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Non-holonomic Constraints
and Lie brackets
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Underactuated Mechanisms

» Redundancy = a couple of extra
» Hyper-redundancy = many extra
» Underactuated = too few?
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Definition: A non-holonomic constraint is non-integrable
constraint

Example: A constraint on velocity does not induce a constraint on
position

For a wheeled robot, it can instantaneously move in some
directions (forwards and backwards), but not others (side to side).

)

The robot can instantly

move forward and back,
but can not move to the
right or left without the

wheels slipping.

To go to the right, the
robot must first turn, and
then drive forward
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Other examples of systems with non-holonomic constraints

Hopping robots

RI’s bow leg hopper

Untethered space
robots (conservation of
angular momentuem is
the constraint)

AERcam, NASA

Manipulation with a robotic hand

Multi-fingered hand from Nagoya University
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What about holonomic systems?

A person walking is an example of a holonomic system-
you can instantly step to the right or left, as well as going
forwards or backwards. In other words, your velocity in
the plane is not restricted.

« An Omni-wheel is a holonomic system- it can roll
forwards and sideways.
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How do we represent the constraint mathematically?

We write a constraint equation
For a differential drive, thisis: Yy cos@ —xsingd =0

*What does this equation tell us? The direction we can 't move in

/,(X’ Y)  Soif 0=0, then the velocity iny =0

iIf =90, then the velocity inx =0

*We can also write the constraint in matrix form, with g the position
vector and g dot the velocity, we can write a constraint vector w,(q)

X X W,(q) =[-sin& cosd 0]
q=|y| q=|Y
0 0
X
wi(q)-g=0=[-sin@ cosd 0]|y| <=> —Xsind+ ycosd =0
0
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Lie Brackets

0 0
Bz g _Hh

Lie Bracket: , =
[0:, 9] P .

9>

A Lie Bracket takes two n dimensional
vectors and returns a new n-vector

Example:

cosé 0
gl_{sin 0], gZ_{O]
0 1
0 0 —sing 0 00O
so%{o 0 cos&],%{o 0 0}
Do o | M fooo

LieBracket: [gl,gz]=% 0; —% 9,

oq aq

0 0O O] |coséd 0 0 -sing| |0
[9,,9,]=|0 O O0}:{sin@|-|0 O cosé |-|0|=0
0 0O 0 00 0 1
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Method for analyzing non-holonomic motion

*Determine your constraints (w’s)

*Convert the constraints into locally allowable motions, (w’s —> g’s)

Must find allowable inputs g, and g, such that (g, L w;,) and (g, L w,)

*Apply Lie Bracket to your g’s to determine all possible motions

If after you apply the Lie Bracket you find that you have n linearly independent
columns, then you can control your robot in all n variables.
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Ackerman steering example

«2 constraints (front and rear wheels)

«2 inputs (steering and gas pedal)

* 4 states

»

9,

sin@
%tanqﬁ

0

[ cosO |

X
W, =[-sin@ cosd 0 0]
q= y W, =[-sin(@+¢) cos(@+¢) |cosg O]

01 \i,-q=0

9] 0]
0

0 Intuition tellsus g, = 0 , which means the steering dependsonly on ¢

1

now we want g, to tell us the direction we would go for a fixed ¢
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Ackerman example cont.

We want four linearly independent g's. Since we already
have two, we need to computeg, and g,

0 0
]:%gl _&

93:[91’92 oq

9,

We canimmeadietly see that % =0 since g, is constant.
q

And because the first three rows of g, are0, we only need to

find the last coulmn of %

aq
0 00 0 | 0
0
0 0O 0
%: 1 , andthus% 0,= 1 =03
og (0 0 0 2 aq 2
| cos“ ¢ | cos“ ¢
000 0 | 0
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Ackerman example cont.

To find g, we do another Lie Bracket:

0
g, :[92, gs]zaiq3 9,

_ 09,

o 93

Again, thereare a lot of zeroes that make things go quickly

«

N

I
o O O O
o O O O

so we haveg, =

o O o o

o X X X

ag
:O ’ 2 =
aq 9;

o O O o

,and [91, 05, O3, g4] =

cosé

sin@

tan ¢

—sing 0] 0
0
coséd O 1 B
0 0 -
0 0 | cos® ¢
. 0 |
0 smf
| cos” ¢
0 -1
| cos¢g
-1
| cos® ¢
1 0 0
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Are we there yet?
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