
Non-holonomic Constraints 

and Lie brackets 



Underactuated Mechanisms 

• Redundancy = a couple of extra 

• Hyper-redundancy = many extra 

• Underactuated = too few? 



Definition:  A non-holonomic constraint is non-integrable 

constraint 

 

Example: A constraint on velocity does not induce a constraint on 

position 

  

For a wheeled robot, it can instantaneously move in some 

directions (forwards and backwards), but not others (side to side).  

   

The robot can instantly 

move forward and back, 

but can not move to the 

right or left without the 

wheels slipping. 
To go to the right, the 

robot must first turn, and 

then drive forward 



Other examples of systems with non-holonomic constraints 

Hopping robots 
RI’s bow leg hopper 

Manipulation with a  robotic hand 
Multi-fingered hand from Nagoya University 

Untethered space 

robots (conservation of 

angular momentuem is 

the constraint) 
AERcam, NASA 



What about holonomic systems? 

• A person walking is an example of a holonomic system- 

you can instantly step to the right or left, as well as going 

forwards or backwards.  In other words, your velocity in 

the plane is not restricted. 

• An Omni-wheel is a holonomic system- it can roll 

forwards and sideways. 



How do we represent the constraint mathematically? 

We write a constraint equation 
For a differential drive, this is: 
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•We can also write the constraint in matrix form, with q the position 

vector and q dot the velocity, we can write a constraint vector w1(q) 
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•What does this equation tell us?  The direction we can’t move in 

So if q0, then the velocity in y = 0 

if q90, then the velocity in x = 0 



Lie Brackets 
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A Lie Bracket takes two n dimensional 

vectors and returns a new n-vector 
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Method for analyzing non-holonomic motion 

•Determine your constraints (w’s) 

•Convert the constraints into locally allowable motions, (w’s > g’s) 

 Must find allowable inputs g1 and g2 such that (g1 ^ w1) and (g2 ^ w2) 

•Apply Lie Bracket to your g’s to determine all possible motions 

 If after you apply the Lie Bracket you find that you have n linearly independent 

 columns, then you can control your robot in all n variables. 
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Ackerman steering example 
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•2 constraints (front and rear wheels) 

•2 inputs (steering and gas pedal) 

• 4 states 
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Ackerman example cont. 
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Ackerman example cont. 
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Are we there yet? 


