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Underactuated Mechanisms

Howie Choset 2018

• Redundancy = a couple of extra

• Hyper-redundancy = many extra

• Underactuated = too few?



Definition
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• Non-holonomic constraint: a non-integrable constraint

• Example: A constraint on velocity does not induce a 
constraint on position.

• For a wheeled robot, it can instantaneously move in some 
directions (forward and backwards), but not others (side 
to side).

The robot can 
instantly move 
forward and back, but 
it can not move to the 
left or right without 
the wheels slipping.

To go to the right, the 
robot must first turn, 
and then drive 
forward.



Other examples of systems with 
non-holonomic constraints
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Hopping robots. 
(CMU’s BowLeg Hopper)

Manipulation with a 
robotic hand
(CMU’s HERB)

Untethered space robots 
(conservation of angular 
momentum is the 
constraint)
(NASA’s AERcam)



What about holonomic systems?
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• A person walking is an example of a 
holonomic system. You can instantly step 
to the right or left, as well as going 
forwards or backwards. In other words, 
your velocity in the plane is not restricted.

• An omni-wheel is a holonomic system-it 
can roll forwards and sideways.



How do we represent the 
constraint mathematically?
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• We write a constraint equation.

• For a differential drive, this is: 
𝑦̇𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 𝑥̇𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 0

• What does this equation tell us?     
The direction we can’t move in

• So if theta is 0, the velocity in y=0

• If theta is 90, the velocity in x=0



How do we represent the 
constraint mathematically?
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• We can also write the relationships in 
matrix form with q the position vector 
and q dot as the velocity vector.

𝑞𝑞 =
𝑥𝑥
𝑦𝑦
𝜃𝜃

𝑞̇𝑞 =
𝑥̇𝑥
𝑦̇𝑦
𝜃̇𝜃

• Now our constraint (w) can be expressed 
as: 𝑤𝑤 𝑞𝑞 = [−𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0]



How do we represent the 
constraint mathematically?
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These are equivalent:

𝑦̇𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 𝑥̇𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 0

and

𝑤𝑤 𝑞𝑞 𝑞̇𝑞 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0
𝑥̇𝑥
𝑦̇𝑦
𝜃̇𝜃

= 0



Lie Brackets
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• Lie Bracket: 𝑔𝑔1,𝑔𝑔2 = 𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

𝑔𝑔1 −
𝜕𝜕𝑔𝑔1
𝜕𝜕𝜕𝜕

𝑔𝑔2
• A Lie Bracket takes two n dimensional vectors and returns a new n-vector.
• We can use Lie Brackets to reveal additional motions of our system.
• Recall a partial derivative:

• Let g =
𝑎𝑎
𝑏𝑏
𝑐𝑐

and 𝑞𝑞 =
𝑥𝑥
𝑦𝑦
𝜃𝜃

• Then the partial derivative of g with respect to q is:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝑎𝑎
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃



Lie Bracket – 2-Wheeled Cart Example
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• The states of our system are x, y and 𝜃𝜃. We express this as: 

• 𝑞𝑞 =
𝑥𝑥
𝑦𝑦
𝜃𝜃

.

• The constraint on our system (that we found before) is: 
• 𝑤𝑤1 = [− sin 𝜃𝜃 cos 𝜃𝜃 0]

• The allowable motions of our system are: 

• 𝑔𝑔1 =
𝑐𝑐𝑜𝑜𝑜𝑜(𝜃𝜃)
sin(𝜃𝜃)

0
(motion in the direction of theta)

• 𝑔𝑔2 =
0
0
1

(rotation in place)



Lie Bracket – 2-Wheeled Cart Example
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• The allowable motions of our system are: 

• 𝑔𝑔1 =
𝑐𝑐𝑜𝑜𝑜𝑜(𝜃𝜃)
sin(𝜃𝜃)

0
(motion in the direction of theta)

• 𝑔𝑔2 =
0
0
1

(rotation in place)

• Lie Bracket: 𝑔𝑔1,𝑔𝑔2 = 𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

𝑔𝑔1 −
𝜕𝜕𝑔𝑔1
𝜕𝜕𝜕𝜕

𝑔𝑔2

𝑔𝑔1,𝑔𝑔2 =
0 0 0
0 0 0
0 0 0

cos 𝜃𝜃
sin 𝜃𝜃

0
−

0 0 − sin 𝜃𝜃
0 0 cos 𝜃𝜃
0 0 0

0
0
1

=
sin(𝜃𝜃)
−cos(𝜃𝜃)

0
• This new motion is perpendicular to our wheels. We can still not have 

instantaneous velocity in this direction, but through a combination of 
movements, this result demonstrates that we can position perpendicular 
to our wheels.



Method for analyzing non-
holonomic motion
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• Determine your states (q vector)

• Determine your constraints (w vectors) or ways that you can’t 
move

• Convert the constraints into locally allowable motions (g vectors)

• Must be perpendicular to constraints

• Apply Lie Bracket to g vectors to determine all possible motions. 

• If, after you apply the Lie Bracket, you find that you have n 
linearly independent columns, then you can control your 
robot in all n variables.



Lie Bracket – 4-Wheeled Simplified Ackerman Example
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• The states of our system are x, y, 𝜃𝜃 and 𝜑𝜑. 

• 𝑞𝑞 =

𝑥𝑥
𝑦𝑦
𝜃𝜃
𝜑𝜑

.

• The constraints on our system are: 
• 𝑤𝑤1 = − sin 𝜃𝜃 cos 𝜃𝜃 0 0

(motion perpendicular to the back wheels)
• 𝑤𝑤2 = − sin 𝜃𝜃 + 𝜑𝜑 cos 𝜃𝜃 + 𝜑𝜑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜑𝜑 0

(motion perpendicular to the front wheels)
• 𝑤𝑤2 comes from examining the movement of the front 

wheels with respect to the reference point of the car:
−𝑥̇𝑥𝑓𝑓sin(𝜃𝜃 + 𝜑𝜑) + 𝑦̇𝑦𝑓𝑓cos(𝜃𝜃 + 𝜑𝜑) = 0

𝑥𝑥𝑓𝑓 = 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦𝑓𝑓 = 𝑦𝑦 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃
𝑥̇𝑥𝑓𝑓 = 𝑥̇𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝜃̇𝜃
𝑦̇𝑦𝑓𝑓 = 𝑦̇𝑦 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝜃̇𝜃

−(𝑥̇𝑥 − 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜃̇𝜃) sin(𝜃𝜃 + 𝜑𝜑) + (𝑦̇𝑦 + 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃̇𝜃)cos(𝜃𝜃 + 𝜑𝜑) = 0
−sin(𝜃𝜃 + 𝜑𝜑)𝑥̇𝑥 + cos 𝜃𝜃 + 𝜑𝜑 𝑦̇𝑦 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃̇𝜃 = 0 Comes from identity 

cos 𝐴𝐴 − 𝐵𝐵 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠



Lie Bracket – 4-Wheeled Simplified Ackerman Example
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• The states of our system are x, y, 𝜃𝜃 and 𝜑𝜑. 

• 𝑞𝑞 =

𝑥𝑥
𝑦𝑦
𝜃𝜃
𝜑𝜑

.

• The constraints on our system are: 
• 𝑤𝑤1 = − sin 𝜃𝜃 cos 𝜃𝜃 0 0

(motion perpendicular to the back wheels)
• 𝑤𝑤2 = − sin 𝜃𝜃 + 𝜑𝜑 cos 𝜃𝜃 + 𝜑𝜑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜑𝜑 0

(motion perpendicular to the front wheels)
• The allowable motions of our system are: 

• 𝑔𝑔1 =

0
0
0
1

(rotation of steering wheel)

• 𝑔𝑔2 =

𝑐𝑐𝑜𝑜𝑜𝑜(𝜃𝜃)
sin(𝜃𝜃)
1
𝑙𝑙

tan(𝜑𝜑)
0

(motion for a fixed phi)

𝑔𝑔2comes from determining what 
motion is perpendicular to both 𝑤𝑤1
and 𝑤𝑤2:

− sin 𝜃𝜃 + 𝜑𝜑 cos 𝜃𝜃 + 𝜑𝜑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜑𝜑 0

𝑐𝑐𝑜𝑜𝑜𝑜(𝜃𝜃)
sin(𝜃𝜃)

?
0

= 0

− sin 𝜃𝜃 + 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + cos 𝜃𝜃 + 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜑𝜑 ∗? = 0
−s𝑖𝑖𝑖𝑖𝜑𝜑 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜑𝜑 ∗? = 0

? =
1
𝑙𝑙

tan𝜑𝜑

Comes from identity 
sin 𝐴𝐴 − 𝐵𝐵 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Lie Bracket – 4-Wheeled Simplified Ackerman Example
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• We want four linearly independent g vectors because we have 
4 states. We have 2 so we need 2 more.

• 𝑔𝑔3 = 𝑔𝑔1,𝑔𝑔2 = 𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

𝑔𝑔1 −
𝜕𝜕𝑔𝑔1
𝜕𝜕𝜕𝜕

𝑔𝑔2

• Note that 𝜕𝜕𝑔𝑔1
𝜕𝜕𝜕𝜕

= 0 since 𝑔𝑔1 is a constant

• Additionally, we only need the last column of 𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

since 

the first three rows of 𝑔𝑔1 are 0.

𝑔𝑔3 =

𝑋𝑋 𝑋𝑋 𝑋𝑋 0
𝑋𝑋 𝑋𝑋 𝑋𝑋 0

𝑋𝑋 𝑋𝑋 𝑋𝑋
1

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)
𝑋𝑋 𝑋𝑋 𝑋𝑋 0

0
0
0
1

−

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

cos 𝜃𝜃
sin 𝜃𝜃

1
𝑙𝑙

tan 𝜑𝜑
0

=

0
0
1

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)
0

• We found a vector that is linearly independent of our other 
allowable motions. This new vector only has values in the theta 
state, meaning we can get to any arbitrary theta. Still not 
instantaneously, but through a series of maneuvers.

* Here X corresponds to values we 
don’t bother to calculate because we 
will not need them



Lie Bracket – 4-Wheeled Simplified Ackerman Example
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• We want four linearly independent g vectors because 
we have 4 states. We have 3 now so we need 1 more.

• 𝑔𝑔4 = 𝑔𝑔2,𝑔𝑔3 = 𝜕𝜕𝑔𝑔3
𝜕𝜕𝜕𝜕

𝑔𝑔2 −
𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

𝑔𝑔3

• Again, we capitalize on knowing where products 
will be 0 to speed the process along

𝑔𝑔4 =

0 0 0 𝑋𝑋
0 0 0 𝑋𝑋
0 0 0 𝑋𝑋
0 0 0 𝑋𝑋

cos 𝜃𝜃
sin 𝜃𝜃

1
𝑙𝑙 tan 𝜑𝜑

0

−

𝑋𝑋 𝑋𝑋 −sin(𝜃𝜃) 𝑋𝑋
𝑋𝑋 𝑋𝑋 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 𝑋𝑋
𝑋𝑋 𝑋𝑋 0 𝑋𝑋
𝑋𝑋 𝑋𝑋 0 𝑋𝑋

0
0
1

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)
0

=

sin(𝜃𝜃)
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)
−cos(𝜃𝜃)
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)

0
0

• We found a vector that is linearly independent of our 
other allowable motions. This new vector only has 
values in the x and y states. This means that we can 
position anywhere, though not instantaneously.

* Here X corresponds to values we 
don’t bother to calculate because we 
will not need them



Lie Bracket – 4-Wheeled Simplified Ackerman Example
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• We found four linearly independent g vectors, which 
means that our robot is able to position, orient and 
steer without limits in our space thought a series of 
incremental movements.

𝑔𝑔1,𝑔𝑔2,𝑔𝑔3,𝑔𝑔4 =

cos(𝜃𝜃) 0 0
sin(𝜃𝜃)
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)

sin(𝜃𝜃) 0 0
−cos(𝜃𝜃)
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑)

1
𝑙𝑙 tan(𝜑𝜑) 0

1
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑) 0

0 1 0 0

* Here X corresponds to values we 
don’t bother to calculate because we 
will not need them
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