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Underactuated Mechanisms

 Redundancy = a couple of extra
 Hyper-redundancy = many extra

e Underactuated = too few?
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Definition
 Non-holonomic constraint: a non-integrable constraint

 Example: A constraint on velocity does not induce a
constraint on position.

 For a wheeled robot, it can instantaneously move in some
directions (forward and backwards), but not others (side
to side).

> 4

The robot can
instantly move
forward and back, but
it can not move to the
left or right without
the wheels slipping.

To go to the right, the
robot must first turn,
and then drive
forward.
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Other examples of systems with
non-holonomic constraints

Untethered space robots
(conservation of angular
momentum is the
constraint)

(NASA’s AERcam)

Hopping robots.
(CMU’s BowLeg Hopper)

Manipulation with a
robotic hand
(CMU’s HERB)
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What about holonomic systems?

* A person walking is an example of a
holonomic system. You can instantly step

to the right or left, as well as going
forwards or backwards. In other words,
your velocity in the plane is not restricted.

e An omni-wheel is a holonomic system-it
can roll forwards and sideways.
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How do we represent the
constraint mathematically?

 We write a constraint equation.

e For a differential drive, this is:
ycosO — xsinf =0

 What does this equation tell us?
The direction we can’t move in

e Soif thetais O, the velocity in y=0

e If theta is 90, the velocity in x=0
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How do we represent the
constraint mathematically?

 We can also write the relationships in
matrix form with q the position vector
and g dot as the velocity vector.

X x|
q= [y qg=1y
6 _9’_

e Now our constraint (w) can be expressed
as: w(q) = [—sinf cosf 0]
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How do we represent the
constraint mathematically?
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Lie Brackets

, ag og
* Lie Bracket: [g1, 9,1 = 5291 — 1 92

A Lie Bracket takes two n dimensional vectors and returns a new n-vector.
 We can use Lie Brackets to reveal additional motions of our system.
Recall a partial derivative:

a X
e Letg = [b] and g = y]
C 0
 Then the partial derivative of g with respect to q is:
da Oda da
dx 0dy 060

dg |0b 0b 0b
aq |ox ay 06
dc dc Odc
dx Jdy 006
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Lie Bracket — 2-Wheeled Cart Example

 The states of our system are x, y and 8. We express this as:

]

X

y
0

e The constraint on our system (that we found before) is:
e w; = [—sin(@) cos(8) 0]
 The allowable motions of our system are:

cos(0)

Siﬂ(@)] (motion in the direction of theta)
L0

0

O] (rotation in place)
11
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Lie Bracket — 2-Wheeled Cart Example

 The allowable motions of our system are:

e Lie Bracket: [gy,9,] = —

cos(0)
* g1 = sin(@)] (motion in the direction of theta)
L0
0
* g, = O] (rotation in place)
11

0

91

0 0 O cos(@) —sin(6) sin(0)

191,92] = [0 0 0] sm(@)‘ [ COS(B) ] [ ‘ [-COS(Q)‘
0 0 O

This new motion is perpendicular to our wheels. We can still not have

instantaneous velocity in this direction, but through a combination of

movements, this result demonstrates that we can position perpendicular
to our wheels.
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Method for analyzing non-
holonomic motion

Determine your states (q vector)

Determine your constraints (w vectors) or ways that you can’t
move

Convert the constraints into locally allowable motions (g vectors)
e Must be perpendicular to constraints
Apply Lie Bracket to g vectors to determine all possible motions.

 If, after you apply the Lie Bracket, you find that you have n
linearly independent columns, then you can control your
robot in all n variables.
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Lie Bracket — 4-Wheeled Simplified Ackerman Example

* The states of our system are x, y, 8 and ¢.

X
y

* 4= 19| +2 constraints (front and rear wheels)
2 «2 inputs (steering and gas pedal)

* The constraints on our system are:
e w; =[—sin(8) cos(8) 0 0]
(motion perpendicular to the back wheels)
e w, =[—sin(@ +¢) cos(0+ ¢) lcos(p) O] y
(motion perpendicular to the front wheels)
* w, comes from examining the movement of the front
wheels with respect to the reference point of the car:
—xgsin(6 + @) + yrcos(8 + @) =0
xf = x + lcosO
yr =y + lsinb

* 4 states

0 . " A > x
xf = x — lsin66
yp=y+ lcos66
—(x — IsinB0) sin(0 + @) + (y + lcosfH)cos(8 + @) = 0
_Sin(e + (p)x + COS(Q + 90) y + lCOSQDG =0 \ cos(A —(l;c;m—escg:ﬂ;i;n:i-tzmAsinB a
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Lie Bracket — 4-Wheeled Simplified Ackerman Example

e The states of our system are x, y, 6 and ¢.
-

y
.q=9'

P
* The constraints on our system are:
e w; =[—sin(8) cos(6) 0 0]
(motion perpendicular to the back wheels)
e w, =[—sin(@ +¢) cos(0+ ¢) lcos(p) O]
(motion perpendicular to the front wheels)
* The allowable motions of our system are:

g>comes from determining what

0 motion is perpendicular to both wy
. _ 10 , , and w,:
g1 = 0 (rotation of steering wheel) co5(0)
(1) [—sin(@ + @) cos(@ + @) lcos(p) 0] sinr)(B)‘ =0
" cos(0) ] 0
SIH(Q) —sin(0 + @)cos + cos(6 + @) sinb + lcos(p) *?=0
* g, =1 (motion for a fixed phi) —sne l‘i"s("’) =0
Ttan((p) ?=7tan<p
0 - Comes from identity -]
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Lie Bracket — 4-Wheeled Simplified Ackerman Example

e We want four linearly independent g vectors because we have  *Zconstraints (front and rear wheels)

4 states. We have 2 so we need 2 more. *2 inputs (steering and gas pedal)

_ _ 99> 991 * 4 states
* g3=191,092]1= 591 —Egz

0 , .
* Note that aiql = 0 since g4 is a constant 3 0
.t 0 .
e Additionally, we only need the last column ofaiq2 since
the first three rows of g; are 0.
X X X 0 fcos(@) 1 [ O .y
X X X 0 OOOOOsin(B) 0
— 1 0 — 0 0 0 0 = 1 * Here X corresponds to values we
g3 = X X X ———||0 0O 0 0 O _tan( ) | don’t bother topcalculatevbeléau::le we
lCOSZ((p) 1 0 0 0 0 l (P lCOSZ((p) will not need them
X X X 0 i L 0 1 1 0
 We found a vector that is linearly independent of our other
allowable motions. This new vector only has values in the theta
state, meaning we can get to any arbitrary theta. Still not
instantaneously, but through a series of maneuvers.
J
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Lie Bracket — 4-Wheeled Simplified Ackerman Example

 We want four linearly independent g vectors because

we have 4 states. We have 3 now so we need 1 more.
99s 89, «2 inputs (steering and gas pedal)
* 94=19293] = Egz —Egs

»2 constraints (front and rear wheels)

* 4 states
e Again, we capitalize on knowing where products

will be 0 to speed the process along

00 0 X C‘_’S((g)) X X -sin(@) x1| 8 Y
g_oooxls‘“ |x x cos0) x 1 0
L=
0 0 0 X —tan((p) X X 0 X T 20N
0 0 o0 xl|t X 0 X lcoso(‘p)
g sin(@) ]
lcos? (@)
_ | —cos(8)
lcos? (@)
0 X
0 * Here X corresponds to values we
B don’t bother to calculate because we
* We found a vector that is linearly independent of our willnot need therm

other allowable motions. This new vector only has
values in the x and y states. This means that we can

position anywhere, though not instantaneously. A
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Lie Bracket — 4-Wheeled Simplified Ackerman Example

e We found four Iinearly independent g vectors, which «? constraints {frgnt and rear whge]g)
means that our robot is able to position, orient and
steer without limits in our space thought a series of
incremental movements. ¢ 4 states

«2 inputs (steering and gas pedal)

I sin(6) 7]
COS(Q) 0 0 W
n(8) 0 0 —cos(6) ¥ 0
191, 92, 93, 94] = > lcos?(p)
- t 0 - 0
[ an(¢) [cos?(p)
0 1 0 0
» X
* Here X corresponds to values we
don’t bother to calculate because we
will not need them
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