Non-holonomic Constraints and Lie brackets

Underactuated Mechanisms

- Redundancy = a couple of extra
- Hyper-redundancy = many extra
- Underactuated = too few?

Definition: A non-holonomic constraint is non-integrable constraint

Example: A constraint on velocity does not induce a constraint on position

For a wheeled robot, it can instantaneously move in some directions (forwards and backwards), but not others (side to side).

The robot can instantly move forward and back, but can not move to the right or left without the wheels slipping.

To go to the right, the robot must first turn, and then drive forward

Other examples of systems with non-holonomic constraints

Hopping robots

Untethered space robots (conservation of angular momentuem is the constraint)

Manipulation with a robotic hand
Multi-fingered hand from Nagoya University

What about holonomic systems?

- A person walking is an example of a holonomic systemyou can instantly step to the right or left, as well as going forwards or backwards. In other words, your velocity in the plane is not restricted.
- An Omni-wheel is a holonomic system- it can roll forwards and sideways.

How do we represent the constraint mathematically?

We write a constraint equation

For a differential drive, this is: $\dot{y} \cos \theta-\dot{x} \sin \theta=0$
-What does this equation tell us? The direction we can't move in

So if $\theta=0$, then the velocity in $y=0$
if $\theta=90$, then the velocity in $x=0$
-We can also write the constraint in matrix form, with q the position vector and q dot the velocity, we can write a constraint vector $\mathrm{w}_{1}(\mathrm{q})$

$$
q=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right], \quad \dot{q}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right] \quad w_{1}(q)=\left[\begin{array}{lll}
-\sin \theta \cos \theta & 0
\end{array}\right]
$$

$w 1(q) \cdot \dot{q}=0=\left[\begin{array}{lll}-\sin \theta & \cos \theta & 0\end{array}\right]\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right] \stackrel{ }{ }$

Lie Brackets

$$
\begin{aligned}
& \text { let } g=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], q=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right] \\
& \frac{\partial g}{\partial q}=\left[\begin{array}{lll}
\frac{\partial a}{\partial x} & \frac{\partial a}{\partial y} & \frac{\partial a}{\partial \theta} \\
\frac{\partial b}{\partial x} & \frac{\partial b}{\partial y} & \frac{\partial b}{\partial \theta} \\
\frac{\partial c}{\partial x} & \frac{\partial c}{\partial y} & \frac{\partial c}{\partial \theta}
\end{array}\right]
\end{aligned}
$$

Lie Bracket: $\left[g_{1}, g_{2}\right]=\frac{\partial g_{2}}{\partial q} g_{1}-\frac{\partial g_{1}}{\partial q} g_{2}$
A Lie Bracket takes two n dimensional vectors and returns a new n-vector

Example:
$g_{1}=\left[\begin{array}{c}\cos \theta \\ \sin \theta \\ 0\end{array}\right], g 2=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
so $\frac{\partial g_{1}}{\partial q}=\left[\begin{array}{ccc}0 & 0 & -\sin \theta \\ 0 & 0 & \cos \theta \\ 0 & 0 & 0\end{array}\right], \frac{\partial g_{2}}{\partial q}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
LieBracket: $\left[g_{1}, g_{2}\right]=\frac{\partial g_{2}}{\partial q} g_{1}-\frac{\partial g_{1}}{\partial q} g_{2}$

$$
\left[g_{1}, g_{2}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & -\sin \theta \\
0 & 0 & \cos \theta \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=0
$$

Method for analyzing non-holonomic motion

- Determine your constraints (w's)
-Convert the constraints into locally allowable motions, (w's -> g's)
Must find allowable inputs g_{1} and g_{2} such that $\left(\mathrm{g}_{1} \perp \mathrm{w}_{1}\right)$ and $\left(\mathrm{g}_{2} \perp \mathrm{w}_{2}\right)$
-Apply Lie Bracket to your g's to determine all possible motions
If after you apply the Lie Bracket you find that you have n linearly independent columns, then you can control your robot in all n variables.

Ackerman steering example

- 2 constraints (front and rear wheels)
- 2 inputs (steering and gas pedal)

$$
\begin{aligned}
& q=\left[\begin{array}{l}
x \\
y \\
\theta \\
\phi
\end{array}\right] \begin{array}{l}
w_{1} \\
w_{1} \\
\dot{w}_{1} \\
\text { Intuition tells } \mathrm{u} \\
\text { now we want } \mathrm{g} \\
\mathrm{~g}_{2}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
\frac{1}{l} \tan \phi \\
0
\end{array}\right]
\end{array} .
\end{aligned}
$$

Ackerman example cont.

We want four linearly independent g 's. Since we already have two, we need to compute g_{3} and g_{4}
$g_{3}=\left[g_{1}, g_{2}\right]=\frac{\partial g_{2}}{\partial q} g_{1}-\frac{\partial g_{1}}{\partial q} g_{2}$
We can immeadietly see that $\frac{\partial g_{1}}{\partial q}=0$ since g_{1} is constant.
And because the first three rows of g_{1} are 0 , we only need to find the last coulmn of $\frac{\partial g_{2}}{\partial q}$.
$\frac{\partial g_{2}}{\partial q}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{l \cos ^{2} \phi} \\ 0 & 0 & 0 & 0\end{array}\right]$, and thus $\frac{\partial g_{2}}{\partial q} g_{1}=\left[\begin{array}{c}0 \\ 0 \\ \frac{1}{l \cos ^{2} \phi} \\ 0\end{array}\right]=g_{3}$

Ackerman example cont.

To find g_{4} we do another Lie Bracket:
$g_{4}=\left[g_{2}, g_{3}\right]=\frac{\partial g_{3}}{\partial q} g_{2}-\frac{\partial g_{2}}{\partial q} g_{3}$
Again, there are a lot of zeroes that make things go quickly
$\frac{\partial g_{3}}{\partial q} g_{2}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & X \\ 0 & 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{c}X \\ X \\ X \\ 0\end{array}\right]=0 ; \frac{\partial g_{2}}{\partial q} g_{3}=\left[\begin{array}{cccc}0 & 0 & -\sin \theta & 0 \\ 0 & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0 \\ \frac{1}{l \cos ^{2} \phi} \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{-\sin \theta}{l \cos ^{2} \phi} \\ \frac{1}{l \cos \phi} \\ 0 \\ 0\end{array}\right]$
so we have $g_{4}=\left[\begin{array}{c}\frac{\sin \theta}{l \cos ^{2} \phi} \\ \frac{-1}{l \cos \phi} \\ 0 \\ 0\end{array}\right]$, and $\left[g_{1}, g_{2}, g_{3}, g_{4}\right]=\left[\begin{array}{cccc}\cos \theta & 0 & 0 & \frac{\sin \theta}{l \cos ^{2} \phi} \\ \sin \theta & 0 & 0 & \frac{-1}{l \cos \phi} \\ \frac{\tan \phi}{l} & 0 & \frac{-1}{l \cos ^{2} \phi} & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

Are we there yet?

