

● σ2 = (Σk
k=0 to m   n(k) * (k - <N>)2) / (Σk

k=0 to n  n(k))
(for a counting measurement in which each 
outcome is an integer; for continuous outcomes 
you need to replace this with an integral)

• as we discussed, it is observed and provable that 
the standard deviation (σ) of a counting experiment 
whose mean is <N> is <N>1/2/2

• hmm ... should I subtract 1 from the denominator?
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shape: the Poisson distribution
• if the average number of counts in repeated 

samples is <N>  (also written N-overbar) then the 
probability of a particular experiment giving N 
counts is
         

remember that any sample N must be an integer 
• but if <N> happens to be an integer it is just

a numerical accident ... you should expect
<N> to be a “floating point” number
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Poisson distribution – origin

       1 = p(0) + p(1) + p(2) + … + p(i) + …
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• it is a pervasive rule-of-thumb that in any 
measurement that can be traced to a counting 
process, the uncertainty in any particular count 
is the square root of the average number of 
counts observed over all the experiments

• for a single counting experiment, your best 
guess for the uncertainty of the result is the 
square root of the result

the key point to remember
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assignment
 (21) A set of counting measurements 
averages 1.3333... counts per sample;  what 
are the probabilities of the next sample 
yielding 0, 1, 2, 3, 4, and 5 counts?

(22) Think through and describe intuitively 
the distribution of counting measurement 
values whose mean is very small, say 0.01; 
show that your intuition is consistent with 
what you calculate using the Poisson 
distribution formula.
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distribution of measurements
whose outcome can take on

any value
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there is no such thing ...
● any real measurement is limited by the resolution 

of the instrument to a finite number of discrete 
outcomes

 how finely are you willing to read the scale?
 how many digits are there on the display?
 what is the resolution of your computer’s ADC?

●  but we understand that certain measurements in 
principle take on a continuum of values

●  our experiments yield average values of that 
continuum over the resolution bandwidth
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Gaussian (“normal”) distribution
Distribution of Replicated Measurements of the Height of an Office Desk
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●  in practice measured values are 
constrained to certain discrete values that 
the instrument (or the person reading it) 
can assign

 here the raw measurements are limited to 
exact steps and multiples of 0.1 mm
(the red squares)
 in a set of replicated measurements, each of 
these “quantized” values appears an integral 
number of times
 in the actual finite-sized set of replicated 
measurements, statistical fluctuations are 
observed (the blue diamonds)
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Gaussian measurement model
●  

 in words: the probability of a measurement 
being between x-Δx/2 and x+Δx/2 is …
 note: σ has the same units as x, i.e., millimeters
 the distribution has its mean and peak at x = x0

 in this figure x0 = 1000 mm, σ = 0.5 mm
●  the Gaussian distribution is often a good model, 

particularly when the measurement scatter is 
“natural” vs. “technical”
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●  the actual data (the blue diamonds) 
plus the model (the Gaussian function 
of mean x0 and standard deviation σ) 
plus an algorithm for (in some stated 
sense) minimizing the difference 
between them together allow you to 
estimate x0 (which you state as the 
outcome of your set of measurements) 
and σ (which you state as your 
estimate of the uncertainty of your 
outcome)

 “estimating the parameters of the model”
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compare and contrast
Poisson (counting)

and
Gaussian (“normal”)

distributions
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measurement whose outcome is an integer count (n)
mean value of outcomes = 12.5 (your choice)

standard deviation of outcomes = 12.51/2  (you have no choice)

defined
only for

integer values
of n

relative
probability

measurement
(n, mean x0)
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measurement x whose outcome is a continuum value
mean value of the continuum = 12.5 (your choice)

standard deviation of outcomes = 12.51/2 (your choice)

it looks like
there is a dimensional

error,
but these are

dimensionless counts,
so it is okay

measurement
(n, mean x0)

1/2
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 visual examination shows that for <N> greater 
than about 10 the Poisson distribution is practically 
indistinguishable from the Gaussian distribution 
with mean <N> and standard deviation <N>1/21/2
 but be careful ...

 the Gaussian distribution has two independent 
variables, the mean and the standard deviation (width)
 the Poisson distribution has one independent variable, 
the mean; its standard deviation (width) is completely 
determined by its mean

compare & contrast
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measurements with multiple 
sources of uncertainty

vs.
multiple measurements

of the same quantity made by
different instruments

with different uncertainties 
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if you take away just one ...
●  … quantitative detail from this course,

it should be that you know without stopping 
to think about it …

 how to estimate the error in a measurement 
composed of measurements of several 
different quantities for each of which you have 
an error estimate …
 how to combine separate measurements of 
the same quantity and estimate the error of 
their “fusion”
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combining multiple error sources
●  in complex measurements there are usually 

multiple sources of error or uncertainty
 measure or estimate each contribution ∆xi to
the combined measurement X(x1, x2, x3,...)
 in the worst possible instance all contributions 
have the same sign; in the best instance the 
signs conspire to make the net error zero
 in the statistically-typical case they combine with 
“random phase”, i.e., in quadrature:
∆X = (δx1

2 + δx2
2 + δx3

2 + …)½

where δxi = (∂X(x1, x2, x3,...)/∂xi) ∆xi
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example: 
measure the volume of a box

●  V = (L +/- ∆L) (W +/- ∆W)  (H +/- ∆H)
 ∂V/∂L = W H
 ∂V/∂W = LH
 ∂V/∂H = L W

●  ∆V = ((W H ∆L)2 + (L H ∆W)2 + (L W ∆H)2)1/2

●  ∆V/V = (∆L/L)2 + (∆W/W)2 + (∆H/H)2)1/2

●  note: this ignores the possibility that the box’s 
angles are not precisely 90o; the formula for V 
should properly include the angles and the 
consequences of errors in their measurements
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what if the components have 
different dimensionality?

●  say you are given base area & height:
 V = (A +/- ∆A) (H +/- ∆H)
 ∂V/∂A = H
 ∂V/∂H = A

●  ∆V = ((H ∆A) 2 + (A ∆H)2)1/2

●  ∆V/V = ((∆A/A) 2 + (∆H/H)2)1/2

●  and if A = L W
 then ∆A = ((L ∆W)2 + (W ∆L)2)1/2

 so ∆V = ((L ∆W)2 + (W ∆L)2 + (A ∆H)2)1/2
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contrasting error propagation
and sensor fusion

●  error propagation: when a single 
measurement has multiple error sources,
the overall error estimate is
(Σ component_error_sources2)½

 the overall error estimate is
 (as you should expect)
 bigger than the biggest single error source
 in practice the overall error estimate is often 
dominated by the biggest single error source
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●  when multiple measurements are made of 
the same measurand using different 
instruments, their individual contributions are 
weighted by the reciprocals of the squares of 
their individual error estimates

 the overall error estimate is smaller than the 
smallest individual error source

 as you should naturally expect!
 in practice the overall error estimate is often 
dominated by the smallest single error source

●  this is the most basic kind of  “sensor 
fusion”
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example:
multiple temperature measurements
●  three thermometers give measurements +/-1σ 

  T1 = 19.0 +/- 2.0 C
  T2 = 18.0 +/- 2.5 C 
  T3 = 19.0 +/- 1.0 C

●  what is your best estimate of the actual 
temperature, and what is your estimate of the
error in your estimate of the actual temperature?



16722 mws@cmu.edu We:20090204 measurements & distributions 114+29

 weight each measurement by its “goodness”, i.e., 
the reciprocal of square of its error estimate:
T = (Σ Ti/σi

2 ) / (Σ 1/σi
2)

   = (19./2.2 +18./2.52 +19./1.2)/(1/2.2 +1/2.52 +1/1.2) 
    = 18.89 C

●  σ(Τ) = (Σ σi
-2)-1/2 = 0.84 C

●  as expected, the error estimated for the combined 
measurement estimate is smaller than any of the 
individual errors

●  as expected, the combined measurement estimate 
is close to the best individual measurement
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reminder
●  make sure this is so clear to you that you 

never have to think about it twice:
 when a single measurement is composed of 
multiple sub-measurements the overall error 
estimate is the sum-in-quadrature of the 
component error contributions
 when multiple measurements of the same 
measurand are available they are fused by 
averaging with each weighted by the 
reciprocal of the square of its own error 
estimate
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assignment
(23) You make five range measurements using an 
ultrasonic sensor; the sensor’s digital display 
reports ranges {9.9, 10.1, 10.0, 9.9, 10.1} m.  The 
sensor was calibrated at 20 C.  The speed-of-sound 
scales with the square-root of the absolute 
temperature.  Using digital thermometer, you make 
three measurements: {25.0, 24.9, 25.1} C.  Using a 
mercury-in-glass thermometer you make five 
measurements: {23.0, 23.5, 26.0, 24.0, 23.5} C.  
What is your best estimate of the range and its 
error.  (Use one standard deviation for all your error 
estimates.)
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 some people sometimes use different weights, 
e.g., σ α−α, 1 < α < 2, e.g., because they feel it is 
conservative to give more weight to the less-good 
data, but α = 2 is usually strictly correct
 here is a “seat of the pants” derivation, if you are 
willing to accept some assumptions on faith:

 the output measurement is a linear combination of the     
     input measurements.  Consider the case of just two:
m = a m1 + (1-a) m2, 

 our aim is to determine optimal weights a, and (1-a)

 the output error depends on the same weights applied to 
the component standard deviations (not their squares):
σ2 = (a σ1)2 + ((1-a) σ2)2
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 take the correct value for a to be the one
that minimizes σ:

 dσ/da == 0 
gives
a = σ22/(σ12+σ22)
(1-a) = σ12/(σ12+σ22)
from which:
m = (m1/σ12 + m2/σ22)/(1/σ12 + 1/σ22)
σ = (1/σ12+1/σ22)-1/2 

 extend to more than two measurements by 
applying this result recursively
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next few topics coming up ...
●  data acquisition
●  light sensors
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updates
● what if you already have an observation of a 

quantity's mean <x> and standard deviation σ �
● … and you make a new measurement x' with 

standard deviation σ' …
● … and you want to update <x> and σ with your 

new knowledge of x' and σ'?
● it is the same as the problem we just did:

<x'> = (<x>/σ2 + x'/σ'2)/(1/σ2 + 1/σ'2)
σnew = (1/σ2 + 1/σ'2)-1/2
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pop quiz
● what do you call an algorithm that implements the 

above idea, i.e., that the best way to update prior 
information with new information is to weight each 
by the square of its standard deviation?

● (just kidding about the quiz :-) )
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